ICOT Technical Report: TR-283

TR-283

Remote Object Accessing Mechanism in
SIMPOS —Iis Design and Application—

by
K. Yoshida

June, 1987

@1987. ICOT

Mita Kokusa: Bidg. 21F HE3 456-3191 -3

|| :C] I 4<% Alita 1-Chome Teles ICOT 1752964

Misimto=ku Tokvo 108 lapan

Institute for New Generation Computer' Technology

Remote Object Accessing Mechanism in STMPOS
— Its Design and Application —

IKaoru Yoshida
Institute for New Generation Computer Technology (ICOT)

Address: Mita-Kokusai Bldg. 21F., 1-4-28 Mita, Minato-ku, Tokyo 108 JAPAN,
Tel: 03(456)3193
Telex: 1ICOT J32964
CSNET: yoshida%icot.jp@relay.cs.net
ARPA: yoshida%icot.imep@ieddie. mit.edu
UUCP: ihnp4'kddlablicot! yoshida

Abstract

This paper describes the implementation of ROAM in SIMPOS.

Rermote Object Accessing Mechanism (ROAM) is a general interface to realize network-
transparent access {o remote objects in the way of remote method call. Remate method
calls are based on synchronous communication between proxy and original objects respec-
tively residing on client and server processes and allowed to be nested.

The design and principles of ROAM are detailed and the development of a global
file system is shown as its practical large application. Several problems on the design of
ROAM are also discussed.

1 Introduction

SIMPQOS is a programming and operating system being developed for the personal sequen-
tial inference machine PSI [Yokoif4 NakajimaB6). All of the modules constituting SIMIPOS,
ineluding the kernel layer such as device handlers, are written in an object-oriented logic
programming language ESP [Chikayama84). All the characteristic features of ESP reflect
directly to SIMPOS.

An object in ESP is a set of slots (states) and methods (procedures) to be defined in a class.
From logic programming point of view, a method is an external predicate to be inferenced
with its parameters unified. SIMPOS is an open system without any boundary between the
system and the user. With multiple class inheritance and dernon method eombination, users
can define any complicated class on the system.

As for the hardware environment, about one hundred PSI machines and some other ma-
chines are being connected together via the local area network 10 Mb Ethernet and the global
network DDX,

One of the objectives of building up a network system is to allow users to share
resources and communicate with each other over the network and to provide a coop-
erative environment for their developing applications. U ltimately desired i= a network-
transparent space which seems to be identical no matter where the user has logged in
or the resources are stored. Auming at the realization of such an environment, several
distributed operating systems and description languages have heen built up or proposed
[Walker83,Cheriton83,Rashid86, Andrew86,Black85,Spurg6, Liskov84].

The level to offer the network transparency influences the development of applications
and it should be as close as possible to the basic execution level. In procedural systems, a
variety of remote procedure call mechanisms which provide the function of making procedurc
calls over the network have been implemented [Nelson3l,Welch86,5atyag6,Cheniton84].

In SIMPQOS, the basic execution mechanism is the method call to objects.

Remote Object Accessing Mechantsm (ROAM) is a basic mechanism to make it possi-
ble to make method calls to remote objects over the network., With this mechanism, users
can access remote objects in the same way as local objects. There are a couple of dis-
tributed object-oriented systems and a language which have been proposed along this purpose
[Decouchant86,Anderson86,Black®6).

This paper describes the implementation of ROAM in SIMPOS. Firstly, the basic design
principles of ROAM are described. As a practical large application of ROAM, the develop-
ment of a global file system 1s shown. Finally, ROAM 1s compared with other related works
forcusing on the object migration and global garbage collection which would be substantial
problems in designing distributed object-oriented systems.

2 Remote Object Accessing Mechanism (ROAM)

Remote Object Accessing Mechaniem (ROAM) 1= a general interface between applications and
communication systems to provide the function of making method calls to remate objects aver
the netwaork.

The general overview of ROAM is shown in Figure 1. This chapter describes the design
principles of ROAM which are categorized as follows:

e object and process reflection

¢ line management

e global ohject management

s message management and interpretation
» remote method call

» nested-call control

s ohject migration

® customization

2.1 Object and Process Reflection

In SIMPOS, the concept of ohject is separated from that of process. General objects are to
encapsulate the data representation and the operation on it, and the execution environment
is held by process objects.

When accessing a remote object, the relationship between the ohject and the process
accessing it is directly reflected in the remote node machine.

Original Object and Proxy Object

An object which is originally created is called original object. When an original object is
accessed from & remote process, an object which works as its agent, called prozy object. is
created in the remote process.

The role of the proxy object is to pass all the requests of making method calls to its
corresponding original object. Basically, it is the original object that should maintain the
internal states for its own original functions which are defined in its class. All the internal
states that the proxy object concerns, are the ones necessary for passing the requests, which
are independent of the original functions.

The original object and its proxy objects are of the same class and have no difference in
their object structures except that the slot object_category is set the value original or
proxy respectively. Such an object that is accessible over the network is called global object.

Client Process and Server Process

A process which requests accessing an object is called client process. If a target object is
remote, a process which works as a substitute of the client process, called server process, is
created at the remote node,

For one client process, one server process is created per remote node.

There is one process prepared at each node, called controller process, which controls the
initiation and termination of the server processes at the node. When a client process tries
to access a particular remote node for the first time, it requests the controller process at the
remote node to create a server process for it.

Remote method calls are synchronous as local method calls are. A clhient process sends
a request message containing a method information and waits for its corresponding reply
message coutaining its result.

When a client process terminates, it requests the related controller processes to kll its
SErver processes,

2.2 Line Management

Each process holds a set of virtual line objects associated with their node name. Since a
server process might create its own server process at another remote node, any process can
be both an server and an client at the same time. Of the virtual line objects a process holds,
one is connected from its client process and the others to its server processes. The virtual
line object is an external stream with the synchronization function to enable two processes in
different nodes to communicate each other. It is provided by the underlying communication
system.

Thus, each virtual line denotes the existence of a server process at the node. Every time
a remote method call is made, the calling process inquires to itself whether it holds the
corresponding virtual line or not, that is, whether its server process has been created at the
remote node or not.

2.3 Global Object Management

An object can be referred from remote nodes either as a arget object or as a parameter of
a remote method call. This external reference is called object exporting at the resident node
and object tmporiing at the remote node respectively.

In ESP, there are two kinds of ebjects: class objects and instance objects. They are
managed in the different ways. .

2.3.1 Classes

Identification
There is no concept of wmela class in ESP. Instead, the library subsystem in SINPOS
manages all of the class objects. The concept of package is supported to realize a
multiple class name space. A package is a set of classes. Any class is uniquely dentified
by a pair of a package name and a class name, called class complete name, inside a node.
But anothor class might he chosen with the same class complete name at another node.

ROAM regards class objects with the same class complete name as to be identical and
leaves it to users to sct up the library.

Exporting and Importing
When a class is exported, its class complete name 1s sent out as its infornmation.

When a class information is received. a class ohiect with the same class complete name
is retmieved out of the library at the right node

2.3.2 Instances

Identification
In SIMPOS, mstance objects are not associated with object identifiers that would be
implicitly assigned at the creation time. In ROAM, an instance object is assigned a
global abject sdentifier (GOID) when it is exported and transfers the GOID to its proxy
objects. Each GOID consists of the resident node name, exporting time and process
number so that it can be uniquely 1dentified over the network.

Each process holds a pair of an ezport table and an import table: the former keeps
exported objects and the latter imported ones. Each of the exported and imported
objects is associated with its GOID.

Exporting and Importing
When an instance object is exported for the first time, a GOID is generated and the
object is entered into the export table of its own process. The instance information to
he sent out contains its class complete name and GOID.

When an instance information with an unknown GOQID is imported, a proxy instance
object is created according to the given class complete name and is entered into the
import table.

2.4 Message Management

One of the most important functions of ROAM is the message management, especially mes-
sage interpretation. The interpretation is to pack either method information or result infor-
matlon info a message and to unpack it.

2.4.1 Request and Reply

There are two kinds of messages: one is the request message for making a method call and
the other the reply message for returning its result, Each message is of variable length and
free format and consists of the following three fields:

Control field contains the message control information of message type, either request or
reply, and global message identifier (GMID) which will be mentioned later.

Standard field contains either the method information of the method name, target object
and parameters for the request message or the result information of the execution status and
parameters for the reply message.

Eztra field is offered as a user-definable ficld for the customization according to applica-
tions, while the above two fields are under the system’s control.

2.4.2 Message and Packet

Internally, each message is represented by a set of unit packets. Packets are of fixed lengh and
reused; they are taken from the packet pool at the message Interpretation stage and released
after completing the message transmission. Each packet contains the following two fields:
Data field contains the contents of message.
Control field keeps the packet control information including the packet sequence number.

Externally from the user’s point of view, any messuge is a string of the content fields of
its all unit packets without any boundary.
2.4.3 Data Representation

Fach data element in the standard field and the extra field is encoded with a tagged data
representation. A structured element is represented as a structure of basic elements,

2.5 Remote Method Call

The eontrol sequence of remote method call is synchronous as follows:

1. When a method call is made to a proxy object by a client process, the method infor-
mation is packed into a request message and sent to the original object on the server
process, and then the client process starts waiting for the reply message.

[]

When the server process receives a request message, it extracts the destination infor-
mation out of the message, retrieves the corresponding original object and passcs the
rest of the message to the object.

3. The original object unpacks the request message into method information, and calls the
method to itself. After the method is executed, its execution status and the resnlts of
the parameters are packed into a reply message and sent to the proxy object.

4. When the reply message is received by the proxy object, it is unpacked and unified with
the initial method pattern.

2.6 Nested-Call Control

The computation process in object-oriented systems is a chain of method calls. In case of
remote method calls, it would be a nest of remote method calls — one remote method call
might bring forth another remote method call during its exceution.

In order to control this nested call situation, the client process and its server process keep
a symmetric relationship to each other in receiving reply messages as shown in Figure 2.

Global Message Identification

To keep the correspondence between requests and replies, each request message is assigned
a global message identifier (GMID) and the GMID is attached to its corresponding reply
message.

Teply Receiving Control

A process starts waiting for the reply message after it has sent a request message. If a request
message is received before the reply message, it gives a service for the coming request message
in the same way as server processes do. After completing the service, it resumes waiting for
the first reply message.

2.7 Object Migration

Since remote method calls function in the same way as local method calls do, objects would
be flown out or roam to some process other than the client process and its server processes,
for instance, as a parameter of another remote method call. This is called object migration.

As an object is flown from one node to another, several proxy objects are created at remote
nodes. All of these proxy objects share the same global object identifier {GOID) asssined to
the original object. Creating proxy objects and retrieving the original object are managed
accordinging to their GOIDs as shown in Figure 3.

As methioned before, a pair of export/import tables is kept not per node but per pro-
cess. Since the original process holding the desired original object might not be alive at the
searching time, the search is not assured to be always possible. It would be assured in such
a case that a process commits some job on a remote object to another remote process and
release the CPU to other processes until the job is finished.

2.8 Error Handling

Most of the problems that make the network system more complicated and different than
the local system come from the depth of its lavered functions and the variety of its possible
€ITors.

When an error occurs in a multiprocessing enironment, the required information to be left
15 which method on which object failed in which process for what reason. The general object
in SIMPOS is static one only to encapsulate the representation of data and operations but
not to keep the execution environment. Suppaosing that some object might be accessed from
more than one pracess, the execution status should be kept in the process, not in the abject.

In the ROAM, each process holds a status object that keeps the execution staius of
the last method call and the current status is inquired to its own process. Owing to this
functionality, it has been made simple and efficient to catch and analyze the error conditions
and also possible to leave the aceess status on shared objects.

2.9 Customization

ROAM supports nested call and object migration so that remote method calls can be chained
in the same way as local method calls. The vverkiead of these functions, however, cannot he
ignored. ROAM provide customization facilities for the user to adjust the protocol according
to applications aud reduce the overhead with.

2.9.1 The Extra Field

Each of request messages and reply messages is provided with a user-definable field a2 the end.
called exira field. With the extra field, users can transfer additional information necessary for
the method call. Statistically, most methods are found to be such light ones as slot acecessing,
If it is well known what slots to be accessed in a method, the slot information should better
be transferred at the invokation time of the method. In this way, the number of nested calls
would be reduced.

2.9.2 Complete Object and Imcomplete Object

An object which has a full set of functions as a proxy object, including the ability of remote
method call, is called complete object. Introduced here is another called incomplete object
without this ability, which is referred just as a parameter of some remote method call to other
objects and does not makes any remote method call to its original object.

The incomplete object is transferred its internal states for the original functious to the
original object while the complete object not. The extra field is also used for storing the
frozen internal states of incomplete objects.

2.10 Implementation

The first version of ROAM has been implemented and is currently working. It consists of 16
classes written in about 2200 lines of ESP code, which are categorized into four kinds; remote
object kernel classes, message classes, process-related classes and others.

2.11 User Interface

Users can define the class of any global object as follows:

1. Inherit one of the remote object kernel classes.
ROAM provides two remote object kernel classes; one is the class remote_cbject for
defining complete objects and the other the class as_remote_object for defining incom-
plete ahjects. The class as_remote_object is inherited by the class remote_object.

2. Define the external and local interface methods.
ROAM provides two general interface methods for making a method call; one s the
global interface method :g_call and the other the local interface method :1_call. The
global interface method :g.call internally makes either a remote method call :r_call
or a local methad call :1 _call according to the object category. Users define the
external interface methods to call the global interface method, and the corresponding
local interface methods as their bodies.

3. Overwrite user-redefinable methods if needed.
ROAM allows users to overwrite some of the methods predefined in the remote object
kernel classes for their eustomization purposes. The user-redefinable methods are cate-
gorized into three; the proxy object ereating method, the internal state freczing /melting
methods for incomplete objects and the extra field handling methods.

3 Application — Global File System

As a practical large application using ROAM, the development of a global file system is
shown.

Local File System

The previous file system in SIMPOS was a local system which allowed us to access only the
local file and directory resources.

Each resource was dynamically expandable in size and was placed in a hierarchical dirce-
tory tree. For ease of positioning resources, it was possible to set @ current direetory defining
the current accessing environment and to define logical names, that is, aliases for an ahsolute
fiame on the directory tree.

The system regarded processes as being cooperative as in [Reid83) and controled the
sharing of resources based on some protocol.

Global File System

The local file system has been extended to a global file system using ROAM to allow us to
access any file and directory resource over the network at the method call level.

The glohal file system retains all of the above characteristic features of the local file system.
Only the difference visible to the user is that the name space of resources is expanded to be
the global directory tree consisting of the local directory trees as subdirectory trees. Each
resource is given an absolute name (the node name concatenated with the local pathname).

Implementation

The file and directory resources are defined as complete ohjects. The related objects which
are be passed as parameters of the method calls on the resources, such as buffers and position
markers, are defined as incomplete objects.

The amount of the modification required to realize the global file system was 2.TK lines
of ESP code that is about 10 % of the entire system of 23.51 lines.

4 Ewvaluation

The first version of ROAM has been implemented on the PSI machine. The performance of
the current PSI is about 30 ps per one predicate inference as reported in [Nakajima86).

From the process’ point of view, the comummnication is levelized into three: the user nser
process level for ROAM, the manager-manager process level and the handler-handler process
level in the underlying communication system which functions for the scssion layer. For the
functions of the transport layer and helow, a hardware controller called LIA/LIB interfaces
between the communication system and the physical Ethernet cable. The round-trip time
of transmitting a null packet is measured at each level and is shown in Table 1. This is
the so-called network penelty [Cheriton83] that means the pure cost of the conununication
systom.

In order to grasp the overhead of ROAM itself, primitive methods which take no parameter
have been executed and thelr elapsed fimes are listed in Table 2. (The definition of the
primitive methods is shown in Appendix 1.) Contained in the elapsed time are the network
penalty obtained in Table 1. the local eall time and the overhead from ROAM. For the
primitive method, the local call time is 30us and the ROAM overhead shows the least cost
required for the message interpretation.

As for the global file system, several representative methods have been executed remotely
and locally and their elapsed times are listed in Table 3.

The Table 4 shows the execution times of several methods offerred in SIMPOS, which
have been utilized in ROAM, especially for the message interpretation.

Comparing the current version of ROAM with the other related systems in performance, it
is evaluated to be slow. Forinstance, Flamingo is reported its performance to be 90 RMCs/sec,
that is, about 11 msec/RMC, while ROAM takes 640 to 680 msec/RMC.

The network penalty at the lowest handler-handler level is attributed to the hardware
configuration adopting the LIA/LIB controller. The factors which are loading the overhead
above this level, that is, in the communication system and ROAM are as follows:

packet size The packet size is set to be 4200 bytes, but most of the methods are measured
to require less than 1400 bytes. By changing the packet size to be 1400 bytes, about
260 msee will be reduced.

message copy ROAM was implemented on the existing communication system which had
been designed for a general purpose. The communication system accepts buffers, not
messages and copy these buffers to the handler's buffer area again. As a message is
divided into small pieces of packets as buffers, the number of process switching be-
tween the user process and the network manager will increase. In order to minimmze
the number of process switching and message copying, we are designing another com-
munication system specially for ROAM, that will accept a message and pass it directly
to the handler.

library cache The message interpretation requires 100 to 140 msec at least. Most of this
time is spent for retrieving class objects from the library and converting atoms to/from
strings as shown in Table 4. We are planning to introduce some library information
cache to keep the working set of classes with some limitation given on its usage.

5 Discussions

Through this experience with ROAM and the global file system, we have been faced with
several problems.

(One of the major problems left unsolved 15 that we gave some Limitation on object mi-
gration because of not supporting the global GC (garbage collection). Namely, a pair of
export /import tables is not given per node but per process and is maintained locally in the
process according to ifs execution environment. Since these tahles are released at the process
termination, the remote method call to some migrated proxy object is possible only if the
rrocess holding its original object is alive at that thoe.

There are several reasons why we did not support the global GC.

Firstly, we have been wondering whether it would be practical or not to support the
global GC over such a looscly connected system via the local area network like onr PSI's,
Suppose that we would have to pay for ihe overhead of transmitting some extra information
for updating the global reference count of each global object. It must be feasible if it would
be on tightly connected multiprocessor systems.

Secondly, the ROAM has been implemented over the existing local svstem whose GC
strategy is so-called an exhausted GC based on the mark and sweep method not on ithe
reference counting method. Would we adopt the reference counting method for global objects,
every object migration should be declared in an explicit way that is not assumed for local
objects.

Forcusing on this problem, we would like to compare ROAM with other related works.

Flamingo [Anderson86] is an RMC interface over an RPC interface, which is specially
designed for a window system. This system assumes the usage in its applications and does
not support either the global GC or the object migration. Local objects and remate ohjects
are distingished from each other. Deleting global objects is left to the user’s responsibility.
Any object keeps one-to-one relationship with its owner process, that is, is fixed to one process
and cannot migrate. In other word, more than one process cannot share one ohject.

ROAM has been designed as an extentional layer over the basic execution level of the
method call because such a primitive modification on the structure of objects or the code of
method call was impossible for the current stage. Thus, neither the bare structure of object
recognizes whether it is local or global, nor the huilt-in predicate method_call handles the
remote method call itself. There are some systemn and languge which have been designed
from the kernel level.

Distributed Object Manager [Decouchant86] is a kernel mechanism built in a Smalltalk-80
system for the purpose of extending it to a distributed object-oriented system. For accessing
a remote object, this system creates a prozy object and returns it to the user as ROAM does.
This system, however, is designed straight to support the object migration completely. One
object table, corresponding to the pair of export /import table in ROAM, is managed per node
and the global GC is supported. The global GC is based on the reference counting method
and consists of two levels; the local GC and the remote GC. Each object is supplemented
with a remote reference count which keeps the number of its exporting in addition to the
conventional local reference count.

Emerald [Black86] is a languge designed for constructing distibuted object-oriented sys-
tems and applications. One object table is given per node as the above system and the abject
migration is supported with the following optimizations in efficiency. Objects are categorized
into global objects, local objects and direct obyects for built-in types. The former two kinds are
almost the same as in ROAM meaning whether the object reference can be exported or not,
Also supported are two kinds of the parameter passing semantics: eall-by-object-reference and
call-by-meove. The former is to export only the object reference, the latter to transfer the
internal states of the object. This is similar to the differnce between the complete objects
and incomplete ohjects in ROAM.

As a feasible extension to make the object migration sound in ROAM, we would like to
take an cxplicit declaration strategy such that each global objert would be declared to be
either mohile or fized meaning its possibility of migration and the mobile objects would be
entried in other global object table prepared per node. This extention is one of our future’s
work.

6 Conclusions

This paper presented the design and implementation of Remote Object Accessing M echanism
(ROAM) in SIMPOS and its application to thc development of a global file system.

ROAM enabled method calls to be made to remote objects completely in the same way as
to local objects. The interface of ROAM was simple by the class inheritance and the method
overwriting that it enabled us to develop distributed applications compactly as much as easily.
Using ROAM, we could extend the existing local file system to the global file system with a
small amount of modifications. Through this experience, we found that ROAM is very uscful
and indispensable to the development of distributed applications.

As for the performance, the current version of ROAM was found to have several problems
concerning on the packet size, the message copy and the library access. We are planuiug to
improve them in the next version.

The designing of ROAM brought us some question of what a distributed object-oriented
system would be. The complete function of object migration holds only with the global GC
supported. We gave some limitation on the ability of object migration because of not sup-
porting the global GC. We are planning to extend the current design to assure the searching
of mobile objects assuming the explicit declaration strategy.

With ROAM, SIMPOS has taken the first step toward a distributed object-oriented sys-
tem.

Acknowledgements

The author would like to express her special thanks to Tadashi Mano, Masahiko Tateishi,
Hirotaka Fukui, Masahiro Hoshi and Hireshi Ohsaki who helped in the design, implementation
and evaluation of ROAM. Also thanks go to Prof. Richard F. Rashid and Dr. Hideyuki
Tokuda both from Carnegie Mellon University and Prof. Mario Tokoro from Ieio University
for their helpful comments.

11

References

[Chikayama84] T. Chikayama, ESP Reference Manual, Technical Report TR-044, ICOT 1984

[Yokoi84]

[Nakajima86)

Nelson81]

(Almes83|

[Black85)

[Blacks6]

[Andrews6]

[Satya86]

[Rashids6]

[Jones86)

[Anderson80]|

T. Yokoi, Sequential Inference Machine: SIM -Its Programming and Operat-
ing System, Proc. of FGUS'84, Tokyo 1984

K. Nakajima, H. Nakashima, M. Yokota, I{. Taki, S. Uchida, H. Nishikawa,
A. Yamamoto and M.Mitsui, Eveluation of PSI Micro-Interpreter, Proc. of
IEEE COMPCON-spring’86, March 1986

B. J. Nelson, Remote Procedure Cull, Technical Report CSL-81-9, Xerox 1981

G. T. Almes. The Evolution of the Eden Invokation Mechanism, Technical
Report 83-01-03, Dep. of Computer Science, University of Washington, Jan.
1983

A. P. Black, Supporting Distributed Applications: Ezperience with EDEN,
Proc. of the 10th ACM Symp. on Operating Systems Principles, Dec. 1985

A. P. Black, N. Hutchinson, E. Jul and H. Levy, Object Structure in the
Emerald System, Proc. of ACM OOPSLA'86, Oct. 1986

J. H. Morris, M. Satyanarayanan and M. H. Corner, J. H. Howard, D. S.
H. Rosenthal and F. D. Smith, Andrew: A4 Distributed Personal Computing
Enwvironment, Communiation of the ACM 29, 3, Mar. 1938

M. Satyanarayanan and E. Siegel, MultiPRC: A Parallel Remaote Procedure
Call Mechanism, Technical Report CMU-CS-86-139, Carnegie Mcllon Uni-
versity, August 1980

R. F. Rashid, From RIG to Accent to Mach: An Evelution of a Neiwork
Operating Systemn, Proc. of FICC. Nov. 1986

M. B. Jones and R. F. Rashid, Mach and Matchmaler: Kernel Language
Support for Objuct-Ortented Distributed System, Proc. of ACM QOPSLA'SS,
Oct. 1986

D. B. Anderson, Erperience with Flamingo: A Distributed, Object-Oriented
User Interface System, Proc. of ACM QOPSLA’SS, Oct. 1986

[Decouchant8G] D. Decouchant, Design of a Distributed Object Manager for the Smalltalk-§0

Goldbergs3]

Cheriton83]

Systemn, Proc. of ACM OOPSLA'SE, Oect. 1986

A. Goldberg and D. Robson, Smalltelk-80: The Language and Tis Implemen-
tation, Addison-Wesly, Reading, 1983

D. R. Cheriton and W, Zwaenepoel, The Distributed V Kernel aund its Perfor-
mance for Diskless Workstation, Proc. of the 9th ACM Symp. on Operating
Svstems Principles, Nov. 1981

12

[Cheriton84]

[Liskov84]

[Walker83]

[SpurBE)

[Welch86)]

[Reid83]

D. R. Cheriton and W. Zwaenepoel, The V Kernel: A software base for
distributed systems, IEEE Software vol.1, 2, Apr. 1984

B. Liskov, Overview of the Argus Language and System, Programming
Methodology Group Memo 40, MIT Lab. for Compnter Science, Feb. 1984

B. Walker, G. Popek, R. English, C. Kline and G. Thiel, The LOCUS Dis-
tributed Operating System, Proc. of the 9th ACM Symp. on Operating Sys-
tems Principles, Nov. 1983

M. Hill, S. Eggers, J. Larus, G. Taylor, C. Adams, B. K. Bose, G. Gibson, P,
Hansen, J. Keller, S. Kong, C. Lee, D. Lee, J. Pendleton, 5. Ritchie, D. Wood,
B. Zorn, P. Hilfinger, D. Hodges, R. Katz, J. Ousterhout and D. Patterson,
Design Decisions in SPUR, IEEE COMPUTELR 19, 11, Nov. 1986

B. R. Welch, The Sprite Remote Procedure Call System, Technical Report
UCS/CSD 86/3-2, University of California Berkerly, June 1936

L. G. Reid and P. L. Karlton, A File System Supporting Coorperation between
Programs, Proc. of the 9th ACM Symp. on Operating Systems I'rineiples,
Nov. 1983

13

node N1 node N2

7 controller process] controller process
Slatlug : sSLaLus

ﬂr create/terainate

] clienl process Pl : [server process P21
st‘ir}, Lire Table : 1 Line Table fb
aLus : ! sLilus
HE *%TO::SIIIIII!!EEGi—L* ﬁ']_ '
N3 *+—-—-{:}!l-:|
Export Table Export Table
NZTIPZ] | % ——OJ
original
ahjoer
Import Table laport Tahle
me——3x% | N2TIP2I i
praxy
objoct
o client process PL2 [} Server process iz
| !
---'—'i-[:}:[::: FIEEEEE() — {
e |

to the Pi1's server at the node N3

Figure 1: Remote Object Accessing Mechanism {ROAM)

{proxy) — request=11 (Dril.ginﬂll
k1l

] F========8!III===:::::1:::-_::::['::::!‘!!2}:I | |
(original} reques =22 — {F]"m:]
L1Z — {{Iq,::::r:::::1:======l:llii=;=====hI-===="."'='==:‘= .‘ K
— ':::::::lll‘"::il....==========!"=*==."--======}}
m—
{{===s===s======== EEErrIErSSsSEEEESFESSROSET b w—

reply-11 E.____|

Figure 2: Nested-Call Control

noedex N1 nmlrr NZ
M client process PLI [] Server process FEl
Fxport Tahlo Faport Table
NETIPZ] | % —=0)
nri$inn]
¢ @ objecl
Import Table N Import Table
—
W—z% | NITIFZI
proxy
object
@ A @
migrate u search
node N3
M celient process Pil e server process [21 |
Expor: Table | ; Export Table | '

1 : T L
Pt | NeTIPRL | %

| f |
" .

| 3
Import Tehle | s====== | EIF-"DFL Takle |
e || |
B——*= | METIFZ)
proxy
object

Figure 3: Object Migration

Table 1: Performance of the Communication System

{ msac)
[Process Level Round-Trip Time
Packet Size (byte)
1400 4200
handler level 180
network manager level
user process level 283 543
initialization 1160
{eonnect line and create server)
* : Network Penaliy to be referred in Table 2
Table 2: Performance of ROAM
{msec}
Primitive Method Total Elapsed Time | ROAM Overhead®
primitive class method
:do{Class, Node) G685 140
primitive instance method
rdo{Instancae) 645 100

*= : ROAM Overhead = Total Elapsed Time - Netwark Penalty - Local Call Time (30us)

Table 3: Performance of Global File System

{msec)
Methad Remote Call | Local Call
File Methods
:make/c2 (create and open) 1055 167
swrite/i2 buffer size = 1024 1197 27
40960 4817 199
iread 1024 1160 25
40960 4621 179
:size/il (inguire size) 788 10
:close/fi0 2197 1446
Directory Methods
:make/e2 (create) 1835 150 ¢
rexpunga/lio 753 13
Find/i2 579 | 1y
:deleta/i2 G34 | 20 |
tundelete/id 830 20 |
[radd/i2 1132 a5 |

Table 4: Performance of Related Functions

{msec)
Class/Method Elapsed Time
class library
:get.class_cbhject/c2 20 ~ 90
class symbolizer
rpet.atemstring/c2 2
:gat.atom/c2 1
renter._atem/cZ 3

B

Appendix 1 Definition of Primitive Methods (in ESP)

class test has

nature % inheritance &

remote _object ;

% external class methods %

:dof{Class, Node) :-
.make (Class, Instance, Node) :-

:g.call(Class, make, { Instance } . Nede) ;

_ % local class methods %

:1 call(Class, do, { }) := !}
:1.call(Class, make, { Instance }) :- !,

:new(Class, Instance) ;

instance
. external instance method %
:do{Instance) :-
:gcall(Instance, do, { })
%% local instance method %
:1.call(Instance, do, { }) := !;

end.

Appeoendix 20 Moessape and Packetd
(1) Message
{I! Request Nessage
[Hl}:ntrul |- Standard Field | —= Exira |
Field | Field
E ! _]GHID chiect | mathod | arity | argl | arg? I argHI paramelers‘
o1 4
L L Global Hpsen%e [dontlfler
message typel i 0010 = request)
@ Reply Message
—Contro) J—- Standard Field - Exlia
Field Field
| | I GHIDi staLus |arity [arsl| arg? l. . . |argh| returns

a1 4
L L Global Messape ldentilier
message Lype (X0 0020 = roply)

(2) Data Hepresentation
| Tag |
Undefined Variable X FEFE

Integer
Arom

String

heap vector

.__.
[
Ly
e

siack wveersr

clzss object

axported instanes objant

importod instance ohjenst

| X" 0010

[x0030 | Siring |

[nteger I

| X 040 | Length | Data |
{short X" 000% , long X' OFOE)
X' %60 | Length
(short X 0060 , long X' OFGD)
X 0070 [car [car |

[ata

| Elemeni |

|:t'0maa | N | Elenenti |
(short X' 0080 , long X OF80)
| \" EF10

>lass Xgme String

i X' FF20

Ciass Name String |"

| Y FFAD | lass Name Siring | GOLD t

[

{3 Packet

(D) External View of Packets

[Data Field1 . | DataField2 | Data Field 3

@ lnternal Representation of Packet

* - E Data Field | | Control Field 1 |
S

%
| L——| Datafield2 | Control Field 2 |

*_..-
L—- | Data Field 3 | Control Fieldﬂ

— 148~

