ICOT Technical Report: TR-290

TR-290

Top-down Zooming Diagnosis of Logic
Programs

by
M. Maeji and T. Kanamori (Mitsubishi)

August, | Q87

1987, 1COT

it Mokusai Bldg. 21F (5r 406 3191~ 3

|GC}T 1-28 Mita 1-Chome Telex 1COT J32961

Mingto-ku Tokyvo 108 Tapan

Institute for New Generation Computer Technology

Top-down Zooming Diagnosgis of Logic Programs

Machi MAEJI Tadashi KANAMORI

Central Research Laboratory
Mitzubishi Electric Corporation
§-1-1, Tsukaguchi-Honmachi
Amagasaki, Hyogo, Japan 601

Abstract

This paper presents a new diagnosis algorithm for Prolog programs. Bugs are located
by examining the record of execution trace in some systematic manner, which corresponds
to tracing either proof trees or search trees in a top-down manner. Human programmers
just need to answer “Yes” or “*No” for queries isened during the top-down tracing. Morcover,
querics about atoms with the same predicates are 1ssued continually so that not only segments
containing buge are identified more quickly but also queries are easier for human programmers

to answer. An outline of an implementation of the diagnosis algorithm is shown as well.
Keywords : Program Diagnosis, Debugging, Prolog, Program Analysis.

Contents

1. lutroduction
2. Peeliminaries
2.1 Bugs of Prolog Programs
2.2 “trace” Command in DEC-10 Prolog
2.3 “spy” Command in DEC-10 Prolog
3. Top-down Diaguosis of Logic Programs
3.1 Top-down Diazoosis Algorithm Using Traces
3.2 Top-down Diagnosis Algorithm Using Trees
3.3 Soundness and Completeness of the Top-down Diaguosis Algorithin
4 Top-down Zooming Diaguosis of Logic Programs
4.1 Top-down Zooming Diagnosis Algorithm Using Traces
4.2 Top-down Zooming Diasnosiz Algorithm Using Trees
4.3 Sonndues: and Completeness of the Top-down Zooming Diagnosis Algorithm
. Tmplementation of the Top-down Zooming Diaguosis Alyorithun
5.1 Cousideration on Space Eificiency
5.2 Cousideration ou Time Efficiency
5.3 Consideration on Query
6. Discussion
7. Cenclusions
Acknowledgemeuts
References

&N

1. Introduction

Though it is said that the programming lauguage Prolog is a much higher level language
so that writing programs in Prolog is much easier than the conventional languages, still it
remains as an important task to debug Prolog programs. Several conventional debugging
tools, e.g., “trace” and “spy” commands, are provided in DEC-10 Prolag. In addition, several
more advanced debugging tools have been studied by taking advantages of the characteristics
of logic programs, e.g., “algorithmic debugging” by Shapiro [8], “declarative debugging™ by
Lloyd [6], and “rational debugging” by Pereira |7]. In these approaches, they all assume a
device, ealled “oracle™, which always answers correctly for queries issued during the diamosis.
If the device is a human programmer, not only should the diagnoser be efficient i the query
pumber complexity but also should the queries be easy to answer for human programmers.
Attention should be paid to both of these points when an efficient debugging tool for human
programmers is aimed at.

This paper presents a new diagnosis algorithm for Prolog programs. Bugs are located by
examining the record of the execution trare in some systematic manner, which corresponds
ta tracing either proof trees or search trees in a top-down manner. Human programmers
just need to answer “Yes™ ar *No” for queries issued during the top-down tracing. Moreover,
guerics ahout atoms with the same predicates are issued continually so that not only segments
containing bugs are identified more quickly but also queries are casier for human programmers
to answer.

This paper 1= organized as follows: First in Section 2, we will present twe kinds of
program’s bugs, aud two DEC-10 Prolog commands, “trace” and “spy™. Next in Section 3,
we will show a top-down diamosis algorithm in the *trace”™ manner. Then in Section 4, we
will improve thie diagnosis algorithm into the ope in the “spy™ manmer. Last in Section 5,
we will show an implementation with efieieney consideration,

The followine sections assume familiarity with the basic terminologies of frst order
logie surh as term, atom (atomie formula), elause {definite elause), substitution, most gen-
eral unifier (m.zu.) and so on. Knowledge of the zemanticz of Prolog such as Herbrand
interpeetations, least Herbrand models and transformation Tp associated with program P
i:i- ﬂ!.‘if_] HEELI_[]'H.'TJ._ T].Lf‘ 5}'[“ X U-E DEn-I“ Prtﬁ]llg]I:i- E‘]HE}W‘.'{I. ﬂ}rﬂu PL"1iL'H.I Vi!.ri.l-l.}_l].!"‘:‘ mre }:l }'l
I for variables, A, I for atoms. L, 7 for atom sequences, and § for substitution, possibly
with primes and subscripts, A progrem is a Aoite set of definite clouses of the form “A -
Oy Dy 0" [k 2 0) where A, By, Do, ..., By are atoms. The atom A and the atom
sequuence By, Ba. ..., By are called the head and the body of this clause, respectively. The
empty atom sequence iz denoted by O

2. Preliminaries
2.1 Bugs of Prolog Programs

Even if a very higher level programming language like Prolog is used, we are likely to
write buggy programns,

EINmIH!E 31.! T]If" r(’]]f}“'illg .lﬁ H :jrf)?_’ra]l‘l ﬁf qu?ﬁk Aorf It r(?]ll‘:ﬁi!j:ﬂ A WTOD:T Ellﬁ.LL'ﬁ-l,‘ II|_|_ 1']'_|E'
last line. Itz correct clause iz shown at the rght of the symbol “9%°,

qﬁirrr[i | |]:I

qaort{[X L], L) - partition{L, X, L1, L2}, gsort{L1, L3},
qsort|L2, L4), append (L3, |X]L4]. LOJ.

partition({1X |L]. Y, LL, |X|L2]) = Y<X, partition(L, Y, L1, L2).

partition{[X |L], ¥, [X[L1], L2} - X<Y, partition(L, Y, L1, L2},

partition{[|, X, [. |]).

append i [X|L1], L2, [X|L3]) - append{L1, L2, L3).

append(| |, L. |]} % append(|], L, L).

Ezample £.1.2 The following is a program of permutation. It misses a recursive clause with
the predicate “insert”™, which 15 shown at the right of the symbel “%7.

perm([}. |
perm([X]L]|, N} :- perm{L, M}, insert(X, M, N}.

ingert| X, L, [XIL]}L
% inzert[X, [Y[M], [YN]} - insert{X, M, N).

When a Prolog program is buggy, we experience differences hetween the astual behaviar
when executed and the intended model in our mind.

The algorithin for ezecuting pure Prolog program is the usual ordered linear, that
always selects the leftmost atom from atom sequences to be resolved. When G is obtained
by executing an atom sequence 7 in a program P, the instance @f is called a computed
snlution (or a solution, for simplicity) of & in P. A program iz called a terminating program
when the execution of any atoni in the program termioates finitely. In this paper, the
program considered are restricted to termiuatiuzg one,

Let 7 he an atom sequence and M he an intended Herbrand interpretation o our
mind. ¢ is said to be valid in M if all ground nstavces of G are true m M. (7 is said to be
envaltd I M if some sround instance of & 15 false m M.

What computed solutious should be returned when an atom sequence is executed in

a program that is correct w.r.t. au intencded joterpretation M7 An atom sequence is called
an mméended snlution of & with respect to M when it 15 an instance of & and valid o M. A
ground atom seqguence is called o messed sofution of G in P wort, M, when it i= an intended
sofution of 7 w.or.t, M buf not an instance of computed solution of & in P, Theu, we say
that the ezecution-result of 7 4n P s corrcet wrt. M when -

(a) romputed solutions of G in P are all intended solutions w.rt. M, and

(1) there 15 no missed solntion of 7 in P w.rt. M.
Otherwise, we say that the exeewtdon-reawdt of G dn P ofs fneorreed wort, M. When the
cxceution-results of all atom seqnences i a program are correct w.r.t. A1, we say that this
program is eorrect wort. Af. Otherwise we say that this program is fneorrect wort. M.

When a program is imcorrect wort. an inteaded interpretation, what kinds of bugs are
there e the progeam? We will defline two kiuds of bugs in incorrect programs following

Shapire [9] and Lloyd {6l

Definition 2.1.1 — wrong clouwse medanee —
Let P be a program and M be an intended wwsterpretation. An instance “A-L7 of a
clanse i P s called a wrong clavee instance in P wort. M when
[a) A5 mwvalid in M, and

() L s valid in M.

Ezample 2.1.8 In the program of Example 2.1.1, “append([],[1],[])" s a wrong clause
instance, hecausze “append(|[].[1],1])7 is invalid w.r.t. our intention

Definition 2.1.2 — uncovered atom -
Let P be a program and A be an intepded interpretation. An atom 4 is called an
uneovered atom in P w.or.t. M, when there exists some ground instance A# such that
{a) Afis true in M, and
{b)} for any ground instance “A#:-L" of a definite clauze in P, the body L is false in M.

Ezample £.1.4 Iu the program of Example 2.1.2, “ingert(2,[1], X)® is au uncovered atom,
because “inaert(2,[1].11.2])" is true in M, and there is no clause in the program whose head
is nnifiable with the atom.

Thew, the following thearem ensures that we can attribute incorrectoness of programs
to either a wrong clause instauce or an uncovered atom (cf. Shapiro [9], Lloyd |6]).

Theorem 2.1

Let P be a terminating program and M be an intended igterpretation. Then P is
incorrect w.or.t. M if and only if either there Is a wrong clause instance in P w.r.t. M or there
15 an uncovered atom in P ow.rt, M.

Proaf: First we will show the “if™ part. Suppose that the program P is correct,

If there is a wrong clause instance "A-L” in P wort. M, the atom A is iovalid in M
and the atom seguence L s valid o M. Because the program P is correct, L is an computed
solution of itself in P. By using the clause instance “A:-L7, A i= an computed solution of
itzelf in P, 2o thar A iz valid in Af due to the correctness of P. This fact contradicts the fact
that 4 1= invalid i M.

If there is an uncovered atom A for P wort. M, there is a ground instance Af such
that Af iz true in M, and for any ground jnstance “Af-L7 of a definite clause in P, L iz
false in M. Then, such L has no computed 2olution due to the correctuess of P, Henee Af
has no computed solution, but A#f is true in M, which means that Al is a missed solutiou of
A. This fact contradicts the fact that P is correct.

Mext, we will show the contrapositive of the “only if 7 part. Suppose that there is peither
a wrong clause instance nor aw uncovered atom. For every ground atom A in Tp{M), there
i# a ground instance *A:-L7 of =ome clanze in P such that L is valid in M. Because “A:-1°
is not a wrong clause instance, 4 is valid in M, so that A € M. Hence Tr{M) € M bolds.
For every ground atom A4 in A beenuze A is not an unecovered atom, there is a rround
instance “A:-L7 of some elanse in P such that L is true in M, 20 that 4 € Tp(M). Hence
TpiM) 2 M holds. Therefore Tp(M) = M, that is, M is a fixpoint of Tp. (See [8] for the
transformation Tp azsociated with program P.} Because P i= terminating, and the Anite
failure set must be included m the complement of the greatest fixpoint [5], there is just one
fixpoint of T, i.c., the least Herbrand model of P. Hence, M is the least Herhrand model
of P, wluch obviously means that I” 15 correct wort, M.

2.2 “trace” Command in DEC-10 Prolog

When we expericnce differences between the program behavior and its intended madel,
we often trace and examine the execution nsing a “tracer”. Let us trace the exeention of an
atom “gaert([1,2]. X)" in the program of Example 2.1.1 using the “trace” command i DEC-
10 Proleg. The numbers preceded by the underline * _ 7 are the inner variabies rencrated
by the Prolog system.

?- trace, geort(|2.1], X}.
Debug mode switched on,

{1} 0 Ca![: qeort(]2,1], _40)
(2 Call : partition{!1], 2, _10%, _103)
1’:’»] 2 Call 21
{3) 2 Fal : 2=
(4) 2 Call :1<2
(4] 2 Exit :1<2
(8] 2 Call : partition(]], 2, _ 2 1I‘J|i3}
{5) 2 Exit : partition{[], 2.]].
{2y 1 Exit : partltmnt[l] 2, (1], | |
{G) 1 Call : q"ic'-rl[|1] _1o7)
(71 2 Call : partition(] |. 1, _14%, _150)
(7] 2 Exit : partitionl]], 1. |].. il
(8) 2 Call : gsort(]]. _1&1)
(8} 2 Exit : qgaort(]],]“
(9) 2 Call : qgsort(]]. .1
(o) 2 Exit : gsort(]], ||I
(10} 2 Call . append(]], [1]. _1067)
{10) 2 Exit : append([]. (1.][]}
(6) 1 Exit :qe.-urtq[l] [}
{11y 1 Call @ gsort{] |, _108)
{11} 1 Exit = quocti[. [])
{12) 1 Call : append(]], |2], _40)
{12] 1 Ex:: apppnd:” 2. 11
[1) 0 Exi :1|5url{ 21 [1)
X =1l
(1) 0 Redo - geert(|2.0) F])
(12} 1 Redo o oappend([| ['El Rl
(12} 1 Fail :a.ppm:u]l[] fzf, _4am)
(11} 1 Redo : qeort(] | []}
(11} 1 Fail : gsort{]||. _108)
i) L Redo @ gsort{]1], |]}
(o) 2 R,P-'lcr append{| |. [8l, []}
(o) 2 Tail : append(]], |2}, _107)
{9} ¢ Redo @ gsortf] . | 1)
ia] 2 Fail : qsort{] |, _152)
i8) 2 Itedo @ goortf] | []
{8} 2 Fail : qsart{] |, _151)
{70 2 Redo @ pactitien(] . LJL 1]
(79 2 Fail : partition{] . 1. 140, _150]
(G) I Fail - qgeert[il], _107)
(21 1 Rede parhnnt:{]l] 2,]1]. []]
{5) 2 Rldn partitienf] |, 2. | L[]}
{5) 2 Fal :pnrritiun[| [o20 120, _10G)
[4) 2 Redo - 122
[4) 2 Faal = 1=2
(2] 1 Fail o opartition{[1]. 2. _105, _106)
(1) 0 Fail : gsort{|2.1], _40]

ity

Figure 2.8 Ezample of “troce”

Each line in a teace List i of the form
{c) 1 Cate : A

where ¢ 35 the eall nmber,
arndd A 15 an atom.

1 s the level momber, Gate 1= =“Call™,
We call vach line a Coell ne, a Redo e,

accordine to the Gate of the line. Their meanings are as follows:

“Redo”, "Bxit™ or “Fail™,
an Exf line or o Fuid line

{a) Call line

{c) 1 Call : & What is the frst computed zolution of A7
{b) Redo line

{e) 1 Redo : Al What is the computed solution next to AFT
{¢) Exit line)

(c) 1 Exit : Af The computed solution is Af.
{d) Fail line

{c) 1 Fail : A There is no otler computed solution of A.

Let us eallect all the lines with the same call oumber in a trace list, There are two
types of such sequences,

Type 1: A has the solutions Af;, Afz, ..., Af,, and may have another solution (n > 1).

{e) 1 Call : A What iz the first computed solution of A7
{e) 1 Exit : AD The computed zolution is A8y,

() 1 Reds : Af, What 15 the computed solution next to 48,7
{c) 1

Exit : Af The computed solution is Af;.

{c) 1 Redo : &f,_; What is the computed solution next to Ad,_,7
{e) 1 Exit : A8, The computed solutiou 1= Af,.

Type 2: A has the solutions A8, Af, .., Ad,, and they are the all solutions {n = 0],

(e) 1 Call : & What is the first computed solution of A7
(e} 1 Exit : Ady The romputed solution is Ally.

{c) 1 Rede : AH What is the computed solution next to Af,7
{e) 1 Exit : Af Tlhe computed solution 1= Al

{c) 1 Redo : Af, What iz the computed solution next to Af,7
(e 1 Fail : A There i2 no other computed solatios of A,

Eackh two consecutive lines i such a sequence iz a pair of guestion auwd answer o its
meaning, Call or Redo hnes ave questions, while Exit or Fail lines are answers, We call
the gquestion-answer palr a "Call-Exit™ pair, a "Reda-Exit”™ pair, a "Call-Fail™ pair, or
a “Redo-Feil” pair according to the Gates of the lines composing the pair.

Definition 2.2.1 — unit block —

A subsequence of lines in a trace list is called a wndt block with call number ¢ and level
mumber 1 when it cousists of consecutive hoes enclosed hetween the Grat lne and the second
line of a question-answer pair with call oumber ¢ and level number 1 (ineluding the first line
and the second line themselves) in the trace list,

Tyefinition 2.2.2 — succesy hlock —
A subeeguence of lives in a trace lizt 15 called a succesy block for 48 when
{a) the sequence consists of all the unit block: with cull number ¢ and level number 1
between a “Call” line and an “Fxit” line such that these two lines have the same cull
pumber ¢ and the level number 1, and
{h the atom of the “Exit” line iz Af,
e, 1 and A0 are called the eall number, the level number and the {obel of the success block,
respectively,

Definition 2.2.3 — fuslure block —
A subsequence of lines in a trace list is called a fatlure block for A when
{a) the sequence consists of all the unit blocks with call number ¢ and level number 1
between a “Call” line and a “Fail” line such that these two lines have the same eall
numher ¢ and the level number 1, and
(b} the atom of the *Fail” line is A.
e, 1 and A are called the eall number, the level number and the label of the failure black,
respectively.

Definition 2.2.4 — immodiate succees subblock —
Let S8 be a success hlock. A surcess hlack iz called an immediate suceess subblock of
50 when
{EL] it i prnju'r!j contained in S0, and
(b} it 1= mot properly contained in any success block or any failure block satisfying (a).
Note that, when the level number of §1 38, the level number of the immediate sueccess

subblock of §B 11+ 1.

Definition 2.2.5 — fmmediate fuilure subllock —
Let FEB be a failure block. A failure block is called an immediate faslure subblock of
FI when
{a) it is properly contained in F I, and
(1) it is not properly coutained in any failure block satizfying (a).
Note that, when the level numhber of FB 12, the level number of the immediate failure
subblock of FI 15+ 1.

Definition 2.2.6 — composing succeas bock of fatlure block —
Let F I he a failure block with level number I A success block 15 called a eompoaing
auceess block of FIB when
{a) it is properly contaimed in FI, and
(1) the level number of the success block is L

Definition 2.2.7 — clavar used for aunceaz block —
Let 80 be a success block witl labiel A, and SBy, §B+. ..., 5B, be all the immediate
snerese sibblocks of 50 with labels Ay, Ao, ..., A, respectively, Then, there exists a clanse

“D :- By.B»...., B." in P such that A = B fa-- 8, A, = By, 42 = B+8, 0=, ...,
A, = B, #lig-- -8, The defimite clanse matance (O - By, Ba. ..., Bo)01 82 -8, 1= called
the definite elanze nzed for the hlock 5 1.

When the execution of an atom succeeds, there 12 a succese block for the atom in its
trace list. Wien the execution of an atom fails (after obtaiuing all computed solutions),
there 15 a fatlure block for the atom in itz frace list,

For Type 1 and Type 2 sequences, when A has some unintended computed solution
Af w.rt, the intended iuterpretation. bugs should be found in the success hlock for A#;. Far
Type T seuences, when A bas some migsed solutions w.r.t. the intended interpretation, that
15, A should have a computed solution other thay the computed solutions A6y, Af., ..., Af,,,
bugs should be {found in the failure block for A, I there is no problem in both cazes, the
execution-result of 4 1= correct so that 1t 1= unnecessary to chieck the trace list of the execution.

In Section 3. a top-down diagnosis algorithm in the “trace” manoer is going to be
developed for systematizing the process of examining trace lists,

G

2.3 “spy® Command in DEC-10 Prolog

When it is too messy to examine all the trace list step by step, we often focus our atten-
tion on the behavior of specific predicates. Let us put a spy point on the predicate “gaort /27
in the program of Example 2.1.1 and trace the execution of an atom “gsort([2, 1], X)" using
the “spy” command in DEC-10 Prolog.

| ?- spylgsort/2), qsort{[2.1}, X).
Spy-point placed on gsort/2.
Debug mode switched on.
** (1) 0 Call : qsort{|2,1], _40}
** 1G] 1 Call : gsorti[1}, _107T)
#* (8] 2 Call : gsort{|], _151)
** (8] 2 Exit : qeort{il.]]]
** 9} 2 Gall : qeort{]]. _152)
** (9) 2 Exit : geort(|].[])
** g} 1 Exit : gsort{]1],]]}
4 (11) 1 Call : gsort(]]. _108)
** {11) 1 Exit : gsort{]].[])
== (1} 0 Exit : qeort{[2,1].[])
X=1[]:
*= (1] O Rede : gsort{[2.1]. [])
** (11} 1 Redo : qgsortl] . 1]
** {11) 1 Fail : gsort{[] _108)
** (g)] 1 Redo : gsortifl]. []}
** gy 2 Redn : gsort{]].]]}
“* (g9) 2 Fail : gsort{]], _1562)
** (g8} 2 Redo : qsort(]], [])
** |8) 2 Fail : gsort{[], _151)
** {a) 1 Faill : gsort{]1}, _107)
** {1} © Fail : gsort{{2.1], _40}
o
Figure 2.8 Ezample of “spy”

In Section 4, a top-down diagnosis algorithm in the “spy” manner is going to be devel-
oped for systematizing the process of examining specific predicates.

3. Top-down Diagnosis of Logic Programs

Iu this section, we will first present a top-down diagnosis algorithm using the termi-
nology of trace lists. Next, we will re-present the top-down diagnosis algorithm nsiug the
uotions of “proof tree” and “search tree”. Last, we will show sounduess and completeness of
the top-dowy diaguosis algorithm,
3.1 A Top-down Diagnosis Algorithm Using Traces
(1) Unexpecied Success (Incorrect Solution)

Suppose that the exccution of an atom A has succeeded with computed solution A8

If Af iz wvalid in our intended interpretation M, A 1= said to have sueeeeded unezpectediy
w.r.t. M.

Ezample 8.1.1 An atom *gsort{[2, 1], X)" in the program of Example 2.1.1 has a computed
solution gsert([2.1].[]). But it is iuvalid w.r.t. our intention. Hence, the success of atom
gsort{[2.1],[]) is an unexpected one.

(2) Query for Invalid Instances

To examine whether an atom A4 has succceded unexpectedly or not, our diaguoser issues
a query as follows :
“Is some instance of A false?”
The answer for thiz query is either “Yes™ or "No7,
“Yee™: The atom A ie invalid, hence, it has succeeded unexpectedly.
“No™: The atom A is valid, hence, it iz an intended solution.

Ezample 8.1.2 Iu Example 3.1.1, our diagnoser asks a query as follows:
“lz some instance of gaort((2,1],[]] false?”

The human programmer (or oracle) answers “Yes”, hence the success of gsort([2, 1],[]] is an
unexpected one,

(3) Unexpected Failure (Missing Solution)

Suppose that the execution of an atom A has failed after returning several (possibly
zern) computed solutions that are all valid in our intended interpretation M. If the atom A
hias gome mizsed solution, the atom A is said to bave faided unezpectedly w.r.t. M.

Ezample 8.1.8 The execention of atom “perm([2,1}, X)" in the program of Example 2.1.2
failz after returning only one computed solution “permi|2,1],[2.1])7, which iz valid in our
intention. Dut the atom has a missed solution “perm(]2,1],[1,2])". Hence, the last failure
of atom “perm{[2.1]. X}7 i= au unexpected one.

(4) Query for Valid Instances

Suppose that the exeention of an atom A has failed after returning several (possibly
zero] computed solutions. which has been already confirmed to be valid in our intended inter-
pretation. To examine whether the execution has failed unexpectedly or not after obtaining
these computed solutions, our diagnoser issues a query as follows:

“Is zome other instance of A true?”

The answer for these gueries is cither “Yes" or *No”™.
“Yes™: The atom A has some missed solution, hence, it has failed unexpectedly.
No™: The atom A has all intended solutions.

Erample £.1.4 Suppose that all computed solutions of an atom perm{[2.1]. X} in the
procram of Example 2.1.2 have beew coufirmed to be correct wort. our intention. Then our
diazuoser asks a query as follows:

“Is some other mstance of perm{[2,1], X} true?”
The bimaz programmer {or oracle) answers “Yes™. Heoce the last failure of perm{[2, 1], X)
(with only one computed solution Ffrml{[z.]]. :':'.. 1]]] 15 an unexpected one,

(5) A Top-down Diagnosis Algorithm

We will show a top-down diagnosis algorithm using the terminology of trace lists. The
top-down diagnosis alzorithm “dingnesel” receives a block (either a success block or a fallure
block), and returns a definite clause lustance, an atom, or a message “no bug is found™. We
assiime here that a trace list iucluding the block is completely recorded in a “trace database”.

diagnose0{ BL : block) : bug-message ;
when DL is a success block with label A
jzsue a gquery “Is some instance of A false?”
if the apswer is “No”
then return “no bug s found”
else let $B,. §B,, 58, be the immediate success subblocks of BL:
if the application of “diugnose0” to some § By returns a bug
then return it
else return the definite clause used for BL as a bug
when BL is a failure block with [abel A
let BL,, BL3, ..., DLy be the composing success blocks of BL;
if the application of *diagnesel” to some BL; returns a bug
then return it
else issue a query “Is some other instauce of A true?”
if the answer 15 “No”
then retum “npo bug iz found”
else lct FB,. FBa, ..., FB, be the immediate failure subblacks of BL:
if the application of *Jitgnose0” to some FB; returns a buy
then return it
else return the atom A as a bug

Figure 8.1 Top-down Diagnosis Algorithm Using Subblocka

In the following examples. an “answer database™ accumulates answers to previous
gueries in order to partly mechanize the oracle auswers. A pew query is first posed to
the ~answer datahase™. Ouly if the “answer database” fails to answer it, a query is issued
to the programmer (or an oracic). and the auswer is added to the “answer database”™. (See
Shapiro [91.)

Ezample 8.1.5 Let us diagnose an atom gaert([2,1], X} in the program of Example 2.1.1.
I the following, “dingnoaed” takes the label of each block as an argument instead of the
block itself, (See seetion 5.1 for ite implementation.)

|?- diagnv.s:-ﬁ{qnuri[[f. l]. X
Iz some instance of grort([2.1].[]) false? yes.
Is some instance of partition{[1],2.[1].[]] false? no.
Iz some instance of geert((1].]]) false? yes,
Iz some instance of partition((], 1,]],[]) false? no.
Is same instance of gaort{].[}} falsc? no.
Is some instance of append([],[1].[1) false? yes.
%% Wrong Clause nstance %%% append([), [11.D)
Tl
Ezample 1.6 Let ug dingnose an atom perm([2, 1]. X} in the program of Example 2.1.2.

E

|- diagnoseD(perm(|[2, 1], X)).

Is some instance of perm([2, 1].(2. 1]} falze? no.

Iz some other instance of perm([2, 1], _47) true? yes.
Is some instance of perm([1],]1]) false? no.

= some other instance of perm([1], _319) true? no.

Is zome instance of fngert(2,.[1],[2, 1]) falze? no,

I: some other instance of dnaert(2 (1], _47) true? yes.

%% Uncovercd Atom %% % tnaert(2, (1], _47)
X = _47

—

yes
3.2 Top-down Diagnosis Algorithm Using Trees

A top-down diagnosis algorithm has been given in the previous section using the ter-
minology of “trace list”. However, it 1z difficult to formally discuss the properties of the
diagnosis algorithm, c.g.. soundness and completeness, ugsing the terminclogy. In this sec-
tion, we will give the top-down diagnosiz algorithm over again using the terminology of “proof
tree” and “search tree”,

(1) Proof Tree

A proof tree of an atom A in a program P ie a tree T whose nodes are lahelled with
atomes as follows: T is a proof tree of 4 when T has immediate subtrees Ty, Ty, ..., T
(rn = 0} with their root labels A4, A=, ..., A, satisfying the following conditionz, The roat
label of Tiz A, A - 4. A;.... . A,7 2 an instance of some clause in P,and Ty, Ts, ..., T,
are proof trees of 4;, Ao, ... A, in P. The clanse *A4 - A, s, ... A" 15 sald to be waed
at the ront of the proof tree T, and the atoms Ay, 4., ..., A, are called child atoms of A in
T.

Erample .21 An atom “gaert([2,1][])7 iz a computed solution of atom “geort([2, 1}, X)"
i the program of Example 2.1.1. Its proof tree is as helow:

geort{l2. 1}.[]}

i ——
N T~
partition{il] 2 [1).[]) qeort([L1].[}} gqeort([].[]} append(]l.[2].[})

12 ;mrtitfmz{[i.f,I]_[.';.}*" : -\ \\M

| y -
.

;i ' l‘\"‘- \
partitton((]. L[] [} qeort((].[]) qaore({}.[}} eppend(]].[1].]])

&
I

The ckild atoms of “gsort({2. L],[])7 in this proof tree are
pareition{[1]. 2. [1].[[). geort([1].{]). guort(]].{]) and append(]]. [2],]]).
The clause nsed at the oot iu this proof tree is
geort([2,1L1]) = partszson([1], 2 (1]]} qaert((1).]]). gaore([]. []). append{{]. [2].1]).

(2) Proof Subtree

0

A subtree of a proof tree T is called & proof subtree of T, In particular, a proof subtree
is called an smmediate proof subtree of T when
{a) it is properly contained in T, anc
(h) it is not properly contained in any proof subtree satisfying (a).
The root lahels of the immediate proof subtrees of T are child atoms of the root labe] of T

Ezample 8.2.2 The following is an immediate proof subtree of the proof tree of Exam-
ple 3.2.1.

gsort([2, 1] 1]}

/j/ \\HH“HH,
portition([J, L[1) qeort([L1]) qeort((].[}) append(]].[2].[])

(3) Correspondence to Success Block.

Let 5B be a success block for A, and T be a proof tree of A, Then immediate success
subblocks of §B corresponds to immediate proof subtrees of T, though immediate success
subblocks might contain lines irrelevant to the finally constructed proof tree, that is, the
lines corresponding to search which has turned out unnecessary after backtracking.

Ezample 828 In Figure 2.2.1, there is a success block for “grort{[2,1],[])7 as below:
(1) 0 Call : gsort([2,1],X)

{li 0 Exit : gzort([2,1]]]}-

The proof tree of “geort([2.1],]])” shown in Example 321 is constructed from the “Exit”
lines of success subblocks in it.

{4) Search Tree

A search tree of an atom sequence & in a program P is a tree T whose nodes are
labelled with atom sequences and whose edges are labelled with substitutious as follows:

(a) If @ ix s ewpty atom sequence, T Is a scarch tree of G when it is a tree consisting of
ouly one nade labelled with O,

(b} If €7 is a nou-empty atom scquence “A, L7 let "Ag - L7, "Ag - La™, .0 %A, = L7
be all the elanses whose heads are unifiable with A, say by mopgu’s 8y, 02, .. 7. Let
Ti. Ta. ... T (n = 0) be all immediate subtrees of T, and &y, g, ..., G, be their
root labels. T is a search tree of (7 when the following conditions are satisfied.

bl Gy is of the form *(L;, L)#;". Tle atom sequences Gy, Ga, ..., Gp are called
child atom sequences of G in T. The clause “(A; = L;}6,7 is said to be wsed ut
the root of the search tree T
b-2 #; is the label of the edge from the root node of T to the root node of T,.
b-3 T, is a =earch tree of G in P.
A path in a search tree from the root to a node labelled with O is called a success path.

A search tree of an atom A in a program F is a search tree of the atom sequence
consisting of only one atom A. A success path in a search tree of A corresponds to some
proof tree of A.

11

Ezample §.£2.4 When an atom “perm([2,1], X" is executed in the program of Example

i®

2.1.2, it returns only one computed solution “perm({2,11.[2,1]}". Its search tree is as below:
perm(|[2, 1}, X)
b{}
perm{[1], Y}, 1naert(2, ¥, X)

P
perml(]. Z), insert(1. Z2.Y), inaert(2, ¥, X)

I {Z <=1}
treaert{ L[Y L tnaert(2. Y, X)
I Y =[]}

treserf(2, 11, X)
I {X <= [2,1]}
O

The child atom sequence of “perm{[2,1], X}7 in the search tree is only
“perm({1]. X). insert(2, ¥, X)7.
The clauze used at the root in this search tree is
“perm([2.1) X} - perm([1].Y), dnaert(2,Y, X).
{In this example, becanse the second clause for fneert i missed, the search tree iz a tree
without multiple branching. i.e., a path. Dut, this is not a case in general.)

{5) Search Subtree

Let T be a scarch tree, and 1) be a node in T labelled with non-empty atom sequence.
Cousider a path I7 from the node g to a node w9 in T such that, for every node v on the
path other than .,

length(v) = length{u, }
bolds. ({ength{e) denotes the number of atoms in the label of 1) Then, the path, which is
constructed by weglecting last length(eg] = 1 atoms in the label of every node on the path
U7, is called a subdeduction at the node vy in T.

Let v be a node I a search tree T, and Uy, U, 0, Uy be all subdeductions at v in
T, that are not properly contained i any subdeduction at +# 1n T. Then, the tree, which is=
constructed by putting the paths Uy, Ua, . Uy together, 1s called a search subfree of T at
v, Let Ty and To be gearch subtrees of T at uy and ug, respectively. Then, To is sald to be
progerly eontatned tn Ty when Ta is a search subtree of Ty at some node u other than the
root node 1n Ty, and the pode u corresponds to us iz T, Note that the root label of a gearch
sulitree 15 always coe atom, and a search subtree with root label A7 12 a search tree of 47,

In particular, a search subtree of T is called an immediate eearch subtree of T when
[a) it 2 properly coutatned iz T, and

(b) it is not properly contained in any search subtree satisfying (a).

12

Ezample 8.2.5 The tree below is an imuediate search subtree of the search tree of Example
3.2.3. (Because the original search tree does not have a multiple branching, neither does this
immediate search subtree. But, this is not a case in general, rither.)

perm([1].Y)
I {}
perm([], Z), insert(1, Z,Y)
| {Z <[}
insert(1,[].Y)
I {Y <1}
0

The tree below is the part of the search tree which consists of the nodes correspondinyg to

tliose in the search subtree above.
perm([1],Y), inzert(2, Y, X)
ro{}
perm([]. Z).insert(1, 2,Y), insert(2,Y, X)
b {2 <=]l}
ingert(L, ||, Y], tnaert(2, Y, X)
R

insert{2,[1]. X)

(6) Correspondence to Failure Block

Let FB be a failure hlock for an atom A, and T be a search tree of A. Then immediate
failure subiblocks of F B correspouds to immediate search subtrees of T, while the composing
suceezs blocks of F I correspouds to success paths in T,

Ezample 8.2.6 When perm([2,1], X) is exceuted in the program of Example 2.1.2, there is

a failure block for “perm([2,1], X|7 as below:
{1} 0 Call : perm(|2.1}.X)

{lj 0 Exit : perm({{2.1].{2.1]]
(1) 0 Redo : perm({2.1].[2.1])

(1) 0 Fail : perm{[2,1].X).
The search tree of “perm([2.1], X)" iz shown in Example 3.2.3.

(7) The Top-down Diagnosis Algorithm Using Subtrees

13

The top-down diagnosis algorithm using proof trees and search trees receives a tree
(either a proof tree or a search tree of an atom), and returns a bug message as hefore.

diagnoscO{T : tree) : bug-message ;
when T is a proof tree with root label 4
isaue a query “ls some instance of A false?
if the answer is *No™
then return “uno bug is found”
elee let PTy, PTs, ..., PT, be the immediate proof subtrees of T
if the application of “diagnoesed” to some PT; returns a bug
then return it
else retumn the clause used at the root of T as a bug;
when T is a search tree with root label 4
let Ty, T, ..., Ti be the proof trees corresponding to success paths in T
if the application of “diagnose0” to some T; returns a bug
then return it
else iszue a gquery “Is some other instance of A4 true?”
if the answer 1s “No~
then return “no bug is found”
else let STy, 5T2, ..., 85T, be the immediate search subtrees of T,
if thie application of “diagnose0” to some STy returns a bug
then return it
else return the atom A as a hug

Figure 8.2 Top-down DMagnosis Algorithm Using Subtrecs

3.3 Soundness and Completeness of the Top-down Diagnosis Algorithm

Iu this section, we will prove soundness and completeness of the top-down diagnosis
alzorithm using the notions “proof subtree” and “search subtree™.

{1) Completeness of the Top-down Diagnosis Algorithm

To show completeness of the top-down diagnosis algorithm, we need the following
lemma.

Lemma 3.3.1 Let P be a terminating program, M be an intended interpretation, and
T he a tree {either a proof tree or a search tree) of aw atom A, When the exccution-result
of an atom A in P is correct wor.t. M, “diagreael™ applied to T returns no bug.

Pronf: We will trace the behavior of “diagnosc0” for each case,

When the tree T is a proof tree, the diagnosis proceeds as follows: First, the query “Is
some metance of A fal=e? 12 ssued. Decause the execution-result of A 1s correct wor.t. M,
and A is a computed solution of itzelf, the atom A is valid in M, zo that the answer for this
query 15 “No”, Hence, “diagrnose0” applied to T returns no bug, and stops,

When the tree T 12 a search tree, et Ty, To, ., T be the lJruuf frees currespﬂndiug to
siccess paths in T with root nodes A, Az, ..., Ag respectively. First, [or every 1 (1 <1< k),
the gquery “Is some instance of A; false?” iz issued. Because the execution-result of A is
correct wort. M. and A;. A=, ..., Ap are the computed solutions of A, the atoms Ay, As,
—.., Ap are valid in M, so that all the answers for these gqueries are “No™. Hence, “diagnosed”

14

applied to any T, returns no bug. Next, the query “Is somne other instance of A true?” is
issued. Because the execution-result of 4 is correct wort. M, A has no missed selution, so
that the answer is also “No". Hence, “diagnosc0” of A returns no bug, and stops,

First, we will show completeness of the top-down diaguosis algorithm for proof trees.

Theorem 3.3.1 {completeness of the top-down diagnosts algorithm for proaf tree|

Let P he a terminating program, M be an intended interpretation, and T' be a proof
tree in P. When the execution-result of the root label of T in P is incorrect w.r.t. M,
diagroaisd applied to T returns a definite clause as a bug.

Proaf: Decanse P is a terminating program, the length of every branch in T is finite. The
depth of T is defined by the length of the longest branch in T', and denoted by depth{T). We
will prove the theorem by induction on depth(T).

Let A be the root label of T. Beeause the excoution-result of A in P is incorrect, and
A is a computed solution of itself, the answer for a query “Is some instance of A4 false?” is
“Yes” . {A never has a miseed solution.) Let PTy, PTy, ..., PT, be all the immediate proof
siibtrevs of T.

If the execution-result of root label of some PT; (1 £ 7 £ n) 1s incorrect w.r.t. M,
becanse of depth{PT;) < depth(T) and induction bypothesis, “diagnose0” of PTy returns a
definite clanse as a bug. '

If the execution-result of root label of each PT; (1 = 7 < n) is correct wort. M,
“dingnose0” applied to each PT; does not returns a tmg due to Lemma 3.3.1. Hence,
“dingnose0” applied to PT returns a definite clause as a bug.

Next, we will show completeness of the top-down diagnosis algorithun for search trees.

Theorem 3.3.2 (rompletencas of the top-down diagnosts algorithm for search tree)

Let P be a terminating program. M be an intended interpretation, and T be a search
tree of an atom A m P, When the execution-result of A in P is incorrect wort. M,
“diagrnosed” applicd to T returns either a definite clanse or an atom as a bug.

Proof: Becanse P is a terminating program, the length of every branch in T 15 finite. We
will prove the theorem by induction on the depth of T depth(T).

Let Ty, T=. ..., T be the proof trees corresponding to success paths in T' with root
labele Ay, Az, ..., Ay respectively. Then the atoms Ay, As, ..., Ap are all the computed
solutions of A in P.

If the exeention-result of some A; (1 < ¢ < k) in P is incorrect, “diagnosc0” applicd
ta some T; returns a definite clanze as a bug due to Theorem 3.3.1.

If the execution-result of any A, in P 12 correct wor.t. A, “diagnosel” applied to cach
T, returns no bug due to Lemma 3.3.1. Because the execution-result of A in P is mcorrect, A
bas some miszed solution, so that the answer for a query “lz some other instance of A true?”
2 *Yee", Lot 8Ty, §T%, 5T, be all the immediate search subtrees of T, If the execution.
result of root label of some §T; (1 < 7 < n) is incorrect, because of depth(ST;) < depth(T')
and induction hypothesis, “diagnose0” applied to 8T; returns either a definite clanse or an
stom as a bug. I the execution-result of root lahel of each ST, (1 <€ 5 € n) 18 correct,
“dingnese0” applied to each $T; returns no bug due to Lemma 3.3.1. Hence “diagnosel”
applied to T returns the atom A as a bug.

(2) Soundness of the Top-down Diagnosis Algorithm

15

By i,algiug the contrapositive of Lemma 3.3.1, it is obvious that, when “diagnose”
applied to a tree {either a prool tree or a search tree) of an atom A returns a bug, the
execution-result of the atom A in P is incorreet wort, M. However, what we wonld like to
show is that the bug returned by *diagnosel” 1s indeed either a wrone clause instance or an
uncovered atom.

First, we will show sounduness of the top-down diagnaesis algorithm for proof trees. To
show this, we need the following lemma.

Lemma 3.3.2 Let P he a program. M be an intended interpretation, A be an atom which
has sueceeded unexpectedly wort. M, and T be the proof tree of the atom A in P, If the
executiog-results of root labels of all the immediate proof subtree are correct wor.t. M, the
elanse wsed af the root of T is a wrong clanse insfance wort. M.

Proof: Suppose that the clause nzed at the root is not a wrong clanse instance. Becanse

A has succeeded upexpectedly, the atom A is invalid in M. Let A;, Aa, ..., A, be the
root labels of all the immediate proof subtrees. Because the execution-results of A4;, Aa, ...,

An are correct woaot, M, and A;, A, ..., A, are computed solutions of themselves, all the
atoms Ap, Az, ..., A, are valid in M. Since A, As, ..., An are child atoms of A, this fact
contradicts the fact that “4 - A, As, ., 4.7 s not a wrong clause instance. {ef. Shapiro

9], Lioyd [6]).

Theorem 3.3.3 [soundness of the top-down dingnosis algorithm for proof tree]

Let P be a program. M be an mntended interpretation, A be an atom which has sue-
cecded unexpectedly wort. M, and T be the proof tree of the atom A in P, When “diagnose(t”
applicd to T returns a definite clause as a bug, the definite clause is a wrong clause instance

w.r.t. M.

Proaf: When “dingrose0” returng a definite clause, there must exist a proof tree T
such that the root label of T has succeeded noexpectedly, and “diapnosed” applied to the
immediate proof subtrees return no bug. Because the execution-result of an atom iz correct
w.r.t AL if and ouly if “dragrneseld” applicd to the atom returns oo bug from Lemma 3.3.1
atd Theoarem 3.3.1, the clanse used at the root of 7715 a wrong clan=e instance w.or.t. M due

to Lenuma 3.3.2.

Next, we will show completeness of the top-down disgnosis alzorithm for search trees,
To show this, we pecd the following lemma.

Lemma 3.3.3 Let P be a terminating program, M be an intended interpretation, A be
an atom whicl has failed unexpectedly worl. M, and T be a search tree of the atom A In P.
If the execution-results of root labels of all the immediate scarch subtrees in T are correct
w.r b, A, the atom A Js an uncovered atom wort, M.

Pronf: Suppose that the atom A i= not an nocovered atom wort. M. Because A has
failed unexpectedly, there is some missed solution AP, which 1s a ground instance of A and
tre i M. Beranze A4 i3 not an uncovered atom, there 12 a pround instance of a definite
clanse “B - By, Oa,..., B,” in P by a substitution §' such that B#' is identical to A and
{By, Bz,.... B 1" is true in M, Morcover, because B is unifiable with A, let #g be its mog.u.
Then there is a substitution A such that myAd = 8' holds.

Let ey be the root node of T, From the definition of search trees, there 15 an immediate
subtree of T with root vy labelled with (I, Do, ..., Iy)ag. Let STy be the search subtree
of T at Ly with root lalae] }?Jrrr,. Because there 15 no node hetween L and [in T, and the

16

search subtree of vp is T itself, $T is an immediate search subtree of T'. Because By is true
in M and the execution-result of Byog is correct, B8 = Bo0A is an instance of a computed
solution of B,zq in P. Hence, there is a success path in §T) correzponding to such a solution,
say Byey. The node, say vz, in T corresponding to the pode labelled with the empty atom
sequence O in §T is labelled with (Bs, Bs, ..., B,)y, For any wode v on the path between
vo and vy other than vo and vp in T, length(v) 2 length(vn) = n > n - 1 = length(vs}
holds, Hence, there is no zearch subtree at v properly containing the search tree at va, ie,
the search subtree at 1 is an immediate search subtree of T.

Similarly, the following holds for every ¢ {1 £ ¢ £ n): Suppase that the atom sequence
{B:. Bix1,-- ., Ba)# is an instance of (B,, Biyy,..., Bn)oi.y, which is the label of the node
v, corresponding to the root node of an immediate search subtree of 7. Then the atom B8
is an instance of a computed selution, say Bio;, of Byri—, in P, and the atom sequence
{Bivy. Biya.....Ba)¢" is an instance of (Biyr, Bigz, ..., Bal)oi, whicli is again the label of
the node vy corresponding to the root node of an immediate search subtree of T'.

Hence (By, Ba....,Ba) is an instance of a computed solution of (By, Bz, ..., Bairo.
That is, A¢ is an instance of a computed schition of 4 in P. This fact contradicts the fact
that A# iz & missed solution of 4.

Theorem 3.3.4 [1oundness of the top-down diagnosis algorithm for search treef

Let P be a program, M be an intended interpretation, A be an atom wlich has failed
nnexpectedly wr.t. M, and T be the scarch tree of the atom A in P. When “dragnoee0”
applied to T returns either a definite clause or an atom as a bug, the defipite clause is a
wrong clause instance w.r.t. M, and the atom s an uncovered atom w.r.t. M.

Frouf: We will prove the theorem by case analysis.

When “diagnose0” returns a definite clause, it must be returned by some “diagnose0”
applied to a proof tree. Hence, the clause is a wrong clause instance wort. M due to Theo-
rem 3.3.3.

When “dingnese0)” returns an atom A, there must exist a search tree T such that the
root label of T has failed unexpectedly, and “diagnese0” applied to the mmediate search
subtress return no bug. Decanse the execution-result of A is correct wor.t M if and only if
“dingnosed” applied to A returns no bug from Lemma 3.3.1 and Theorem 3.3.2. the root
lakel of T iz an uncovered atom w.rt. M due to Lemma 3.3.3.

(3} Soundness and Completeness of the Top-down Diagnosis Algorithm

The following theorem is an immediate consequence of Lemma 3.3.1 and Theorem 3.3.1.
3.3.2,3.33 and 3.3.4.

Corollary 3.3 (soundneas and completeneas of the top-down diagnoats algorithm)

Let P De g ferminating program, M be an intended interpretation, and T be a tree
{either a proof tree or a search tree) of an atom A. The exccution-result of the atom A in P
is correct wort, M, if and only if “dingnosed” applied to T' returns sicher a wrong clause
instanee or an uncovered atom wort, M

4. Top-down Zooming Diagnosis of Lagic Programs

During the the top-down diagnosis, our diaznoser izsucs several gueries for human
programmers {or oracles). All these querics are issued about instances of atoms, whose
predicate may change query by gquery, The buman programmers must change his attention
according to the predicates of atoms. lustead, we can chanpge the order of quenies to 1ssue

17

the queries about atoms with the same predicate continually so that the burden of human
programmers is lightened. This change of the order also makes it possible to ouickly narrow
down the location containing a bug.

4.1 A Top-down Zooming Diagnosis Algorithm Using Traces

Let 5B be a success block whose label 1= with predicate p. A success block in T is
called a recurston suecess subblock in 5B when its label is with predicate p.

Definition 4.1.1 — immediate recursion suceess subblock —
Lot §B be a success block whose label iz with predicate p. A success block is called an
tmmediate recuraion sueccess subblock of §B when
{a) it iz properly coutained in § I,
{h) the label of the success block is with predicate p, and
(¢} it is not properly contained in any success block satisfying (a) and (b) or any failure
block satisfying (a).

Let FB be a failure block whose label is with predicate p. A failure block in FI is
called & recurafon faslure subblock in FB when its label is with predicate p.

Definition 4.1.2 -~ {mmediate recursion failure subblock —
Let FB be a failure block whose label is with predicate p. A failure black is called an
immedinte recuraton fudlure subblock of FBE when
(=) 1t iz properly contained in FB,
(L) the label of the failure block iz with predicate p, and
(¢) 1t is not properly contained in auy fuilure block satisfying (a) and {b).

The top-down zooming diagnosis algorithm is alinost the same as the previous top-
down diaguosis alzorithm “diagnosel” except that it works with aids of a subprocedure
“zoeming”, which receives a block and returns a subblock for diagnesis by scarching for
recursion subblocks. Again, we assume here that a trace list including the block is completely
recorded 1w a “trace database™,
diaguose(BL : block} : bug-messaze ;

if the application of “zoeming™ to BL does not return a tree

then return “uo bug 1= found”

else let BL" be the returned block;

when DL'is a success block with label 4
let Sy, §Ba, ..., §B, be the immediate success sublilocks of BL"
il the application of “diagnose” to some S B; returns a bug
then rerurn it
else return the definite clanse used for BL' as a bug
when DL' iz a failure block with label A
let FIy, FB;, ..., FI, be the immediate failure subblocks of BL";
if the application of “diagnose” to some FB; returns a bug
then retum it
else return the atom A az a bug

zooming| DL - block) : block ;
when BL is a success block with label 4
issur u query “Is some instance of A false?™

18

if the apzwer 1s “No™
then return “no block is found”
else let §0,, 5P;. ..., 5B, be the immediate recursion success subblocks of BL;

if the application of “zooming” to some §B; returus a block
then return it
else retivrm DL
when BL iz a failure block with label A
let BL,, BLa, ..., BL; be the composing success blocks of BL;
if the application of “zooming” to some DL, returns a block
then refurn it
clse issne a query “Is some other instance of A true?”
if the answer is “Na”
then return “no block is found”
else let FO,, FB=, ..., FB, be the immediate recursion failure subhlocks
of BL;
if the application of “zooming” to some FB; returns a block
then return it
else returu DL

Figure 4.1 Top-down Zooming Diagnosis Algorithm Using Recursion Subblocks

Roughly speaking, the top-down zooming diaguosis algorithm identifies the subblocks
containing a bug by changing its attention in the following two different ways by turns.

(a) One way is to narrow down to immediate recursion subblocks quickly by changing
“diagnosell” to possibly leap the intermediate subblocks. “zooming” above detects
a recursion subblock such that the execution-result of its label is incorrect but the
execution-result of label of every immediate recursion subblock is correct w.r.t. M.

(1) The ather way is to narrow down to the immediate subblocks slowly in the ssine way as
“diagnosc0”. “diagnose” above proceeds in the saue way as “diagros:0” after making
use of “zooming” first.

Ezample 4.1.1 Let us diagnose the atom gaort{[2, 1i. X} in the program of Example 2.1.1
by this top-down zooming dingnosis.

|?- dingnose{gaart([2. 1], X}].

Is some instance of gaort(|2. 1], []) falze? yos.

Is somte instance of geort(|Ll},[l) falee? yes.

Is some instance of geort([],[]) false? no.

1z some instance of partation([]. L. [}.[]; false? no.

P

Is some instance of append(]], [1].[]) false? yes.

%%% Wrong Clause Instance %%% append(]], R

yes
Ezample {.1.2 Let us diagnose the atow perm([2, 1], X) in the program of Example 2.1.2
by this tup-down zooming diagnosis.

|7- diaznose{perm({[2.1], X)).

Is some nstance of perm([2,1],12,1]) false? no.

Is some other instance of permi{[2, 1], _47) true? yes,
Is some instance of perm([1], [1]) false? no.

19

Ie some other instance of perm([1], _319} truc? no.
I some instance of inaert(2,[1].[2,1]) false? no.
Is some other instance of insert(2,[1], _47) true? yes.

%%% Uncovered Atom %%% insert(2,[1], _47)
X=_47
yes

4.2 Top-down Zooming Diagnosis Algorithm Using Trees

Similarly to Section 3.2, we will give the top-down zooming diagnosis algorithm over
again usine the terminology of “proof tree” and “scarch tree”.

(1) Immediate Recursion Subtree in Proofl Trees

Let T be a proof tree in a program P whose root label is an atom A with predicate
g, A proof subtree in T is called a recuraton proof subtree of T when its root label is with
predicate p, Iu particular, a proof subtree in T i= calied an immediate recursion proof subtree
when
{a) it is properly contained in T,
{1} thie root label of the proof subtree is with predicate p, and
{e} it 1s not properly contained in any proof subtree satisfying (a) and (b).

Fzample {21 In the proof tree of Example 3.2.1, the atom geort([2, 1], (1) has only two
immediate recursion proof subtrees with roots gaoert([L],{]} and gaort{[].]}.

(2) Immediate Recursion Subtree in Search Trees

Let T be a search tree in a program P whose root label is an atom A4 with predicate
p. A search subtree in T s called a recursion search subtrec of T when its root label is with
predicate po In particular, a search subtree in T 1= called an ¢mmediate recursion search
eultree when
fa) it 12 properly coutained in T,
(5] the roat label 15 with predicate p, and
{c} it is not properly contained in any search subtree satisfying (a) and (b).

Ezample {.2.2 In the search tree of Example 2.2.3, the atom “perm([2.1], X)" has culy
oue immediate recursion search subtree with root perm([1], Y.

{2) A Top-dewn Zuouming Diagnosis Algorithm Using Recursion Subtrees

The top-down zoomivg diagnesie algorithm using recursion subtrees receives a tree
{#ither a proof tree or a search tree of an atom], and returns a bug message as before.

diagmose{T : tree) : bug-message ;
if the application of “zoeming” to T does uot return a Lree
then return “no bag s found”
else let T' Lo the tree returned by “zeoming”
when T' is a proaf tree with root label A
let PT,. PTs. ..., PT, be the immediate proaf sultrees of T';
if the application of “diagnose” to some FT; returns a tree

20

then retum it
else return the clause used at the root of T' as a bug;

when T' is a search tree with root label A
let §Ty, §Tz, ..., ST, be the immediate search subtrees of TV;
if the application of “diagnose” to some ST; returns a bug
then return it
else return the atom A as a bug

zooming{T : tree) : tree ;
when T is a proof tree with root label A
jesue a query “Is some instance of A false?”
if the answer iz “No”
then return “no tree is found”
else let PTy, PT,. ..., PT, be the immediate recursion proof subtrees of T
if the application of “rooming” to some PT; returns a tree
then return it
else return T
when T is a search tree with root label A
let Ty, Tz, ..., Ti be the proof trees corresponding to success paths in T
if the application of “zooming” to some T; returns a tree
then return it
else issue a query “Is some other instance of 4 true?”
if the answer iz “*No"
then return “po tree is found”
else let §T,. §Ta, ..., ST, be the immediate recursion search subtrees of T;
if the application of “zeoming” to some 5T, returns a tree
then return it
else return T

Figure 4.2 Top-down Zooming Diagnosis Algorithm Using Recursion Subtrees

4.3 Soundness and Completeness of the Top-down Zooming Diagnosis Algorithm

Iu this section. we will prove sounduess and completeness of the top-down zooming

diaqnosis algorithm using the notions of “immediate proof subtrec” and *immediate search
suhtree” .

(1) Soundness and Completeness of Zooming

Note that the algorithm “zooming” is almost the same as the top-down diagnosis
alrorithm “dingnesed” except only the following two points:
(a) “zooming” is applied recursively to “immediate recursion (proof or search) subtree”,
while “diagnesel” is applied recursively to “immediate (proof or search) subtrec”.
{b) “zooming® returus a tree, while “diagnoseU” returns a bug message.
Hence, similarly to Corollary 3.3, the following lemma holds.

Lemma 4.3.1 Let P be a terminating program, M be an intended interpretation, and T
be a tree (cither a proof tree or a search tree) of an atom A. Wheu the execution-result of the
atom A is incorrect w.r.t. M, if and only if “zoeming” applied to the tree T returns a tree

21

such that the execution-result of its oot label is incorrect wort, M, and the execution-result
of any root label of its immediate recursion subtrees Is correct wort. M.
(2} Completeness of the Top-down Zooming Diagnosis Algorithm

Sdvagrioae” 12 similar to *diggness()” as well, except that the * .. if ... then - - . elge”
part is omitted from the first when statement, and “-- if -+ - then --- else - -- if - .. then
-+ else” part is omitted from the second when statement. This modification iz superficial
just for saving cost of computation common to “zeooming” and “diagnose”, because T' in
“diagrose” 1= returned by “zooming”,

{a) When T i a proof tree with root label A, the answer far a query “Is some instance of
A false?” i always “Yes™.

(b) When T' 12 a search tree with root label 4, let Ty, T5. ..., T¢ be the proof trees
earresponding to success paths in T, Then the application of “diagnese” (hence the
application of “zovming” inside it) to any Ty returns “no bug is found”™. Morcover the
answer for a query *l2 some instance of A true?” is always “Yes™,

Lemma 4.3.2 Let P be a terminating program aod M be an intended interpretation.
When the execution-result of the atom A in P iz correct w.ort. M, “dingnose”™ applied to a
tree [either a proof tree or a search tree) of an atom A returns no bug.

Proof: SBuppose that the execution-result of the atom A in P is correct w.r.t. M. Then the
apphication of “zeemang™ ta T returns “no tree is found” because of soundness of “zooming™.
Heuce, “dingnose” for the atom A returns “no bug is found”,

Theorem 4.3.1 (completeness of the top-down zooming diagnosts algorithm for proof tree)

Let P he s terminating program. M be an intended interpretation, and T be a proof
tree in F. When the execution-result of the root label of T in P is incorrect w.r.t. M, the
top-down zooming diagnnsis of T returns a definite clause as a bhug.

Proaf: Because P is a terminating program, the length of every branch in T is finite. We
will prove the theorem by induction on depth(T).

Becanse the execution-result of the root label of T is incorrect, “zooming” returns a
tree due to Lemma 4.3.1. Let T' be the tree. It is a proof subtree of T, Let PTy, PTs, ...,
PT, be all the mmmediate proof subtrees of T,

If the execution-result of root label of some PT; (1 < 5 < n) is incorrect w.r.t. M,
because of depth(PTy) < depth(T') < depth(T') and induction hypothesis, “diagnose” applied
to PT; returns a definite clanse az a bug.

If the execution-result of root lalel of each PT; (1 € 7 € n) is correct wort. M,
“iiugnose” applied to each PT; returns no bug duc to Lemma 4.3.2. Hence, “diagnose”
applied to T returns a definite clanse a= a bug,

Theorem 4.3.2 (eompletencas of the top-down zooming diagnosis algorithm for search tree)
Let P be a terminating program. M be an intended interpretation, and T be 3 search

tree of an atom A in P. When the execution-result of the root Jabel of T in P is incorrect

w.r.t. M, “diagnose” applied to T returns either a definite clause or an atom as a bug.

Proaf: Because I is a terminating program, the length of every branch in T s fiuite. We
will prove the theorem by induction on the depth of T depth(T'}.

Beeause the excoution-result of root label of T 1o P is mncorrect, “zooming™ returns a
tree due to Lemma 4.3.1. Let T' be the tree. Since *zooming” applied to T also returns T,
“dingnese” applied to T is the same as that to T,

21

If T' is a proof tree, its root label hae sueceeded unexpectedly so that “diagnose”
applied to T returns a definite clause as a bug.

If T' is & search tree, T' is a search subtree of T, Let STy, 8§Ta, ..., ST, be the
immediate search subtrees of T'. 1If the execution-result of root label of some ST; (1 <
j < n) iz incorrect w.r.t. M, hecause of depth(S5T5) < depth(T") < depth(T) and induction
hypothesis, “diggnoas” applied to §T; returns either a definite clause or an atom as a bug.
If the execution-result of root label of cach §T; (1 £ 7 < n) i3 correct w.ort. M, “diagnosc”
applied to each §T; returns no bug due to Lemma 4.3.2. Hence, “diagnose” applied to T'
returns the root label as a bug.

(3) Soundness of the Top-down Zooming Diagnosis Algorithm

Soundness of the top-down zooming diagnosis algorithm is proved similarly to the
previous top-down diagnosis algorithm without zooming.

Theorem 4.3.3 [soundness of the top-down z00ming diegnosis algorithm for proof tree)

Let P be a program, M Le an intended interpretation, A be an atom which has suc-
ceeded unexpectedly w.r.t. M, and T be the proof tree of the atom A in P, When “diagnose”
applied to T returns a definite clause as a bug, the definite clause is & wrong clause instance
w.rt, M,

Proof: It is proved in the completely same way as Theorem 3.3.3.

Theorem 4.3.4 [soundness of the top-down zooming diagnosis algorithm for search tree/

Let P he a program, M be an intended interpretation, A be an atom which has failed
unexpectedly w.rt. M, and T be the search tree of the atom A in P, When “diagnose”
applied to T returns either a definite clause or an atom as a bug, the definite clausc is a
wrong clause instance w.r.t. M, and the atom is an uncovered atom w.r.t. M.

Proaf: It iz proved iu the completely same way as Theorem 3.3.4.

(4) Soundness and Completeness of the Top-down Zooming Diagnosis Algorithm

The following theorem is an immediate consequence of Lemma 4.3.2 Theorem 4.3.1,
4.3.2, 433 and 43 4.

Corollary 4.3 (roundness and completeness of the top-down zooming diagnosis algorithm/

Let P be a terminating program, M be an intended interpretation, and T be a tree
{either a proof tree or a search tree) of an atom A. When the execution-result of the atom
Ain P is incorrect wor.t. M, if and only if “dtagnose™ applied to T returns either a wrong
clanse instance or an uncovered atom w.r.t. M.

5. Implementation of the Top-down Zooming Diagnosis Algorithm

In this section, we will show a brief ontline of an implementation of the top-down
zooming diagnosis algonthm.

5.1 Consideration on Space Efficiency

lu Section 4.1, we have assumed that all the trace lists of the execution are recorded in
a “trace database”, and are used somehow for processing success blocks and failure blocks,
which are passed as arguments of “diagnose” and “zooming”. However, recording all the

23

trace lists is very space-consuming. Recall how the blocks are used in the diagnosis. They
arc used oniy when
(a} “diagrose” recurses with an immediate subblock,
(b} “zooming” recurses with some block, either an immediate recursion subblock or an
composing block, or
(e} “zooming” issues a query about the label of the block.

8o, if we can obtain the labels of any immediate subblock, any immediate recurszion
subblock, and any composing block somehow, it is enough for the diagnosis. Let A be a label
of a block.

The lahel of its immediate subblock are obtained from A by repeating only the top-level
of the computation using the labels of blocks as foilows:

fa) When A is a label of a success block S5, let 4, Az, ..., A, be the labels of all
immediate success subblocks of §8. Then there 15 a clavse *5:-8,, B, ..., B, in P
such that 4y = By, Ay = Bofdy, ..., A, = B, 08y 8,, and A = Bé#,---8,
hold. On the other hand, if there is a clause “B:-By, Bs,..., B," in P such that
Ay = Bydy, A = Bob 8y, ..., A, = B.88;-- -8, hold for some labels A;, A5, ... An
of success blocks in the “trace database™, then B, --- 6, should succeed in P using
the clause instance “(B:-By, Ba,..., Bp)0i8q -+« 8," in P. Hence, we may conclude that
there is a success block for B#, 8-, in the “trace database” such that the labels of
all its immediate suceess subblocks are the atoms 4y, 4., .. 4,

(b} When A is a lubel of a failure block FB, let A" be a label of an immediate failure
subblock of FB. Then there is a clause instanee “Hi-Ay, Az, ..., A," such that the
head is unifiable with A, say by o. and 4;00 is equal to A" for some computed solution
(A, As, ..., Aicy)old of *(A;, 42,...,Ai1)e” (1 €4 < n). On the other hand, all the
atoms constructed by such a way are the labels of immediate failure subblocks of FB.
The labels of immediate recursion subblocks are obtained by constructing the labels of

immediate subblocks recursively.

The labels of composing success blocks of a failure block for A are obtained with less
time (in compensation for the space for recording), if we record them in the structure which
associates A to the labels of composing suecess hlocks.

Hence, the labels of subblocks are all obtained by using the clauses in P oand the
recorded labels of blocks.

MNow, we do pot need all the information in the trace lists. The information we record
in the “trace databasze” is only
{a} the labels of suceess blocks, and
(b} the pairs of the label of an failure block, and the sequence of the labels of its composing
success hlocks.
{Hence, it is more appropriate to call it a “label databiase™.) Due to this implementation
method. the argruments of “diagnose” and “zooming” are now not blocks but labels of the
blocks.

5.2 Consideration on Time Efficiency

Lven if we have employed a space-efficient reprezsentation above, the space required for
recording them is still larze. We can reduce the necessary space at each instance by record-
ing only some labels of the trace list which is immediately necessary for the present, and by
recomputing another labels which will hecome necessary later. In the top-down zooming di-
agnﬂsi"_“-. we dl:l- nat D_E'ﬂd to ;lnn]Ed]ﬂT{‘!F 5!"':.1’.-[:]1]:l..hll"‘:ﬂ l"l‘r]‘IHﬂf']".'.':h ntll:lP'T t.l"la"L'll ri"‘l:"l_lrﬂ;nl] ﬁlth.l'llﬂfkﬁ

24

so that the diagnoser needs to record only the labels of the recursion subblocks relevant fur
the present. The computation of the lahels of blocks other than recursion subblocks is done
afterwards if necessary.

If we have employed such an implementation method for reducing space at each in-
stance, it may reguire much more time due to the recomputation, i.e., some goals might
Lave to be re-executed again and again during the diagnosis. However, note that the atoms
appearing in the re-execution are only those appearing in the execution before. Hence, we
can improve the time-efficiency by utilizing the labels of success blocks, that are used before
for the diaznosis, during each re-execution to avoid some of the recomputation.

5.3 Consideration on Query

As was already used in the previous examples, an “answer database” accumulates
answers to previous queries in order to partly mechanize the oracle answers. A new query
is ficst posed to the “answer database”. Only if the “answer database” fails to answer it,
the guery is asked to a programmer (or a oracle), and the answer is added to the “answer
database”. {See Shapiro [0].)

(1) Collective Queries

The queries can be improved to be more natural for human programmers in several

points. For example, it is more natural to ask

“Izs some instance of A true?”
instead of “Is some other instance of A true?” when A has failed without returning any
computed solution. It iz also more natural to azk

“Is A true?”

“Is A false?”
when the atom A in queries are gronnd.

In addition to such easy improvements, it is more comfortable for human programmer
to apewer several related questions at ane stroke. Such queries reduce the number of answers
the programmer must type in. For example, in the diaguosis for unexpected suceess, the
queries far the labels of every immediate recursion subblocks (or every immediate subblocks)
can be issued together. Similarly, in the diagnosis for unexpected failure, the gueries for the
lnbels of composing success blocks can be issued together.

Ezample 5.8.1 Let us diagnose the atom gsort([2, 1}, X] in the program of Example 2.1.1
by issuing several quertes together,

|7- diagnose{grort([2, 1], X}).

Is some instance of the following atoms false?

1: geort(|2.1].]]} Which? 1.

1: geort([1].]])

2 : gaort{[].[]) Which? L.

1: gaort([].][]) Which? no.
1: partitioni[]. L, [].{]}

2 append({], [1],1]) Which? 2.

%%% Wrong Clause lustance %%% append([], [1].[]}

29

yes

Ezample 5.8.2 Let us diagnose the atom perm(]2, 1], X} in the program of Example 2.1.2
in the same way.

|1- diagnose(perm([2, 1], X
Iz some iustance of the following atoms false?
1: perm([2,1},]2,1]) Which? no.
Is some other instance of perm{[2, 1!, _47) true? yes.
1 perm([1],[1]} Which? no.
ls some other instance of perm{[1]. _319) true? no.
1: insert(2,{1],]2,1]) Whiclh? no.
Is some other instapce of dnaert(2,[1], _47) true? yes.

%%% Uncovered Atom %%% inasert(2 [1], _47)
X = _47

yes
(2) Query for Instances of Missed Solutions

As was adopted by Shapiro [9] and Lloyd [6], we can cnjoy both the time efficiency and
the space efficiency, if an oracle can give a suitable instantiation of variables to the diagnaser.
Suppose that the diaguoser is modified to ask the oracle to give a missed solution when an
oracle has given an answer “Yes” for a query “Is some other instance of A true?”. If such a
mussed solution is given, the pumber of queries decreases in some cases, because the gumber
of immediate search subtrees to be diaznoses decreases.

Ezample 5.8.5 Let sort be a predicate defined by

sort{L N} - perm(L.N}, orderad[N].

permd| 1.]).

perml [X [L],N} - perm|L M), insert{3X M N}.
insert (X M. [X [M]).

insert (XY |MLIY [N} - insert{X.MN}.

It miszes the program of the predicate ordered. The diagnosis proceeds as below if the

previous alrorithm is ueed.

7. diaguose{sort([2.3.1]. X)).
Iz some instance of sort([2, 3. 1], _55) true? yes,

I« some iustance of perm([2,3,1],[2,3,1]) false? no.
Iz some instance of pcrm{:‘l 3,153, 2,1]) false? no.
Is some instauce of perm((2,3,1].(3,1,2]) false? no.
Is some instance of perm((2, 3, 1 [2,1.3]) false? no.
Iz some instance of perm([2, 3, 1), [1.2,3]) false? no.
Is some justauce of perm([2, 3, .1| [1,2.2]) false? no.
Iz some other instance of perm([2.3,1], _55) true? no.
Is zome instance of ordered{]2, 3,1]) true? no.

Iz 2ome instance of rJrrf:rcrff 3.2.1]) true? no.

Is zome instance of ardﬁrnﬂl{l.'i 1.2]) true? no,

Is some instance of ordered(]2,1,3]) true? no.

26

Is some instauce of arn’cre&{[l,?,a]] true? yes.
8% Uncovered Atom %%% ordered{[1,2,3])
X = {1,2,3]
Fes
If the diagnoser is modified as given in this section, the diagnosis process 1s as shown below,

|?- diaguose(aort([2,3,1], X)).

Is some instance of sort([2,3, 1], _85) true? yes.
What is the correct instunce of _55 7 [1,2,3].

Is some instance of perm{[2.3,1],(1,2,3]) false? no.

Is some instance of ordered([1.2,3]) true? yes.

% %% Uncovered Atom %%% ordered([1,2,3])
X = [1,2,3]
yes

When a programmer knows that there arc some missed solutions, he/she probably
knows some of the missed solutions. Of course, he/she may refuse to give such an instance
if he/she thinks it troublesome to give a concrete true instance. We are not sure, however,
which imposes less burden on the programmers in general. It depends on the characteristics
of programs.

(3) Oracle Answer “Unknown™

So far, we have assumed that the oracle returns a definite answer “Yes™ or “Na”. When
the oracle is a human programmer, however, he/she may want to give an answer “Unknown™
oecasionally. We ean modify the diagnoser so as to accept such an answer,

Suppose that the answer “Unknown” is returned. First, the diagnoser interprets this
answer as “Yes”, and continues the following diagnosis as usual. If no bug is found there, the
dissmoser informs the programmer of it, and asks again to return the reserved answer. If the
answer is still *Unknown”™, nevertheless, thiz point is recorded as a candidate for a bug of
the unexpected result. Next, the diaguoser interprets this answer as “No”, and continues the
following diagnosis as usual. A bug is selected out of the bug found there and the recorded
candidates.

6. Discussion

Debugring of logic programs has been studied by several rescarchiers intensively. Shapiro
0] said that program debugging is composed of program diagnosts, the process of finding a
bug, and program correction, the process of fixing the bug. In this paper we have discussed
the program diagnosis.

We have attributed ipcorrectness of programs to two bugs, wrong clause instance and
gneovered atom in the same way as Shapiro |9], Lloyd [6], et al. However, wrong clause
instances and uncovered atoms in our definitions are shightly different from those in Shapiro
0] or Lloyd’s definitions [6]. For example, in the definition of a wrong clause instance by
Lloyd [6], the condition (a) in Definition 2.1.1 is replaced with

(a) the atom A is unsatisfiable in M, 1e, all ground iustances of A are false in M, and

b

fn the definition of an wrncovered afom by Lloyd [G], an atom A is called an uncovered atom
when

{a) Aisvalid in M. and

(b} for any clanse *B - L" in P whose head B is unifiable with A, say by an m.g.u. @, L8

iz unsatisfiable in M, 1.e., all ground mstance of L8 are false in M.

Theorem 2.1 is the same as Proposition 3 in Lloyd [6] p.6. These differences do not affect
the proof of this theorem.

Our definition of correctness is stronger than that of Lloyd [6]. Our definition implies
that a program P is correct w.r.t. an intended Herbrand model M if and only if M is the
leazt Herbrand model of completion P°, while his definition is that a program P is correct
w.r.t. an intended model M if and only if M is a model of completion P*. Hence, for proving
Theorem 2.1, we needed an additioual condition “terminating”.

In addition to these subtle differences of definitions, our diagnoses algorithm is different
from theirs in several respects.

(1) Our diagnosis algorithm is basically top-down.

Shapiro’s algorithm [9] for unexpected success (incorreet solution) is in the bottom-up
manner, while that for unexpected failure (missing solution) is in the top-down manner.
There 1= no inherent reason to stick to the bottom-up mauner. In fact, Lloyd [6] showed the
top-down algorithm for unexpected suceess.

Similarly to Lloyd [6], our diagnosis algorithm is basically top-down. For non-recursive
predicates, our approach issnes queries in the usual top-down manner so that the program-
mers can locate buge more quickly than the single stepping bottom-up diagnoser in general.

W

{2} Our diagnosis algorithm just needs answer “Yes™ or *No™.

Though our algorithm can accrelerates the diamosiz by answering concrete instanees
{see Section 5.3), it needs just answer “Yes” or “No” in general due to the utilization of
the previous result of program execution. In both Shapiro [9] and Lloyd [6], the diagnosis
requests an oracle to instantiate variables to snitable forms, because of their definitions of
wrong clause instances and nncovered atoms detected by their diagnosis algorithms.

Of course, recording all the frace lists i3 very space-consuming. We can reduce the
necessary space at each imstance by recording only the parts of the trace lists which are
immediately necessary for the present, aud by recomputing the parts which will be necessary
later. Moreover we do not need all the information in such parts of the trace lists (see Section
5.1}. For example, in the top-down 2ooming diamnosis, we do not need to immediately search
atoms other than recursions so that the dingnoser needs to record only the relevant recursions,
though such reduction of space may be inferior in the time efficiency due to the overhead for
recomputation.

() Our diagnosiz algoritlon issues queries for the same predicate continually.

In general, it is easier and more natural for human programumers to answer queries for
the same predicates continmally. For recursive predieates, our approach jumps and omits
some intermediate atoms with different predicates so that the queries for atoms with the
same predicate are issued to the programmers continually. (Our concern is close to that of
Eisenstadt [1].)

28

Moreover, such queries sometimes identify the segment containing bugs more quickly.
Plaisted [8] showed a bug location algorithm more cfficient than Shapiro’s original algorithm.
His methods selects nodes of trees (either proof trees or scarch trees), called cutoffs, insuch a
way that the execution time of each node distributes as uniformly w.r.t. the computation time
as possihle with some average interval, and roughly identify subcomputation containing a
bug first, then apply bis methods recursively to the subcomputation. Though our approach
is not eager in uniformly distributing nodes for queries, the similar effect is obtained by
Jeaping to immediate recursion subtrees.

Several problems still remain. One is that we have restricted our target program toe
terminating one. {See Kanamori{4] for detection of Pralog program termination.) Another
problem is that we have restricted our target programming language to pure Prolog. The
extra-logical control symbols like cut(!) and the predicates with side-effects like “aszsert” and
“retract” are neglected, (These restrictions cau be relaxed to a certain extent.)

T. Conclusions

We have shown a framework for top-down zooming diagnosis of logic programs. This
method is an element of our system for analysis of Prolog programs Argus/A under devel-
opment [2],[3].[4].

Acknowledgements

Our analysis system Argus/A under development is a subproject of the Fifth Generation
Computer System (FGCS) “Intelligent Programming System”. The authors would like to
thank Dr. K. Fuchi (Director of ICOT) for the opportunity of doing this research, and Dr.
K. Furukawa (Vice Director of ICOT), Dr. T. Yokoi (Vice Director of ICOT) and Dr. H. Ito
[Chief of ICOT 3rd Lab.) for their advice and encouragement.

References

{1} Eiscustadt E., “Retrospective Zooming : A Knowledze Based Tracing and Debugging
Methodology for Logic Programming”, Proe, of Oth International Joint Conference on
Artificial Intelligence. pp.717-719, Los Angeles 1985.

[2] Kanamori.T. and T.Kawamura, “Analyzing Success Patterns of Logic Programs Ly
Alstract Hybrid Interpretation”, [GOT Teclhnical Report TR-270, 1087,

[3] Kanamori,T., K.Horiuchi and T.Kawamura, “Detecting Functionality of Logic Pro-
erams Based on Abstract Hybrid Interpretation”, to appear, 100T Technical Report,
1987,

[4] Kanamon.T.. K Horiuchi and T Kawamura, “Detectine Termination of Logic Programs
Rased om Abstract Hybrid Interpretation”, to appear. ICOT Technical Report, 1987

[5] Lloyd. J. W.. *Foundation of Logic Programmiug”, Springer-Verlag, 1984,

(6] Lloyd, J. W., “Declarative Program Diagnosis”, Technical Report BG/2, Department
of Computer Science, University of Meibourne, 1986,

17] Pereira.L.M., “Rational Debugging in Logic Programming”, Proc. of Jrd International
Conference ou Logic Programming, pp.203-210, 1986.

(8] Plaisted D, “An Efficient Bug Location Algorithm™, Proc. of Ind Interzationn] Logie
Programming Couference, pp 151-157, 1084,

9] Shapiro,E.Y., “Algorithmic Program Diagnosis™, Conf. Rec. of the Oth ACM Sympo-
sinm on Principles of Programming Languages. pp.202-308, 1084,

