ICOT Technical Report: TR-284

1'R-284
Parallel Control Technique and Performance
of an MPPM Knowledge Base Machine

by
H. Sakai. S. Shibayama (Toshiba), H. Monoi
Y. Morita and H. ltoh

Tune, 1987

1987, 1ICOT

Mita hokosar Bldpe *1F (G4 456=3]10) - 3

IGO l 424 Mita 1-Cheame Telex 1COT Jazans
Minato-ku Tokve 15]

apan

Institute for New Generation Computer feéﬂnuiogy

Parallel Control Technique and Performance of an MPPM
Knowledge Base Machine

Hidetoshi MONQI, Yukihiro MORITA. Hidenori ITOH
ICOT Research Center
Hiroshi SAKAI Shigeki SHIBAYAMA
Toshiba R & D Center

June 13, 1987

Abstract

This paper describes parallel control techniques and performance evaluations by
simulation for the knowledge base machine (KBM) using the multiport page-memory
(MPPM) and unification engine (UE).

Including recursive definitions, relational knowledge base retrieval requires re-
peated application of the unification-join {U-Join) operations on term relations. It
also requires each U-Join to be dynamically scheduled, observing the result of the
previously executed U-Join.

We investizated control techniques to execute the query process of the relational
knowledge base effectively in the KBM using the MPPAL and the UE. For parallel
execution of coarse grain operations. each oneration is cecomposad 10 concurTent.:
executable fine grain operations by partitioning input data sess. We identified 2
number of features depending on processor allecation strategies. In particula-, we
found that query processing resulting in repetiilons of the retzleval operation, by
a certain control strategy. increases the amonrt of the total data input to highly

parallel UEs and lowers processing efficiency,

1 Introduction

Aiming to realize high-speed knowledge processing. various inference machines
are being researched actively. In the inference mwarhine. the primary memory is the
workplace to store and manipulate knowledge represented by a certain data structure
at a high speed. Consequently, the cost of such 2 memory is high [1-3]. However, as
the volume of knowledge to be processed becomes large, storing all of the knowledge
in the primary memory becomes increasingly difficult and costly, Moreover, as in
the usual database, common knowledge that should be shared hy users. Therefore,
our aim is to establish a mechanism capable of holding a large volume of knowledge
in low-cost, large-capacity secondary storage and loading necessary knowledge into
the primary memory only when required.

To satisfly this requirement, Japan's Fifth Generation Computer Project is en-
gaged in researching a knowledge base machine (KBM) incorporating this mecha-
nism. In the initial stage of the project, a relational database machine, Delta [4],
was developed as the first step toward such a KBM. In the intermediate stage, we
are developing a KBM with advanced retrieval functions.

To serve logic programming-based inference machines, the knowledge base model
for storing knowledge should be able to handle both facts and rules that appear
in logic programming. That is, the knowledge base model has to handle not only
knowledge represented extensionally, like databases, but also intensionally repre-
sented knowledge that include a recursive definition. Thus the knowledge base model
needs some inference mechanisms to handle the knowledge represented intensionally.

We have proposed a knowledge base model 1o realize the above reguirement.
The modeal taprasents knowledge in !ogical terms and sicres a set of terms as a table
(relation). The collection of these relations is called the relational knowledge base
(RKB). We have also proposed a set of operations on the RKT, which is a natural
extension of the relational algebra and can be used to perform inference on stored
rules. The aperations are called, collectively, retrieval by unification (RBU) oper-
ations. Dasically, they are divided by extending an equality condition of relational
algebra to the unifiability condition or unification operation.

We have also proposed a KBM architecture [3] in which ILBU operations can be

processed eficiently. We considered that the following two points are the key: to the
architectural desien,

(1) Reinforcement of the secondary starage system in terms of total 1/0 capacity
and mulsiplicity of readout ports

(2) Incarporation of dedicated high-speed processors used in combination with
the secondary storage system

The KBM architecture thus resulted in the combination of the multiport page-
memory (MPPM) [6] for (1) and multiple unification engines (UEs) [7] for (2).

Roughly speaking, to answer queries to an RKB including recursive intensional
definitions, the retrieval process must expand search trees from intensional defini-
tions. This is done by repeatedly applying unification joins, an RBU operation, to
term relations stored in the RKB.

We have already proposed a hardware algorithm and configuration of 2 UE [7].
This paper concentrates on the parallel control strategy for efficiently retrieving the
REB under the proposed architecture. We identified a number of features depending
on processor allocation control strategies.

In particular, we found that query processing resulting in repetitions of a retrieval
operation, by a certain control strategy, increases the amount of the total data input
to highly parallel UE and lowers processing efficiency.

This paper describes a control method for parallel execution of query processing
to remedy this, resulting from the simulation on the KBM architeciure. Section 2
briefly describes the architecture of our KBM and each component of the machine,
Section 3 descmibes the control methods used in the KBM. Section | describes the
simulation z==2'ts of the conirol metheds described o section 3. Section 3 discusses

the results.

2 Knowledge Base Machine Architecture

2.1 Hardware Configuration

IFigure 2-1 shows the basic configuration of the KHM. The main components
of the machine are the control processor (CP), multiport page memory (MPPM),

unification engines (UEs), and disk systems (DISs).

=)

Fnowledge is stored in the DKS as a collection of term relations. As showz
Figure 2-1. term relations are supplied from the DRS through MPPM. Term selatices
in the DKS should first be staged in MPPAL

The above configuration has the following advantages.

(1) Using the MPPM as dick cache memory for the DKS and connestiag the
DES to the UEs through multiple ports, the 1/0 bottleneck between primary and
gecondary storage is reduced.

{2) By allowing the UEs to access the MIPPM simultaneously, transfer bottlenecks

are reduced when the UEs perform operations in parallel.

2.2 Multiport Page-Memory

Like a database machine, 2 KBM must sometimes repeatedly perform a set of
simple operations on a large amount of data. Therefore, to balance the system, the
architecture must realize not only high-speed internal retrieval but also high-speed
data transfer, matching the internal retrieval, between the secondary storage and
the retrieval processors. To exploit parallelism, each RBU operation is divided into
concurrently executable fine-grain operations, which are distributed to multiple UEs.
An interconnection structure ensuring smooth simmltaneous access from multiple
UEs to a large-capacity shared memory as a disk cache must therefore be used in
the machine to support the parallelism.

For the purpose of a preliminary architectural discussion, we evaluated and com-
pared three interconnection structures between the disk cache memary and multiple
processors {rom the perspective of the conflicts for a transfer path. Thass fmtercoa.
nections are the time-shared commen Jus, coossbar switching network, anc LIZ 711
The data transfer rate was assnmed to de 50, 100, 150 MB/sec for the common tusg
and 5, 7, 10 MB/sec for the crossbar and MPPLL These rate were chosen becauss
they are feasible in the same class of wanefzcruring technology. The memory mode
conflict was assumed to be 0.1, Figure 2-2 shows the results of the simulation.

An MPI’M provides each processor with an independent transfer path. Process-
ing capability improves in proportion to the number of processors. The common
bus provides all processors with a single data transfer path, causing processing ca-

pability improvement to be limited by the data transfer capability, The crossbar

cannot provide multiple transfer paths for access to the same memory module. It
thus generates conflict for the transfer path though not to the extent of the commen
bus. It is. therefore, less effective thaz the MPPAL

The commeon bus is the smallest unit of hardware. It does not, however, match the
performance requirement given above. The MFPFPM and crossbar switching network

are on a similar seale (62, The above discussion resulted in the MPPAL

2.3 Unification Engines

A UE is a dedicated processor that retrieves input term relations. Term relations
are input to UEs in the form of a stream (a contiguous flow of terms).

A UE is connected to the MPPM through separate ports. It accepts input terms
from the MPPM, executes retrieval concurrently within data transfer, and outputs
the result concurrently to the MPPM. A UE has three ports, tlwn of which are used
to input terms of two relations simultaneouzly and the other to output the resultant
terms. Figure 2-3 shows its configuration. The main components are two pipeline
merge sorters, a pair generation unit, and a unification unit [7]. The pair generation
unit receives an arranged sequence of input terms from the merge sorterz, produces
pairs of tuples which may he unifiahle, and send them out to the unification unit.
The unification unit checks the rigorous unifiability of each pair and outputs the
resulting tuples.

The maximum number of terms that a UE can process at one lime js the param-
eter of the merge-sorter implementation. This capacity is called the buffer size of &

UE in the following discussion [8].

3 Knowledge Base Retrieval in the Knowledge Base Machine

3.1 Relational Knowledge Base and Query Processing

A relational knowledge hase (RKB) assumes that knowledge is represented by
tuples consisting of terms and contains sets of tuples in the form of relations (lerm
relations}. The operations on the term relations are called retrieval by unification
(RBU) operations. The RRU operations, unification join (U-Join), and unification

restriction (U-Restriction) operations were introduced.

A5 described in Section 1, retrieval in the ERE is realized by executing ROT
operations on term relations. Figure 3-1 shows an example of a retzieval procedure
for the knowledge base [3]. A Prolog program is stored in a two-attribute term
relation, T, in which 2 tuple corresponds to a Horn clause. The first attribute stores
the head and the second stores the body of a clause. A goal clause is also represented
in another term relation. Retrieval 15 performed as follows. First. tuples within the
term relation, T, whose head can unify with the goal are selected {U-restriction)
and a term relation, Ty, is generated from the body and the goal. Then successive
U-Join is invoked between relations T and T} to generate a new term relation, T}, In
general, a U-Join generates a new term relation, T4, from relations T and T;. The
procedure ends when no more relations are generated by a U-Join. Terms whose
body attribute is equal to nil are selected from each relation, T}, and stored in a
resultant relation, f.

The procedure for retrieval by repetition of a U-Join shown in Figure 3-1 is the

typical query processing in the RKRB. In this procedure, each U-Join step produces

the next generation of term relations.

3.2 Parallel Execution of the Query Processing

In the KBM, queries are processed as shown in Figure 3-2. First, queries are
compiled into a command sequence, which consists of coarse grain RBU operations
on term relations stored in the RKB, To permit faster execution of such operations
by exploiting parallelism, each must be decomposed by partitioning the input data

Iherefore each RIU operatios is decomposed inte concurrently execatable op-

=iy

ozf and distibuted ameong —uliizle TEs Conceptuallv. each UF rreztes inpu:
sireams from the input MPPM pages and an ouiput stream to the outpur pages.
Wiile gata is transferred through the streams, the UL performs the decomposed
RBU aperation allocated,

As shown in Figure 3-1, query processing repeats U-Joins on term relations stored
in the DKS. The amount of data that must be transferred from the DKSs would
increase prohibitively if DKSs weore accessed for the permanent relation each time

the U-Join was repeated. Therefore, the term relation processed for a query is held

as long as possible in the MPPM until query processing is completed. When one

&

operation is decomposed and executed concurrently, concurrent requests refarring o
the same page of the MPPM occur freguently, This access confiicr can deszrade the

performance of the systems, unless the MPPM is incorporated.

3.3 Parallel Execution of RBU Operations
3.3.1 Decomposition of RBU operation

As described in the previous section, the RBT operations are decomposed into
multiple concurrently executable operations by partitioning input term relations.
Figure 3-3 shows decaomposition of the U-Join using the multiprocessor nested-loop
algorithm [11]. We chose this method because we wanted to obtain the fundamental
performance measure for the proposed architecture, and because the algorithm is
simple and easily is held. Each part, on a page basis, of a relation is called a
segment. All pairs of segments of an inner and an outer relation are obtained, and
each pair iz allocated to a UE as input operands of a decomposed operation.

The procedure of decomposing the RBU operation is called the division process,
and each decomposed operation is called a split operation.

Split operations generated as shown in Figure 3-3 can be expressed as follows,
Assume that | T | represents the size of a term relation, T, s the size of a segment,
and | T | //5 the number of segments of T (provided that T is segmented along the
whale scope of every tuple). If, under this convention, a U-Join is to be applied to
term relations €) and R of which the segment sizes are 5, and &, the number of split
aperations gencrated

Qifisx | RY//s

gl <i<f@Q)// 5 -opresents the segment of @, and r i1 < J < R[5
representis the segments of F. the followiag eguation hoids:
v Tt pa
¢ = U U T
o . o
=1 =1

where m =| Q| [/syand n=| | /59

=1

Here, we consider the total amount of data input to UEs 10 exscute the whole
spit operation. As a UE has two independent ports and overiapning sesment input,
the time reguired to input Two segments is bound hy a larger segment input time.
We can take the size of a segment as a measure of the input time. Thus. the input
size of a split aperation is 5; if 5, > ;. If term relations @ and R are divided and
—_— o }
U-Join is applied. segments are input for execution of split operations. Therefore,

the total input amount, Ip, is given

Ip six (| Q|//s)x (| R|[/s2)

Q@ x(| £1//52)

It

by the definition of //, s1% | Q| //5 =| Q|

If a U-Join on Q and R is done with one UE, | @ | and | B | need be input only
once. Thus, the input amount, 7,is | Q | if | @ |>| B |. Therefore, Ip is | B | //sa
times of 7. This means that the total amount of input data increases in proportion
to the number of segments.

This phenomenon indicates that if the execution time of a UE is proportion to
the data transfer time (which requires a sophisticated algorithm}, the decomposition
of an operation prevents the execution time from improving linearly as the number of
UEs. This problem also arises in join operations in a relational database. However,
decomposition is necessary to exploit UE parallelism. The problem, then, is to find
a method that suppresses the increase in total amount of data input, while keeping
the UEs doing useful work as much as possible.

Figure 3-4 shows the basic scheme for alloeating split opurations to parailel UFEs.
VWhen a certain number of UEs completes execution of a split operation, a new
division process is execnted. New split operations are repeatedly generated until no
more results are produced by any of the UEs,

We considered two operation division methods for the above query processing
procedure, One is the single page at a time (SP) method that generates a fived-size
split operation from fixed-size segments. The other is the multiple pages at a time
(MP) method that adjusts the size of the split operations according to the size of

the next input relations. The next two sections describe these method.

3.3.2 SP method

The SP method fixes the size of 2 segment of a term relation. In the proposed
F.BM architecture, the fived size in naturaliy the MPPM page size.

To process a query, U-Joizs betwesn permanent and temporary relations are exe
cuted repeatedly. Therefore, i a UL nas to wait for the completion of the generation
of next split U-Join operations to other UEs, the wait tim= increases and the UL
utilization ratio decreases. The SP method aims to avoid this wait time by fixing
the input data size of a split operation and invoking a division process every time
new results are produced by split operation in a data-driven manner.

Query processing by the SP method proceeds as explained below. Assume that
Pr represents a permanent term relation in a knowledge base, T'ri{i > 0) a temporary
term relation generated by the U-Join of each generation, and p the size of an MPPM

page. Then, Pr and initial temporary term relation Trp are divided into the following

sets of segments:

{Pr} = {w|1<i<|Pr|//p}
{Tro} = {woil|1<i<|Trg|//p}

By this division, U-Join is decomposed to the split operations as follows:
wwo, where 1 < i <[Pr|//pand 1 €5 <[Tro| //p

The next split operasions are generated and put into the UE allocation queue
by detecting all previcus split operatioz: that vielded resuliz. Assume thatn UE:
are used and that t™ represents the output from the mth TE for one split U-Join

cperation. Then, the number of generated split operations is

[L x| Pr][{p

This method keeps the UE utilization high, because many split operations are
generated and kept in the UE allocation queue. However, the method also increases
the number of generated split operations and the total amount of input data. Con-

versely, il the MPPM page size is disproportionately large, the number of generated

split operations is reduced because of the small number of large’ sages, and sufficient
paralielisin cannot be obuained for the number of ULs, Determining the optimum

MPPM size for the 5P method is very difficult.

3.3.3 MP method

The MP method adjusts the segment size aczording o the number of UEs (the
degree of parallelism) and according to the size of the input term relations. Since
the MPPM can only be accessed in units of pages, the adjusted segment size must
be a multiple of the MPPM page size.

When a split operation is completed, output tuples are input to the next U-Join.
The segment size must be determined for the division process. If the division process
is executed for each completion of UE, and the degree of parallelism is high, this
division method ;h-'auld be the same as the 5P method. In the MP method, output
tuples from split operations are collected ance, then the division process is invoked
when the number of idle UEs exceeds a certain number. The tuples belonging to
different generations can be collected together. This method inherently decreases
the UE utilization ratio compared to the SP method, becanse a UE is not allocated
to the next split operation immediately it becomes free. To remedy this situation as
far as possible, UEs that become idle are detected in real time.

The division process is explained below. Assume that T'r, representing the cal-
lection of output tuples at one time for the division pracess, is invoked and that
pr represents a permanent term relation. Assume also tlat s, and s, represent the

1

segmient sires of Pr and Tr. By the MP method, 1he

T
vl
il

1

|
i

tsi2e. 4, and & must be
determined v “he division process is determined. Toon o, an’ s are delermined so
that they minimize the total amount of input data to perizrm the split operations.
We consider the 1otal amount of input data, Ip, for 12l method. if the dogres of
parallelism is n. Assuming that Pris divided into ! segents and T divided into

m segments and assuming n = ¥ m, [p is computed as folows.

i1y

In = mxmaz(] Pr|/l|Tr|/m)
2 nx{| Pr|/l+|Tr|/m)/2 The equation holds when &, = s,
= (m|Pr|+l|Tr|)/2
2 @ The equation holds when s, = 5.

This inequation shows that s, = s; to minimize Ip. The MP method divides
| Pr| x| Tr|into n equal partitions, and determines s, and s, as the square root
of this partition (i.e. s, = s, = /XTI,

However, assuming that the UE’s buffer size is b, sp and §; must be smaller than
b. The whole tuples of Pr must be consumed in one division process to simplify
division. When | Pr | x | Tr |> n x b? (especially when | Pr |> n x b), 8, 18
determined maximally as b and the number of split operations generated is greater

than n. In this case, st is determined as b when | T'r |> b or as | Tr | when | T'r |< b

4 Performance of SP and MP Methods

A simulation w;.s carried out to evaluate the performance. The simulation com-
plied with the query processing procedure shown in Figure 3-4. The UE proposed
by [7] was chosen as the basic hardware model. We first broke down the model to
register transfer level design, refined several points fm‘ performance improvement and
implemented it in software so that the simulatéd execution time exactly corresponds
to that of a hardware implementation. According to the design, the UE’s hardware
clock period is assumed to be 200 nsec. Each for-byte port of the MPPM is assumad
to match the clock period, resulting in a 20 MB/sec transfer rate. The capacity -
the MPPM was infinite, that is, query processing was executed without I/0 to azg
from secondary storage. Control overhead associated with software such as compiia-
tion of queries, management of processes, and division processes were not addad o

processing time because we wanted to clarify the effect of division methods.

4.1 Performance of SP Method

Figure 4-1 shows the elapsed time and the UE utilization ratio for various MPPM

page sizes in the SP method. Elapsed time indicates the total execution time of the

11

parallel execution for the guery processing shown in Figure 3-1.

The number of spiit operaticns renerated by the 5P method varies according to
the MPPM page size. To a certain extent, the larger the page size, the smaller the
amount of input data and the shorter the processing time if the pumber of ULs i¢
fixed. However, if the page size is enlarged excessively, not ezough split vperatious
for installed UEs are generated, the utilization of UEs is reduced. and processing time
is prolonged. When the number of UEs is increased, the effects of parallel processing
overcome the increase of the total amount of data input by dividing operations and
reducing change in the elapsed time.

The variation of the elapsed time described above is confirmed by the utilization
ratios. When the page size and number of UEs are both relatively small, utilization
ratios remain high. However, the smaller the page size, the lower the utilization
ratio.

Figure 4-1 shows that the optimum page size depends on the degree of parallelism.
We can easily conjecture that the optimum page size also depends on the size of lerm
relations processed in query processing. The number of split cperations generated

in the division process must be adjusted according to the degree of parallelism.

4.2 Performance of MP Method

Figure 4-2 shows the elapsed time and UE utilization ratio in the MP method.
The page size has little influence on processing times when this method is used,
because this method always generates split operations irrespective of the unit page
size. Comopared with Fizure 4-1, the variation of the elapsed time is small in relation
to the MPPM page size. This shows that the MT method adapts the number of split
operations to the degree of parallelism and effectively avoids increasing the amount
of input.

Tha UL utilization ratio is less than in the 51" mafkod bacause the MP method
does not invoke the division process until a certain number of UEs becomes free,
increasing the idle time of a UE. However, the decrease in utilizalion does not aflect
the elapsed time much, because (1) the MP method generates split operations as
evenly as possible to make UEs work nearly synchronously, and (2) it suppresses the

total amount of input.

5 Discussion

We found that both division methods caused the total amount of data input
to UEs to increase in proportion to the minutensss of segmentation of processes,
lowering the efficiency of parallel processing. Parallel processing gives almost no
advantagze if the degree of parallelism is low and split operations are generated by
the SP method independent of the degree of parallelism, The AP method division
processes eliminates wasteful split operations when the degree of parallelism is low.
It thus improves the processing time in comparison with the SP method. However,
the MP method is still unable to eliminate completely the increase of input caused
by division processes. Figure 5-1 shows the effect of the degree of parallelism by im-
plementing the MP method. (The speedup shown here is defined as [processing time
with parallelism degree n)/[processing time with parallelism degree 1].) As shown
in this figure, the performance improvement ratio does not improve in proportion
to the degree of parallelism. This is because the MP method increases the number
of split operations with in proportion to degree of parallelism, reducing the parallel
query processing efficiency.

To improve the processing efficiency of the MP method when the parallelism is
high, the increase in input caused by process division must be constrained. The
division processes discussed in this paper always generate all pairs of segments as
split operations. Some of the generated split operations produce no tuples that can
be joined by unification, in other word, they produce no output. If these wasteful
segment pairs can be eliminated when processes are divided, a fair amount of input
can be avoided.

In iie case of Joln operations o0 A relaticna ZiiaZass, hashing can be appliec o
eliminate a significant number of wasteful split operations [121{13]. Process division
method can he used to generate split operations from cluzrers. In U-Join, as terms
have variables that unllv any corresponding counter parts, the elimination s not
as straightforward as the mere equality checking. To remedy Lhis, we have already
found a term hashing methad, which is reported elsewhere [15]. Our future research
will investigate how to apply the hashing method to the division process in terms of

eliminating wasteful split operations.

13

REFERENCES

[1] Onai, R., et al. "Architecture of a Reduction-based Parallel Inference Machine:
PIM-F™, New Generation Computing. OHMSHA, 3(2), June 1983

[2] Ito, N., et al., "The Dataflow-based Parallel Inference Machine to Suppor:
Two Basic Languages in KL1", in Proc. [FIP TC-10 Working Conference of Fifth
(Generation Computer Architecture. TMIST (Manchester), July 1933

[3] Moto-oka, T, et al., "The Architecture of a Parallel Inference Engine-PIE-",
in FGCS "84, ICOT, November 1984

[4] Kakuta, T., et al.,, "The Design and Implementation of Relational Database
Machine Delta™, in Proc. Int. Workshop on Database Machine "85, March 1985

[5] Yokota, H., et. al., "A Model and an Architecture for a Relational Knowledge
Base”, In Proc. 13th Ann. Int. Symp. Computer Architecture, June 1986, pp.2.9.

{6] Tanaka, Y., "A Maltiport Page-Memory Architecture and A Multiport Disk-
Cache System, New Generation Computing, OHMEHA, 2, February 1984, pp.241-
260.

[7] Morita, Y., et al., "Retrieval-By-Unification Operation on 2 Relational Knowl-
edge Base”, in Proc. 12th Int. Conf. Very Large Database, August 1936, pp.52-59,,

[8) Ttoh, H., et al., "Parallel Cnntlroi Technigue for Dedicated Relational Database
Engines”, in Proc. 3rd Int. Conf. on Data Engineering, February 1987, pp.208-215

[9] Valduriez, P., "Semi-Join Algorithms for Multipracessor Systems”, ACM
Transactions on Database Systems, Vol8, No.1, 1084, pp.133-161

(10} Boral, H., et al., "Processor Allocation Strategies for Multiprocessor Database
Machines”, ACM Transactions on Databasze Systems, Vol.6, No.2, Jupe 1881, op 227-
254

[11] Boral, H., et al., "Design Consideration for Data-flow Database Mlaciines™.
in Proc. ACM-SIGMOD 1980 int. Conf. Management of Data, May 1350, pp 05-104

[12] Kitsuregawa, M., "Architecture and Performance of Relational Alzebra Ma-
chine GRACE’, University of Tokyo, Technical Report, 1083

[13]) DeWitt, D., "Multiprocessor ash-Based Join Algorithms”, in Proc. Int.
Conf. Very Large Database, 1083, pp.151-164

[14] Morita, Y., et al.,"Performance Evaluation of a Unification Engine for a

Knowledge Base Machine”, ICOT TR-204, 19587

14

[15] Morita, Y., et al., "Structure Retrieval via the \Method of Superimposed

codes™. in Proc. the 33rd IPS] Conference, 1986 (in Japansse)

Cp
1
I 1] b |
CEl|vEllvst (el lus! 11011 |CE
|] ! 1 | 1
MPPM

CP: Control processer
UE: Unification engine
MPPM: Multiport page memory
DKS: Disk system

Figure 2-1 Knowledge base machine configuration

Throughput
(jobs/sec) MPPM: ———m

Crossbar: --ceeea

60 Common bus; — - —.-
50
40
30
20

10

Number of UEs
a 3.9

Figure 2-2 Comparison of interconnection
firucitures

Protmtm i mm i m e

—3| Sertunit [FPair |
: enera- Unification .
I ger o i SR
. tion urnit .
— Sortunit [unit]
. GE *
Ll-f—-l-.—qp—---—---,—--_-p.-.-q,-.- _]
=3 Siream

Figure 2-3 Configuration of UE

BE P EFES SR EE RN EA AR EF Ay
s Rty .
s T+ 0 pead O boay (1) .
o while Ty = pdo; .
G i
.;E R m}. _J]{T;. Ll R e s :
peil Tn»z 17 -hmd T-bnd} -T; wn\:r amd'lr']
P=i+ 1 L R 3 R
£ Z e L
B PR FERE S LSRR
- end; .
L I I I I R O L L R R T R I) o
where
T: Permanent Relation]-?51: U-Jain
R: Resultant Relation Tyl U-Restriction
Ty Temporary Nelation II: Prajection
g ,)
: . & Iteration of U-Join

Figure 3 1 Retrieval procedure
in the relational knowledge hasze

Query

s Input__papge . cF

_ Query |_
£33 - Output__page analysis

LE

(ki He

MPPAL

== : Instruction stream =P - Datasirocm

Figure 3-2 Query processing in the KBM

16

O —
¥ Outer
Inner relation
relation I :
P T—T—mT=T 9
I SO SO B
| | | I | i
CrTTTTT T T T 1 [| Serment
— | F-+—-+—-+=+-A
G ¢ 1 T N T T | I..-. On[:r.pht
I i I I I | operation
CrTTTTTT T
ek e — e — e — ke —
Figure 3-3 Decomposition of U-Join
UE output | — UE >| UE b—
queve alloeation
* queue
— =i UE =
Query —3 Division | | t -
Process —_—
> UE —

Figure 3-4 Basic control scheme for
the parallel guery processing

PR ———-T |

| S,

é%r_

5 -
L

Processing by UE |:I

“r
: Permanent relation i
L

MPPM page

-1
1 Temporary relation

Figure 3-5 Parallel processing by the MP method

17

F e

{ _J: Temporary relation

Figure 3-6 Parallel by the MP method

L Permanent relation

Elapsed time
{in milliseconds)

o0 Elapzed time: ——
UT utilization: ====-=
H00 |- o
B Utiliialiqn
ratio
400 |- o
) 2ugs |
a0 0.8
- —
— 0.6
200 =]
B — 0.4
100 - _
-1 0.2
0 0

1 2 4 & 16 32 Gipn
MPPM page size

Figure 4-1 Elapsed time and UE utilization ratio
by SP method

18

Elapsed time
(in millizseconds)

600 — .
Elapsed time:
UE utilization; -----
500 N 1UE
utilization
ratio
» - — — - 1
4':”:' E E;“E-"'ﬂ’:-ﬂqi a@ll |
Ttea K ‘f’L:E,
L]]
1‘ I|'lu 1. C'.E
300 |- \ doeh
! "’l 1Y
“1. I|:'l II1.] ﬂrE
200]
fo4
100 —
— 0.2
° a

1 2 4 8 16 a2 B4Kp
MPPM page size

Figure 4-2 Elapsed time and UE utilization

by MP method
Speed up
[~ T A
30 - R
C o
¥ o :
= -]
u . '
5 o]
20 ~ i
- o l
- S l
B - !
" " Difagze]
- Ir) _.-_-.-'-'-._‘
10 :_ ‘," -rr'_r.-.._-_'___'_,.--"' :
- : IR
- _-_,_-—'_'_._'_-_'_-_- "
B 4h3-pu.ge '
- I
o ;
B |
o LELL L R et ey gy !
1 4 8 18 32

Number of UEs
Figure 5-1 Effect of parallel processing.

19

