ICOT Technical Report: TR-292

TR-292

Knowledge Base Machine Based on Parallel
Kernel Language

by
H. Yokota (Fujitsu), H. Ttoh and T. Takewaki

August, 1987

C1987. 1COT

it Kokosar Bldg. 21F (031 AaR-31491 —~ 5

1CDT 4=28 Mita 1-Chome Telex 1COT 132061

Minato-ku Tobve 108 Japan

Institute for New Generation Computer Technology

Knowledge Base Machine Based on Parallel Kernel Language

Hidenori ITOH, Toshiaki TAKEWAKI ', Haruo YOKOTA®

ICOT Research Center
Institute for New Generation Computer Technology
Mita Kokusat Bldg.. 21F. 1-4-28 Mita, Minato-ku, Tokyo 108, Japan

T Fujitsu Laboratories Ltd. Kawasaki
1015 Kamikodanaha, Nakahara-ku, Kawasaki 211, Japan

ABSTRACT

This paper describes a knowledge base machine (KBM) that is
being researched and developed from the viewpoint of parallel logic
programming. From the idea of parallel logic programming, a
parallel kernel language (PKL) has been developed for the Fifth
Generation Computer System (FGCS) project. Our KBM is based on
the PKL. It has a parallel inference mechanism and a parallel
retrieval mechanism which are controlled by an operating system.

INTRODUCTION

One of the principles of this research was that logic programming can
become a new, unifying prineiple in computer science [1]. This is because
logic programming will cover computer architecture. new programming
styles, programming language semantics, and database processing. Logic
programming will also play an important role in such fields as linguistics
and artificial intelligence.

The logic programming language Prolog was selected as the research
tool. From Prolog, a parallel kernel language (PKL) was developed,
corresponding to a conventional machine language. The PKL is the
nucleus of hardware and software systems for the Fifth Generation
Computer System (FGCS) project. Inference mechanisms and knowledge

< Currently working at T'oshiba Corporation

base mechanisms will be developed as hardware systems; basiec and
application software will be deveispzd as softwars systems.

Development is being pursusd in three stages. The first was from
1982 to 1984, We are now in the middls of the second stage, which is to
end in 1988.

In the initial stage, a sequential karnel language [2] was developed
with an object-oriented programming feature added to Prolog. The
personal sequential inference machine (PSD [3] was developed as an
inference mechanism based on it. A relaticnal database machine (DELTA)
[4] was developed as a relational database storage and retrieval
mechanism connected physically with the PSThy a LAN and logically with
relational commands.

In the second stage, we are pursuing three activities.

First, the deductive database machine (PHI) is being developed. The
PHI is composed of the PSI and dedicated hardware knowledge hase
engine (KBE) [5], connected by a bus, The technologies obtained through
the development of DELTA’s relational engine (RE) are integrated in the
KBE. Expansion of the PHIs develops a distributed deductive database
system. Second, the hierarchical memory mechanism for the global shared
memory is being developed. This mechanism is composed of multi-ports
and a memory unit [6, 7]. The third activity is the development of the
retrieval processors 8] that communicate with inference mechanisms by
data streams defined in PKL.

The hierarchical memory mechanism and retrieval processors will be
integrated into the prototype of the parallel KBM model in the final stage.

PARALL_EL KERNEL LANGUAGE

Guarded Horn Clauses (GHC) [9] was developed as the parallel kernel
language (PKL) of the FGCS. using imposition of guards and restriction of
nondeterminism where the clause which has passed the guard first is used
for subsequent computation.

The pioneering works of GIIC are Relalional La nguage [10],
Concurrent Prolog [11], and Parlog [12]. All of these languages are very
similar and their common feature is that cach has a guard part and a hody
part, separated by a commit operator (denoted by). Of these languages,

GHC has the simplest syntax, Each clause written in GHC is in the
following form:

where connectives :- and , are common to ordinary Horn clauses. The
part of a clause before | is called the guard, and the part after it iz called
the body. The caleulation results of the guard are only effective in the
guard. A guarded clause with no head is a goal clause, asin Prolog.

The semantics of GHC are also quite simple. The execution of a GHC
program proceeds by reducing a given goal clause to the empty clause
under the following rules.

Rulel: No piece of unification in the guard of a clause can

instantiate a variable in the caller.

Rule2: No piece of unification in the body of a clause can
instantiate a variable in the guard until that clause is
selected for commitment. _

Ruled: When there are several clauses of the same head
predicate (candidate clauses), the clause whose guard
suceeeds first is selected for commitment.

Rule I is used for synchronization, Rule 2 guarantees selection of one
body for one invocation, and Rule 3 can be regarded as a sequencing rule
for Rule 2. Under the above rule, each goal in a given goal clause is
reduced to new goals {or null) in parallel.

RETRIEVALBY UNIFICATION

GHC is capable of handling parallel processes using variable
bindings. A process is suspended until pieces of unification succeed or fail.
This suspension is important for controlling processes running in parallel.
Therefore, it is difficult to retrieve structured data containing variables
with GHC. Although unification can be used for retrieving structured
data in Prolog, it cannot be used the same way in GHC. If search
conditions are checked in the guard part of GHC clauses, the check
processes are suspended and not released. 1f condition checks are
performed in the body part of GHC clauses, alternative clauses are never
selected. To retrieve the structured data, the features described in the next
section, should be added to GHC,

Since the structures in knowledge bases are expected to contain
variables, special retrieval functions are required for GHC to operate
knowledge bases. Moreover, GHC has no functions to update static data or
to control concurrent updates. The functions are related to database
operations. We introduced a model and a set of primitive operations on it
to retrieve structured data containing variables [13]. The modeliscalled a
relational knowisdge base. Since the model is based on a relational
database model, itis easy to introduce update and concurrency control.

An object handled in a relational knowledge base is a term, a
structure constructed from function symbols and variables. The definition
of a term is the same as that in first order logic.

(i) O-place function symbels and variables are terms.

(ii) If fis an n-place function symbols and t;,...,t,, are terms,

then f(t,...,t;) is a term.

(iii) Terms are generated only by applying the above rules.

Since GHC is based on first order logic, terms can be handled from GHC.
A subset of the Cartesian products of term setsis called a term relation.

Operations on term relations are enhanced relational algebra
operations. The enhancement is achieved by extending the equality check
between items of ordinary relations to a unification between items of term
relations. Thus, join and restriction are extended to unification-join and
unification-restriction. These are called retrieval-by-unification (RBU)
operations [13].

Not only retrieval functions but updaling, definition, and other
functions are also needed to handle knowledge bases in actual use. The
following operations are planned for handling term relations.

®* Retrieval ® Definition
Unification-join Create a term relation
Unifieation-restriction Erase a termrelation
Projection Make an index for an attribate
Union Remaove the index for an attribute
® Update ® \iscellaneous
Change items Count tuples
Insert tuples
Delete tuples
Add tuples

INTERFACE BETWEEN GHC AND REU

There are two different aspects in the relationship between the GHC
and RBU. As stated above, RBU is used for assisting GHC to retrieve
terms as items of knowledge. GHC can control parallel retrieval processes
of RBU. This section considers how to connect RBU with GHC to enhance
the retrieval function of the PKL. The paralle! control mechanism is
described in the next section.

To use RBU from GHC, there are two approaches for the interface.

1) Provide built-in predicates for each RBU operation,

2) Provide a built-in predicate and deliver commands to the

predicate as incomplete messages.
The difference between these two approaches is not very great. However,
when the two systems are built independently, the interface belween them
in the second approach is simpler than in the first one. Therefore, we plan
to use the second approach,

The interface is illustrated using a simple example. The following
GHC program (Fig. 1) is an implementation of the Horn logic interpreter.
Horn clauses are stored in a term relation named kbl (Fig. 2), and
retrieved by unification-restriction operations. The first attribute of a
term relation is used for maintaining variable substitutions for a goal
clause, the second for storing the head part of a Horn clause, and the third
for storing the body part of the Horn clause.

In this case, the Horn set in kbl pointed out the parent-ancestor
relationship. The term an(x,y) indicates that y is an ancestor of x, and the
term pa(x,y) indicates that y is a parent of x.

The following query is given for searching for the ancestor of "a".

7- soive(kbl,an{a,X),Result).

solve(KB,Goal,Result) :- true |
loop(KB,cmd (C1,C2),[[[|Goall,[Goal]] |,Result),

rbulcmd(C1,02)).
loop (KB, cmd(C1,C2), 1] X} 1o true | X =[], Cl=C2.
Toop (KB, CHMD o [G,R] LT, %) == R =[] | X =[G]Y],

loop(KB,CMD,L,Y).
Toop(KB,cmd(C1,C3),[[G,R] [L].X) - R\=[] |
Cl = Junification restriction{KB,|[l=G,2=R|,[1,3],5)|C2],
merge(L,S,N),
Toop(KB,cmd{CZ,C3) N, X).

Fig. 1. Horn Logic Interpreter Written in GHC

. G [an{A,B}|Tail] | {pa(A,B)|Tail]

| 8 | lan(A,B)|Tail] |lpa(h,C),an(C,8)|Tail]
. & | lpa(a,b)|Tail] Tail

| & | lpa(b,c)iTain] Tail

Fig. 2. Example of 2 Term Relation

In each stage of iteration of the GHC program, the following RBU
comunands are generated to search the knowledge base (kb1) for clauses
unifiable with the resolvents. The second argument of each item in the
stream (5n) is a resolvent of the resolution, and the first argument
indicates the variable bindings for the goal clause correspanding to the
resolvent.

Fig. 3 shows execution examples of RBU commands. Since 52 and S5
contain empty clauses as the resolvents, an{a,b) and an{a,c) are the
answers of the query.

These iteration processes and retrieval processes can execute in
parallel if the stream is long enough. That is to say, the system

un'if'i:at1nn__restr'1|::t1nn(|'€h]..l 1=|an|[ﬂ,}'{}] .2=[an{a,}'{)] 1 .[1,3},51]
S1 = [[lan(a,X)],lpa(a,X}}],[lan(a,X)],[pa(a,C),an(C,X)]il

unif1cit1nn_restr1:t.inn{khl,Il=Ian|:ﬂ,x}].2=[pﬂ.{n,}ﬂ]],II,EI,SZJ
52 = [[lan(a,b)],1]1]
un1f1cat.1crn_resi.rictiun{khl,Il=]ﬁn{ﬂ,1]].?”[DE{H.C}.EH{E,IH],|l,3|,53:|
53 = [{lan(a,X)],lan(b,X}]]]
vnification_restriction(kbl, [1=[an(a,¥)],?=lan{b,X)}],11,3],54)
S4 = [[lan(a,x)],[pa(b,X)|],{an(a,X}],1pa(b,C),an(C,X)]]]
unificatien_restrictien{kbl,|1=]2n(a,X)]|, 2=[pa(b,¥)]].[1,3],58)
55 = [[[an(a,c)],[]]]

wnification_restriction{kbl,|1=]an{a,X)|,2=(pa{b,C),an{C,X)11,11.3],56)
56 = [[{an{a,X)], [an{c,X)}]]

l.I:II1T'il'-i‘lu‘.'il'll'l_resl‘.l"il.'t'il:ll'l{kh]. ,I l=]an|:a,3(}] ,2"—[-’:1“['3 ,X}] | ;1]-ugl ,S?J
57 = [llan(a,X)],[palc,X)]],[[an{a,X)],Ipa(c,C),an{C,X}]]]

uaification_restriction(kbl,[1=[an{a,¥)|,2=[pa(c,X)]},[1,3],58)
58 = []

unification_restriction(kbl,|l=|an{a,X)]|,2=[pa(c,C),an{C,X)]],[1.3],59)
59 = []

Fig. 3. Execution Examples of RBU Commands

implements the OR parallel Horn logic interpreter. This is an example of
RBU usage in GHC. The parallel problem solvers and parallel production
systems can be built using GHC and RBU.

PARALLEL CONTROLMETHODS OF RETRIEVAL PROCESSES IN GHC

This section consists of three parts. First, it describes three parallel
control methods. Each method is considered as parallelism depending on
the cumber of retrieval elements and data division. Then, meta-level
control uses three parallel control methods according to the processing
conditions. The last part describes the implementation of each method in
GHC.

The command from inference elements is the RBU command in
section 3, and is called the retrieval process. The RBU command is
assigned to retrieval elements by the parallel controller and is processed.
Parallel control for retrieval processes is affected by the following
parameters: number of available retrieval elements, type of retrieval
commands, and size of data to be handled by a command.

Parallel Control Methods and Data Division

Three parallel control methods [14] for retrieval processes are
considered. The symbols n and i indicate the total number of retrieval
elements and the number of available retrieval elements when the
retrieval command is received.

{1) Data non-division method (inethod 1): Each retrieval
command is executed by a single element, without data division, The
controller receives a command, searches for an available retrieval
element, and allocates the received command to its element. This
method has a little overhead because of parallel control.

(2) Data dynamic division method (method 2): The controller
receives a command. and searches for all available retrieval elements.
If there are i available retrieval elements, the contraller converts the
command to i (variahle number) sub-commands (if division of data is
possible), and allocates it to i retrieval elements. This method has a lot
of overhead because of parallel control, status management of
retrieval elements, and data division.

(3) Data static division method (method 3): This methed is a
combination of methods 1 and 2. The controller converts the command
to n (fixed number) sub-commands (if division of data is possible). The
allocation of sub-commands is much the same as method 1. This
method has overhead because of parallel control and data division.
The overhead of this method is between those of methods 1 and 2.

Methods 2 and 3 subdivide the grains of a process according to the
division of handled data, cut down the free status of elements by using
retrieval elements for details, and increase parallelism.

The data division operation of unification restriction is converted to
sub-commands and executed. For example, Fig. 4 shows the process (oval)
and the flow of data (arrow) performed by the data n division. The symbol
L indicates the size of the data to be handled by one command.

In the unification restriction command (ur(L)), every ur; corresponds
to the unification restriction process in order to handle uri{l/n), and an
append corresponds to the append process for data streams after it has
been restricted. The unification restriction operation of data n division
needs n unification restriction processes and one append process. To
remove the append process, a differential list that ean partly hold a value
is used. (This is a property of logical variables.) In short, the parts of
unification restriction processes are fast when the number of divisions is
large and an append process does not need execution time using a
differential list.

The processes in the data division operations are executed along the
stream of data from left to right, as shown in Fig. 4, and parallel
processing of every process is possible when every process receives data.

tream

Parallel Conlrol in GHC

Mﬂta |e‘ue| Cuntrolm GHC

Fig. 4. Da‘ta Dw:smn Pmcess r_:f Unlflcatmn Restrlctmn Operation

Meta-level Control

Meta-level control uses three parallel control methods according to
the retrieval processing conditions. The meta-level controller is controlled
by meta-knowledge which guides the use of retrieval elements toward the
best way which is usually synonymous with fast processing. Meta-level
control uses meta-knowledge that satisfies the following conditions: state
of the waiting gueue of commands and type of comunands.

First, control according to the state of the waiting queue of commands
is described, If there is little traffic in the waiting queue, the meta-level
controller will use method 3 because many relrieval elements are
available. If there is heavy traffic in the waiting queue and the queue
contains unprocessed commands, the controller will use method 1 because
few retrieval elements are available. Otherwise, the controller will use
method 2 for fine control.

Next, control method by command type is described. Use of the
retrieval elements in parallel depends on the command type. For example,
term sorting is completed during n phases. In the i +1 phase, k/2 retrieval
elements are used, whereas in the 1 phase, k retrieval elements are used.
In the next example, unification restriction is completed in only one phase.
In this case, all the idle retrieval clements can be used. When the retrieval
element controller receives several types of commands at the same time, it
is important to use the retrieval elements in high efficiency. All of the
above items are also controlled by meta level control.

Implementation of Methods in GHC

The implementation of each method uses the properties of logie
programming, and parallel semantics of GHC and its synchronization
mechanism. Each method is written in Flat GHC [9].

Fig. 5 shows the parallel controller with status management for
retrieval elements under method 2. The top level predicate ‘REscheduler’
of the parallel controller receives a stream of RBU commands from
inference elements, selects all available retrieval elemments, and assigns
commands to available retrieval clements. The predicate closeStream
informs every retrieval element of the end of a command when a stream of
commands is empty. The predicate inspect asls the free or busy status of

%Tﬂpfer.'ef

‘REscheduler' (ICIT],S5tream) :- true |
avaiiableREs(Stream, NS,Free), divide(Free,[C|T],NS).

‘REscheduler'{|] JStream) :- true | closeStream(Stream}.

availabieREs(St, NS,Free) :- true |
inspect{5t,NS,Ins), checkingFree(Ins,Free}.

% Inspection of REs status
inspect(|] JHew,Ins) - true | New=[], Ins=[].
inspect([stream(N,5t) |Rest],New,Ins) :- true |
New={stream{N,SR}|NR], Ins=[(N,State)|IR],
St=[ins(State)|SR], inspect(Rest,NR,IR}.
divide(]] ,C LSt} - true |
'Rescheduler' (C,5t). % Al REs are busy.
divide{REs,[C{T],5t} :- REs\=[] | T send outf C fo free REs
division{C, REs, SubC), sendOut({REs,SubC,S5t,N5),
'REscheduler' (T,NS5).

% 'RE" manages status of REs, SendTolRE sends C to Nth RE.

'"RE'(N,[term |Cmd}) :- true | Cmd=[]. % termination
'"RE' (N, [ins{C) |Cmd]) :- true |
C=free, "RE'(N,Cmd). 9o inspection of status
'"RE' (M, [cmd{C) |Cmd]) :- true | % retrieval command
sendToRE(M,C,Res), response({Res,Cmd,Next}, 'RE'{N,Hext}.
response(end,Cmd M) - true | Cmd=N. % Process ends.

response(R ,[ins(C)|Cmd],N} :- true | C=husy,response(R,Cmd,N).
Fig. 5. Parallel Controller with Status Management

every retrieval element. The predicate checkingfree searches for the
number of available retrieval elements, and selects the available retrieval
elements,

The predicate division generates sub-commands (third argument) by
dividing the data of the command (first argument) by the number of
available retrieval elements (the second argument indicates the list of
retrieval elements). The predicate send0ut assigns sub-commands (first
argumeﬁf} to retrieval elements (second argument). The predicate 'RE'
handles commands from inference elements, and manapes the status for
retrieval elements. Arguments of the predicate 'RE' indicate the number
of elements and the stream of commands.

The predicate sendToRE issues a command to a retrieval element
which is appointed by the first argument. This predicate instantiates the
third argument to the atom end when a process comes to an end. If the
predicate response receives the command ins{C) for an inspection of

S10-

metaControl([] , ST, REs) :- truz |
closeStream(ST).
metaControl({[cmd(C,Type,5ize) [Rest]|, ST, REs) :- true |
availableREs(ST, IS, Free),
strategy(C,Type,Size,Free, Method),
solve(Method, REs, Free, cmd(C), IS, KS),
metaControl(REs, Rest,NewST).

solve(methodl, REs, Fres, C, 5T, N3} :- true |
selectRE(Free,RE)}, sendOut{[C],IRE],5T,NS).

solve(method2, REs, Free, C, ST, NS} :- true |
division(C,Free,SubC), sendOut({Subl,Free,ST,NS).

solve(method3, REs, Free, C, 5T, N&) :- true |
division({C,REs, Subl), sendOut{SubC,Free,S5T,N5}.

Fig. 6. Part of Program for Meta-level Control

status when an element is busy, then the atom busy is returned, otherwise,
the atom freeis returned by the predicate 'RE".

Fig. 6 shows the part of the program for meta-level control. The top
level of the meta-level controller uses the predicate metaControl instead of
the predicate 'REscheduler' in Fig. 5. The predicate metaControl uses
three control methods according to retrieval element conditions, command
type, and the size of the data to be handled by the command. This
predicate receives commands with several items of information, searches
for any available retrieval elements (availableREs), selects the best
control method from among all the methods (strategy), processes the
command by this method (solve), and repeats this processing.

KNOWLEDGE BASE MACHINE MODEL

The knowledge base machine model is shown in Figs. 7 and 8.

The upper network and clusters (CLs) are also being researched and
developed for a parallel inference mechanism (PIM). The PIM will be
composed of abaut 100 CLs, each CL with about 10 processing elements.

The KBM is composed of a PIM, retrieval elements (REs), and a global
shared memory (GSM). The number of REs is about one tenth of the
number of CLs. Each CL has a local shared memory (LSM) for its PEs, and
has a GSM connected with the lower network and REs for PEs in other
CLs. The KBM has a hierarchical shared memory composed of LSM and
GSM.

S11 -

o Netwark - GHC
p | I
0-4 CLy s o s e Cly |*¥—— GHC+REU
5
1 e
q Metwork t— GHC
| |
RE, 'R REy, |+——— RBU

| I P05 : Parallel Operating System

Global Shared Memory |Ct: Cluster
RE: FRetrieval Element

n=100,m=n/10
Fig. 7. Ideal Model of Knowledge Base Machine

PE'| L PEK

Local Shared Memory L :E =1l;rocessing Elernent
| =

Fig. 8. |deal Model of inference Element Cluster

The RE receives the retrieval commands given in section 4 from CLs
through the lower network. In the lower network, the destination REs of
retrieval commands should be dynamically determined, as described in
section 5. For this purpose, the RE parallel control method in GHC needs
to be integrated into the lower network. Physically, the upper and lower
networks are the same. These networks and CLs are controlled under a
single parallel operating system (POS). REs are also controlled in parallel
as KBM classes under the POS.

When the RE receives a retrieval command, it starts to access the
global shared memory. The sets of retrieved knowledge stream into the
RE. While the pairs of sets of knowledge flow into the RE, the RE sorts the
knowledge in the generality defined in unifiability and detects any pairs
that are unifiable. The unifiable sets of pairs are unified in a pipelined
way and are sent to CLs as the response of retrieval commands [8]. The
stream flowing into the RE has an affinity with the definition of the data
stream in GHC.

_19.

The GSM is composed of a number of memory banks. Each bank has
ports for reading and writing knowledge stored in logical page size. A
logical page lies across all the banks. Each port connected to the bank can
access the same page. Then the GSM mechanism permits EEZs to be

accessed in the same logical dumain at the same time [6, 15].

CONCLUSION

This paper described a knowledge base machine model based on a
parallel kernel language(PKL). For the PEL, GHC has been introduced
and for the knowledge base model, a term relation and its operations,
named EBU, has also been introduced. We combined BEBEU and GHC with
built-in predicates so that all solution collecting feature required in RBU
were realized in GHC, which has only a don't care nondeterministic
feature. The parallel control feature of GHC is effectively used for the
retrieval elements, and the data-stream manipulation method has an
affinity with the definition of data-stream in GHC introduced in the
retrieval element. The knowledge base machine and parallel inference
machine will be integrated into an FGCS prototype in the final stage of
the project. To realize this aim, we accumulated technologies through
research and development of a relational database machine (DELTA) in
the initial stage, and a deductive database machine (PIi]) based on the PSI
and an experimental multi-port page shared memeory mechanism in the
intermediate stage. Applying these technologies, we have started to
develop an experimental KEM in a parallel kernel language.

The basic functions introduced in this FGCS have been evaluated by
developing some applications on it.

ACKNOWLEDGEMENTS

We would like to thank Dr. Fuchi, the director of ICOT, who
contributed many uselul suggestions for this research and developiment.
We also wish to thank the members of the KEM working group and the
people in industry who participated in joint research programs for their
helpful discussions. We ulso extend our thanks to Dr. Furukawa and Dr.
Uchida for their valuable comments on the KBM project.

REFERENCES

(1]

(2]

[3]

5]

(6]

(7]

L8]

(9]
(101

[11]

[12]

[14]

[15]

K. Fuchi, "Revisiting Original Philosophy of Fifth Generation
Computer Systems Project,” in Proc. of the International Conference
on Fifth Generation Computer Systems, ICOT, 19584

T. Chikayama, “Unique Features of ESP," in Proc. of the Internation-
al Conference on Fifth Generation Computer Systems, pp.292-208,
ICOT, 1984

M. Yokota, A. Yamamoto, et al., “The Design and Implementation of
a Personal Sequential Inference Machine: PSI," New Generation
Computing, Vol.1, pp.125-144, Ohmsha, 1984

K. Murakami, etal., “A Relational Database Machine: First Step to
Knowledge Base Machine,” in Proc. of 10th Annual International
Symposium on Computer Architecture, 1983

M. Wada, Y. Morita, et al., “A Superimposed Code Scheme for
Deductive Databases,” in Proe. of the 5th International Workshop on
Database Machines, Oct. 1987

Y. Tanaka, “A Multiport Page-Memory Architecture and a Multiport
Disk-Cache System,” New Generation Computing, Vol. 2, pp. 241-
260, Ohmsha, Feb. 1984

H. Sakai, et al., “A Simulation Study of a Knowledge Base Machine
Architecture,” in Proc. of the 5th International Workshop on Data-
base Machines, Oct. 1987

Y. Morita, H. Yokota, et al., “Retrieval-hy-Unification on a Relation-
al Knowledge Base Model,” in Proc. of the 12th International Confer-
enceon VLDE, Aug. 1986

K. Ueda, “Guarded Horn Clauses,” Logic Programming 85, E. Wada
(ed). Lecture Notes in Computer Science 221, Springer-Verlag, 1986
K. Clark, 5. Gregory, “A Relational Language for Parallel Program-
ming,” in Proc. ACM Conference on Functional Programming Lan-
guages and Computer Architecture, pp.171-178, ACM, 1981

E. Y. Shapiro, “A Subset of Concurrent Prolog and Its Interpreter,”
Technical Report TR-003, ICOT, 1983

K. Clark, 5. Gregory, “PARLOG: Parallel Logic Programming in
Logie,” Research Report DOC 84/4, Dept. of Computing, Imperial
College of Science and Technology, 1984

H. Yokota, H. Itoh, “A Model and an Architecture for a Relational
Knowledge Base,” in Proc. of the 13th International Symposium on
Computer Architecture, pp.2-9, June 1986

I.Itoh, C. Sakama, etal., "Parallel Control Techniques for Dedi-
cated Relational Database Engines,” in Proc. of 3rd International
Conference on Data Engineering, 1987

H. Monoi, et al.,, “Parallel Control Technique and Performance of an
MPPM Knowledge Base Machine,” Technical Report TR-284, ICOT,
1987

-14

