ICOT Technical Report: TR-295

TR-2%95

Design,Implementation, and Lvaluation
of a Relational Database Engine
for Variable Length Records

by

F. Itoh, H. ltoh. M. Oba. K. Shimakawa
K. Togo & S. Matsuda

August 1987

987, 1COT

it Kokusai Bidg M1F) 456-3191=-5

IGD l 4-2f Mita 1-Chome Telex 10O 152964
Minato-ku Tokvo 108 Japan

Institute for New Generation Cnmbhter Technology

DESIGN, IMPLEMENTATION, AND EVALUATION OF A RELATIONAL
DATABASE ENGINE FOR VARIABLE LENGTH RECORDS

F.ITOH*# K.SHIMAKAWA®* K. TOGO! 8. MATSUDA! H.ITOH*
M. OBA?

*Information end Communiecation Systems Laboratory, Toshiba Corporation, 2-9
Suehiro-cho, Ome, 198, Japan

f0me Works, Toshiba Corporation, 2-8 Suehiro-cho, Ome, 188, Japan

1ICOT Research Center, Institute for New Generation Computer Technology, Mita
Kokusai Bldg., 21F, 1-4.28 Mita, Minato-ku, Tokyo 108, Japan

ABSTRACT

This paper reports the design, implementation, and evaluation of a relational database
engine. The engine has special purpose hardware, the nucleus of which is a pipeline two-
way merge sorter, to execute sorting and relational algebra for variable length records. In
the execution of these operations, key fields are extracted from records. The engine has on-
the-fly processing in which it inputs data directly from disk. The evaluation shows the
characteristics of processing time, the effect of variable length records, and the
effectiveness of on-the-fly processing.

INTRODUCTION

The Institute for New Generation Computer Technology (1COT) eonsiders that fifth
generation computer systems have the integrated functions of inference and knowledge
bases, and has been researching and developing inference machines (IMs) and knowledge
base machines (KBMs). For KBMs, a relational database machine, Delta (1,2), was
developed becausze the relational database is said to be suitable for logic programming
which is used in IMs. In Delta, facts, as in Prolog, are stored as relations and retrieved by
relational algebra. Another KBM iz now under development, in which Horn clauses are
stored as relations and retrieved by operations called retrieval-by-unification (RBU) (3). In
REU operations, data is selected and joined based on unifiability, in contrast to relational
algebra, in which data is selected and joined based on equality. The KBM has unification
engines (UEs) (4}, which perform RBU operations. Although a Horn clause is represented
as a structure which consists of literals and varizbles, UEs treat the structure as a variable
length string.

With this background, we have developed a relational database engine (RDBE) with
following aims.

#Currently working at Institute for New Generation Computer Technology

Processing variable length records using hardware

The RDBE performs sorting and relational algebre (RA) operations for one fixed or
variable length key field in variable length records.

Efficient database processing

On-the-fly processing. To process data on disk efficiently, the RDBE has on-the-fly
processing in which it inputs data directly from disk. Without on-the-fly processing, data
on disk is loaded to main memory (MM) before it is input to the RDBE, then the data path
in the entire processing is "disk =+ MM = RDBE — MM", On-the-fly processing makes the
data path "disk — RDBE — MM", and achieves more effective processing.

Stream processing in the RDBE. The RDBE realizes the stream processing of
sorting end KA operations.

The search processor, SHP (5), is an example of a processor which has on-the-fly
processing. Examples of processors which have stream processing are VLSIe based on the
syetolic array (6], the RDBE in Delta (7), multiple processors for the join operation (8), and
some processors for sorting, for example, e sort engine using pipeline heap sorting (9) and a
pipeline merge sorter (10). An alporithm has been proposed for a sorting processor for
variable length records (11), but has not been implemented yet.

Later sections discuss the ﬂasign‘ implementation, and performance evaluation of the
RDBE. Section 2 presents the basic ideas of design and features of the RDBE. Section 3
summarizes the configuration, format of data to be processed, functions, and processing.
Section 4 shows the implementation of all components of the RDBE. Section 5 evaluates
performance based on the design values and measurement.

RASIC IDEAS

Configuration of the Database Machine

Fig. 1 shows the configuration of the database machine, It mainly consists of & central
processing unit (CPU), MM, RDBE, and database disk. Relations manipulated by the
database machine have both fixed and variable length attributes. Relation schemala and
data are stored in different files on digk. Datls of one relation is stored in one file. One
record in a {ile corresponds to one tuple in a relation. Fig. 2 shows the structure of & record.

| | 1 i
CPU MM Input | |RDBE | |OQutput
Channel Channel
== Database Data

Fig. 1. Configuration of the Datahase Machine

[J—

A record consists of a record header {RH), fixed length fields (FFs), variable length field
headers (FHs), and variable length field bodies (VFs). There are the same number of FHs
and VFs, and they have one-lo-one correspondence in order. The RH consists of record
length (RL) and a deleting flag (DF). A DF shows whether the record is velid (logically not
deleted). An FH consists of field length (FL) and field position {(FP). FL denotes the length
of the corresponding VF. FP means the length from the head of a record to the head of the
corresponding VF. A VF has an instance of a variable length attribute. Helation data on
dick ig a series of records. Relation schemata include the length and the position of each FF
and the position of each FH, in addition to ordinary schemata.

Data processing is shared between the RDBE and the CPU. When a query arrives at
the CPU, the CPU executes a combination of the following three types of processing to
obtain the answer, and returns the answer to the user.

The CPU requests the RDBE to input data from disk, process it, and output the

result to MM.

The CPU requests the RDBE to input data from MM, process it, and output the

result to MM.

The CPU directly processes data in MM,

The RDBE guickly performs the following proeecessing, which is simple but time-

consuming,

Sorting. Records in target data are sorted in ascending or descending order by their
key values.

Duplication elimination. Records in target data are sorted in ascending or
descending order, If there are two or more records which have the same key value, one is
left and the others are removed.

Selection. Records are selected from target data whose key values have & specified
large or small relationship to the conditional value,

Intersection and difference. Records are selected from second target date whose key
values are (in intersection) or are not (in difference) included in the set of hey values of first
target data,

« RL —>

4 FFP, : —» FL, |

- FP, > 4FL, > :

RH FFy «=+ {FFy |FH; | '+~ |FH, VF; e |VF,
RL DF FLy FP; FLn FP,

S b e o b e B by o oby SHEES o lie S bl o

Fig. 2. Format of a Variable Length Record

Equal join. Pairs of records are made between first and second target data, each of
whieh has the same key values. However, the creation of one record from each pair is not
supported by the RDBE, but by the CPU.

The CPU performs following processing which is too complex for hardware or causes a
date transfer bottleneck although the processing by hardware is quick.

Arithmetic operations, aggregate functions, and reforming records after join in
the RDBE. These are too complex for hardware.

External sorting and external duplication elimination. In sorting and duplication
elimination, if the volume of target data is beyond the RDBE's capacity, data is divided
into several parts less than the RDBE's capacity, the RDBE sorts or eliminates
duplications from each part, and the CPU performs external sorting or duplication
elimination of all parts. Even if the RDBE could perform external sorting and duplication
elimination, there would be a data transfer hottleneck.

Processing Methods of the Relational Databuse Engine

The RDBE adopts the following methods:

Siream processing by a pipeline two-way merge sorter and an RA processor.
The sorting and relational algebra p'rn-cesr.ing (RAP) modules are arranged in series. The
sorting module consists of a pipeline two-way merge sorter (12). In the intersection,
difference, and join operations, the comparison to search for equivalent or non-equivalent
key values is executed more effectively by sorting key values beforehand.

Key field extraction processing. Only the key fields flow into the sorting and RAP
modules. In pipeline two-way merge sorting, memories are used to store data being sorted.
Different record lengths cause delays in pipeline processing. To reduce the contents of
memory and the delavs, the key fields are extracted from records.

Use of taps. The sorting and RAP modules use tags attached to data to execute
processing. One item of information in tags indicates the end of key fields. With this
information, it is net necessary to consider whether the key field length is fixed or variable,

OVERVIEW OF RELATIONAL DATABASE ENGINE

Configuration and Data Format

Fig. 3 shows the configuration of the RDBE and its data format. The RDBE consists of a
controller and four medules. There are three data formats as follows,

Records. The input and cutput data of the RDEBE is the records shown in Fig. 2. Input
records are sent to the BB and IN modules simultanecusly, end cutput records are read

from the RE module. Records are input and output in two-byte units,

Key fields and record identifiers with tags. Data flowing from the IN module o the
RAP module consists of key fields and record identifiers (RIDs) with tags. Key fields and
RIDs flow one after the other. Each RID corresponds to the record from which the preceding
key field is extracted. A one-byte tag is added to each two bytes of key fields or RIDs. Tags
are used for flags and parities. Flags indicate the end of key fields and the duplication of
key values, Parities are used as bit parity for data integrity. Three bytes of key fields or
RIDs and tags flow in parallel.

RIDs with tags. RIDs and their tags flow between the RAP and RB modules. The
content of tags is parities. Three bytes of key fields and tags flow in parallel.

Controller and Module Funections

The function of the controller and each module are as follows:

Controlier. The controller interprets a command from the CPU and sets up modules.
In the IN module, it determines whether key fields are of fixed or varisble length, their
position and length if they are of fixed length, and the position of the corresponding
variable length field hesders if of variable length. In the IN module, it determines the key
data type (character, integer, or floating point). In the sorting medule, it determines
whether sorting is used in the operation processing, and whether sorting is ascending or
descending. In the RAP module, it determines the kind of RA.

l i —P Data Flow — — Control Flow 2
In Channel - — == Controller i" S
T} P I|||.|.|-||I|-|-| rer . __l--|
\ 4 v ! D |
In Module ‘JI —t
|
+l . | I :
I . [Koy
Sorting Medule ""| L __LI__ o e
RB Module I 1
} e groeeee | L
RAP Module S = Pl
* s : Tag
Out Channel : » |
E...... P T R . J:_

Fig. 3 Configuration and Data Format

RE module. When target data is input, the RB module stores whole records in
memory, and determines the correspondence between the input serial number (used as the
RID) of each record and its address in memeory. When result data is output, the RB module
reads the records from memory which correspond to RIDs sent from the RAP module.

IN module. The IN module extracts key fields from records, attaches RIDs, and sets
kev end flags. If the data type of the key is numerical (integer or floating peint), it
manipulates bits of key values to compare them as & character,

Sorting module. The sorting module soris character-type key values in ascending or
descending order. If there are two or more of the same key values, it sets duplication fags
on all the key values other than the last one.

HAP module. The RAP module executes duplication elimination, selection,
intersection, difference, and equal join operations for character-type key valvues. Except for
selection, it requires that key values be sorted and it uses duplication flags. As a result, it
outputsonly RIDs.

Processing Method for Sorting and Relational Algebra Operations

Sorting and KA operations are executed with the sorting and RAP modules as follows:

Sorting. The serting module sorts target key values. The RAP module only extracts
RIDs from sorted data.

Duplication elimination. The sorting module sorts target key values. The RAP
module removes redundancies from duplicated data by selecting data on which duplication
flags are not set.

Selection. First, a conditional key value flows through the sorting module, and is
stored in memory of the RAP meodule. Next, tarpet key values flow through the sorting
mndu]e, but are not sorted. The RAP module COMPAres E.hf!m in input urder wil,h l,he
conditional key value, and extracts target RIDs whose key values satis{y the condition.

Intersection and difference. The first target key values are sorted by the sorting
module and stored in memory of the HAP module. The second target key values are also
sorted and flow into the RAP module. The RAP module eompares the key values of the two
targets and extracts the second target RI1Ds whose kev values are (in intersection) or are
not (in difference) included in the set of first target key values.

Equal join. The first target key values are sorted by the sorting module and stored in
memory of the RAP module, The second larget ey values are also sorted and flow into the
RAP module. The RAP module compares the key values of the two targets and extracts
pairs of the first and the second target R1Ds whose key values are eguivalent,

DESIGN AND IMPLEMENTATION

Record Buffer Module and IN Module

Memory for storing whole records is one megabyte. The RID length is two bytes. In one
operation, the maximum size of whele target records is one megabyte and the maximum
number of target records is 64 kilobytes. A table controls the correspondence between RIDe
and gddresses in memory. In some operations, typically selection, result record output
starts before target record input ends, thereby realizing concurrent record input and
output.

Sorting Module

The pipeline two-way merge sorter coneists of 12 sorting cells. The maximum number
of target records in sorting is 4086 (212). Fig. 4 a) shows the configuration of & sorting cell,
The memory management method is double memory (11) for ease of implementation,
Memory in the 12th sorting cell is 128 kilobytes (in practice, 192 kilobytes including 64
kilobytes for the tags). Essentially, in the double memory method, two items of data to be
merged are stored in district memory. However, in our implementation, they are stored in
two parts of one physical memory because of the hardware size restriction.

Relational Algebra Processing Module

Fig. 4 b) chows the configuration of the HAP module. There are two memories, each of
which is 128 kilobytes (in practice, 195 kilobytes). In intersection, difference, and equal
join, all first target key values are stored in one memory. Comparison of the first and
second target key values begins as soon as the second target key values flow into the RAP

From IN Medule or Previous Cell From Sorting Module
Address Data Allotter Address
Controller ; Controller Ir+ Memory Memory +':
' v L4 1A v v |
I “%|Memory Memory [| : r—- Comparator :1‘" T :
I | i i
! v i P 4 L
L — 1 Comparater and Selector [— 4 { * 1D Selector |4 + 1
:- ? Address * Address
L Controller Controller
—»| Flag Manipulator 1D Buffer
+ P Data Flow *
a To Next Cell or RAP Module — = Control Flow To RB Module b

Fig.4 a) Configuration of a Sorting Cell b} Configuration of the RAP Module

module. If the speed of second target key values flowing inte the RAP module is faster than
the gpeed of the values being cast ofT after comparison, second target key values are stored
in another memory. If another memory becomes full, the RAP module slops second target
key values from flowing in until & vacancy occurs. The maximum size of first target key
values and RIDs is 128 kilobytes, but the size of second target key values is not limited.

Clock Time of Data Flow

In the RDBE, data are transferred in two-byte or three-byte units, including one hyte
for the tag (this two or three bytes is called one word). The data path in each module is
made up of registers and memories, The data transler speed depends on memory access
time because data transfer between registers and comparison of two items of data are

faster than memory access.

RE module and IN module. Data input into the RE module and the IN module are
gynchronized. In the RE module, alternate input at word level and cutput to memory is
adopted to realize concurrent input and output at record level. Essentially, data is input
and output at a speed of one word per two clocks. In the IN module, key fields are
transferred st e speed of one word per three clocks becavse, as described later, the sorting
module receives them at that speed. Parts other than key fields are cast off without being
received by the sorting medule.

Then, data is input inte the RB and IN module at one word per three clocks in key
fields, and one word per two clecks in parts other than key fields. Data is cutput from the
EB module at one word per two clocks or a littie slower because read from memory waits if
requirements of both write and read occur in the same clock.

Sorting module. To realize pipeline processing, each sorting cell must transfer data at
the same speed. Consider that each sorting cell receives and sends one word for a certain
time, and that there are three memory acceszes in each sorting cell. Two of them are read of
both words Lo be compared, and one is write of a word from the preceding cell. These three
memory accesses are assigned every three clocks. Data is transferred at one word per three
clocks,

RAP module. Essentially, it is possible to transfer data at one word per two clocks. In
intersection, difference, and equal join, both words Lo be compared are read simultaneously
because two memories are physically separeted {rom each other, unlike the sorting
module. However, for ease of implementation, data is transferred at one word per three
clocks, synchronized with cutput from the sorting module,

Actual Implementation

The modules are contralled by transistor-transistor logic (TTL) and & programmabie
logic device (PLD). One cloci iz 250 ns.

PERFORMANCE EVALUATION

Basic Performance

The performance is evaluated when the lengths of records and keys are fixed. First, the
processing time of each operation is estimated by examining the register transfer level.
The processing time is from beginning input of data to ending output, and dees not include
the time to interpret a command from the CPU and to set up modules.

Let each record consist of only a variable length key field, and the length of the key
field be 14 bytes or more, and be 2a bytes. The length of each record is 2a+8 bytes,
including four bytes for a record header and four bytes for a key field header.

Sorting. Let the number of target records be n (where nis a power of 2), The processing
time of sorting is divided into input time, delay time, and cutput time. Each time is defined
and summarized as follows,

Let input time be from beginning input of the first record to beginning input of the last
{nth) key field. 1t takes eight clocks from beginning input of the first record to input of the
first key fiald, because there are four words for the record header and key field header. The
interval between inputting a key field and inputting the next key field is, essentially,
%a+ 8 clocks because an a-word key and a four-word non-key (the record header and key
field header of the next record) are input. The RID is tru.nsferr:ed while the non-key is cast
off. However, as stated above, because & clock where the sorting module receives 8 word is
assigned once every three clocks, the interval becomes 3a+8, which is the minimum
multiple of three from 3a+ 8 up. Then, input time is:

(3a+9)Kn—1)+8 (clocks)

Let delay time be from beginning input of the last key field to output of the first record.
1t takes 91 clocks for data to flow through the engine without any processing {or operations.
However, the RAP module only outputs the RID ignoring the key (it takes 3a clocks). Then,
delay time is:

3a+91 (clocks)
Let output time be from beginning output of the first record to ending output of the last

record. The interval of the RID being output from the RAP medule is 3a+ 3 clocks because
there are a words per key and one word per record 1D. The output of one record finishes in
3a+3 clocks because it takes 2a+8 clocks, less than 3a+3 clocks, assuming that a=17.
Then, output time is:

(3a+43lin=1}+2a+6 (clocks)
From the above, the total time of sorting is:

(Ba+12in—a+93 (clocks)
The outline of other operations is as [ollows.

Duplication elimination. Duplication elimination is the same as sorting.

Selection. Let the record number of target data be n.
{3a+8n+5a+ 178 (clocks)

Intersection and difference. Let the record number of first and second target data be
m and n respectively (where both are a power of 2 and 4096 or less).
Minimum:
(Ba+12)m+(Ba+12n—4a+ 163 (clocks)
Maximum:
(Ba+18m+(fa+12)n—4a+ 163 (clocks)

Equal join. Let the record number of firet and second target data be m and n
respectively (where both are a power of 2 and are 4096 or less). Let the record number of
result data be r (where r= nh

Minimum;

Ba+12im+(3a+%n+{da+20r=3a+ 156 (clocks)
Maximum:

Where r& (min[m,nli2, let r be a square number.

(6u+12)m+(3a+9in+(4a+20)r+Ba+3)Nm+n—2Vr-3a+ 156 (clocks)
Where r >{min[m,n}}?, let r be a multiple of min{m,n].

(Ga+12)m+(3at9n+i4a+20)r+(3a+INmaxim n)— ; —3a+ 1566 (clocks)
minlm,n

Let each record consist of more than one field. Assume the fullowing:

A key field is the last part of a record.

The length of a key is 20 bytes, and the length of 8 record is 2p bytes. f—o is
multipleof 3, and 3= 2f - 4.

The number of target records is n and a power of 2,
The processing time for sorting is as follows.

(a=+4f+2n+4a~20+99 (clocks)
The processing time has the following characteristics.

[t is linear to the number of target records.

It is linear to the key length and the record length, and depends more on the record
length.

In selection, the processing time does nol depend on the selectivity.

In intersection and difference, the variation in processing time depends on the
number of the same key values in first and second target data, The larger the number,
the shorter the processing time, becauee the number of comparizon times in the HAP
module deereases.

In join, the processing time is approximately linear to the number of result records
The variation depends on the concurrency between the comparison in the RAF module
and output of the result records, If there are the same key values in first and seeond
targel data in the later parl of the comparison, output of the result records conlinues
after the end of the comparisen, making the processing time longer.

Next, the real processing time is compared with the computed time. The time from
beginning input of records to ending output of records is measured by e logic analyzer. The
measured Lime is approximately equal to the computed time. Fig. 5 shows the time for
sorting and selection, and Fig. 6 shows that for equal join. The difference between the

—10 -

measured and computed timee is caused by firmware overhead in the input and output
channels.

Effect of Variahle Length Records

Processing time is measured for target records where record lengths, key lengths, or
‘bath are different. In sorting, the time from beginning input of records to ending output of
records is measured by a logic analyzer.

CGenerally, it takes longer to sort variable length records than fixed length records,
because the difference of processing time in each sorting cell causes a delay in the data
stream. Processing time is measured for the following three cases. In each case, the number
of records, the total size of records, and the totsl size of key fields are constant.

Processing Time {ms)

80 ~ Sorting . .
Measured
B) snrtng I
40 |- Computed ¢ ¢
L Selection i .
Measured
0 1 1]
Selection Aeeeea
0 1,024 2,048 3,072 4,096 Computed
Target Record Count

Key Length 16 Bytes (Constant)
Record Length 24 Bytes (Constant)

Fig. 5. Target Record Count Characteristic in Sorting and Selection

Processing Time (ms)

1,000 Measured . .
Maximun
Measured .
500 Minimm
Computd . -een
Mexmum
0
Computed P
0 16,364 32,768 49,152 65,536 Minimnun
Result Record Count
Hey Length 16 Bytes (Constant) First Target Record Count 512
Fecord Length 24 Bytes (Consiant) Second Target Record Count 512

Fig. 6. Result Record Count Characteristic in Equal Join

Case 1. The targel records consist of only variable length key fields. The key and
record lengths become gradually lenger, are constant, or become graduglly shorter. The
gradient varies.

Case 2. The key lengths of the target records are constant. The record lengths of target
records become gradually longer, are constant, or become graduaily sherter. The gradient
varies,

Case 3. The recard lengths of the target records are constant. The key lengths of target
records become gradually longer, are constant, or become gradually shorter. The gradient
varies.

Fig 7 shows the messurement results in case 1. Where lengths become longer, the
processing time is the same as where they are constant. However, where lengths become
shorter, the greater the gradient, the longer the processing time. In cases 2 and 3, the
processing time is equal among the various gradients.

Consider the last sorting eell of the sorting module. It stores the sorted first half of the
keys in its memory, and when it obtaine the first key of the sorted second half of the keys, it
starts output of all of the sorted keys. Storage of the sorted first half of the keys begins after
input of the first helf of the target records to the IN module finishes. The first key of the
sorted second half of the keys is obtained afler input of all of the target records to the IN
module finishes. Where storage of the sorted {irst half of keys finishes before input of all of
the target records to the IN module finishes, processing time of sorting depends on the total
gize of the records, which is constant in all cases. However, where the key and record
lengths become shorter in case 1, the total size of the first half of the keys is larger than the
totel size of the second half of the records, which causes longer processing time.

Processing Time (ms}

a0 ~

40
o | ! | | | ! !]
-128 -96 -64 -32 0 32 64 86 128
Subtraction of Last Key Length from First
Average Key Length 16 Bytes (Constant} Record Count 1024

Avergge Record Length 24 Bytes (Constant)

Fig. 7. Target Record Length Distribution Characteristic in Sorting

Effect of On-the-fly Processing

Processing time with and without on-the-fly processing is compared, and the effect of
on-the-fly processing is evaluated. With on-the-fly processing, data on disk is directly input
to the RDBE. Without it, data on disk is input to the RDBE after it is loaded to MM. Fig. 8
shows the processing time of sorting and selection with and without on-the-fly processing.
On-the-fly processing reduces the processing time by about 30% in sorting and by about
40% in selection. The processing time is regarded as the time when the data is being
transferred, and is measured by a logic analyzer.

The effect of on-the-fly processing is evaluated. Te make the discussion simple, it is
assumed that the speed of reading data from disk (disk — MM and disk — RDBE) and that
of transferring data between the MM and the RDBE (MM~ RDBE and RDBE — MM) are
the same.

Since the processing in the RDBE is concurrent with inputting and outputting dala to
it, the entire processing time is roughly estimated by the data transfer time.

In sorting, the result date is output from the RDBE almost immediately after the
target data is input to it. With on-the-{ly processing, there are two data transfers (disk —
RDBE and RDBE - MM). Without on-the-fly processing, there are three transfers (disk —
MM, MM — RDBE, and RDBE— MM). Since the time of these data transfers is
approximately the same, the processing time of sorting with on-the-{ly processing is about
two-thirds of that without on-the-fly processing.

In selection, input of target data to the RDBE and cutput of result data from it are
approximately concurrent. With on-the-fly processing, there is one data transfer (disk—
RDBE — MM). Without on-the-fly processing, there are two transfers (disk— MM and MM
— RDBE— MM). Since the time of these data transfers is approximately the same, the
processing time of selection with on-the-fly processing is about half of that without on-the-
fly processing.

Processing Time (ms)

600 — Sorting with . .

On-thefly
Sorting without P

ann = On-the-fly

- Selection with

—

On-the-fly

o Lo

Selection without a A

] 1,024 2,048 3,072 4 096 On-thedly

Targel Record Count

Key Length 18 Bytes (Constant}
Record Length 64 Bytes (Constant)

Fig. 8. With and Without On-the-fly Processing in Sorting and Selection

CONCLUSION

This paper described the design, implementation, and performance evaluation of the
RDEE fur variable length records. To process variable length records, the key fields are
extracted from records, and tags are added to them. This realizes the same algorithm for
both fixed and variable length data, and reduces the delay caused by different record
lengths. To execute sorting and RA operations quickly, pipeline processing by multiple
processors, the nucleus of which is a two-way merge sorter, is adopted, This realizes stream
processing, the concurrent execution of an operation and transfer of data. To process data
on disk effectively, on-the-fly processing is used so that the RDBE inputs data direetly from
disk. This reduces the total processing time by ebout 30% in sorting and by about 40% in
selection in comparison with the case where data are loaded to MM before inputting them
to the RDEE.

ACKNOWLEDGMENTS

We wish to thank Dr. K. Iwata and Mr. C. Sakama of ICOT Research Center, and Mr.
Y. Hoshing, Mr. 8. Shibeyama, and Mr. H. Sakai of Toshiba Corporation for vwseful
discussions. We also extend our thanks to the RDBE developers for the implementation
and performance measurements of the RDBE.

REFERENCES

1. Shibayama, 8., Kakuta, T., Mivazaki, N, Yokota, H., and Murakami, K. New
Generation Computing, Vol.2, 2:131.155, 1984,)

2. HKakuta, T., Mivazaki, N., Shibayama, 5., Yokota, H., and Murakami, K. In: Database
Machines Fourth International Workshop (Eds. D. J. DeWitt and H Boral), Springer-
Verlag, New York, 1985, pp. 193-34,

3. Yokota, H., and ltoh, H. Proec. 13th International Symposium on Computer
Architecture, pp. 2-9, 1986,

4. Morita, Y., Yokota, H., Nishida, K., and Itoh, H. Pree. 12th International Conference
on Very Large Data Bases, pp. 52-59, 1986,

5. Havami, H., and Inoue, U. IPS Japan Techniecal Report, DB-51-2, 1986 (in Japanese).

6. Kung H.T., etal ACM SIGMOD, pp. 105-116, 1980,

7. Sakai, H., Iwata, K., Kamiva, 5., Abe, M., Tanaka, A., Shibayama, 5., and Murakami,
K. Proc. of International Conference on Fifth Generation Computer Systems 1984, pp.
418-426, 1984, _

B. Valduriez, P, and Gardarin, G. ACM Trans. Database Svst., Vol 9, 1:133-161, 1984,

9, Tanakae, Y. et al. Proc. of IFIP Congress, pp. 427-432, 1980,

10, Kitsuregawa, M. Fushimi, 5., Kowabara, K., Tanaka, H., snd Moto-oha, T. Trans,
IECE Japan (Seetion J) , Val.J66-1), 3:332-339, 1983 (in Japarese).

11. Yang, W., Kitsuregawa, M., and Takagi, M. IPS Japan Technical Heport, CA-83-12,
1986 (in Japanesea),

12. Todd, 5. 1BM J. Res. Dev., Vol.22, 5:509-517, 1978,

