ICOT Technical Report: TR-281

TR-281

PROTON : An Expert System Tool on the P5I
by

S. Shindo, Y. Hosono (Mitsubishi). J. Sawamoto
H. Kubono, Y. Nagai and Y. Fun

June, 1987

On9s7, 10T

Mira Kokusai Bldg. 21F {0130 436-31491 -5

H :D | 4-28 Mira 1=Chome Telex ICOT 737964

Mmato=ko Tekyve 108 Japan

Institute for New Generation Combuter Technology

PROTOXN : An Exper: System Tool on the PSI

J. Sewamoto, S. Shinde!, Y. Hosono!, H. Kubono, Y. Nagal, Y. Fuiii
Institute for New Generation Computer Technology

4-28, Mita 1-chome, Minatce-ku, Tokyo 108 Japan
phone: +81-03-436-3192 telex: ICOT J 32964

csnet:sawamoto%icot.jp&relay.cs.net
unep:sawamotoFicot.uucp@eddie.mit.edu

ABSTRACT

This paper describes PROTON, an expert system tool (environment), on the
PSIF. PROTON is a second generation expert system tool that provides three
major knowledge representation constructs: production rules, frames and meta-
rules. PROTON is implemented in ESP®. This paper discusses major features
of PROTON architecture, i.e., the organization of each knowledge representa-
tion construct and the integration of the three knowledge representations. It also
shows how PROTON is implemented by taking advantage of ESP’s logic pro-
grammiog and object-oriented features. The usage of PROTON is demonstrated
by an example of a design support expert system.

1. Introduction

The personal sequential inference machine (PSI) is one of the major results of the first three-
year stage of the FGCS project. The PSI is currently used as one of the major software
development environments in the FGCS project. Development of an expert system devel-
opment environment on the PSI is necessary, becausc researchers of application knowledge
systems need a powerful environment for the PSI, and because the development of an expert
system tool is by itself a good research area for Al research activities such as problem solving
methodologies, inference mechanisms, knowledge acquisition methods and intelligent user in-
terfaces in the project. PROTON serves as a basic environment for those research activities

[Twashita 86].

L. Centra! Research Laboratory, Mitsubishi Electric Corporation, 1-1, Tsukaguchi-Honmachi 8-chome, Am-
agasaki, Hyogo, 661, Japan

2. The PSI is 2 Prolog based machine developed at ICOT in the Japanese Fifth Generation Complter
Systems (FGCS) Project [Taki 84].

3. ESP (Extended Self-contained Prolog) is Prolog extended with an object-oriented mechanism. It is the
end user language for the PSI as well as the system description language used for the PSI's operating svstem,

SIMPOS, and its utilities [Chikayama 84).

PROUTON is 2 second generation expert system tool, like ART [Clavton 3 . KEEZ [KEE 86
[Fikes 835] 2nd KC [KC 83}, which provides hybrid knowledge representation schameta. ESP
provides both logic and object-oriented progremming. PROTON faciliteies 2 ame baced
znd rule-based programming environment on the ESP programining environment.

KEnowledge representation construcis most appropriate for the knowledge in tke following
three categories are provided in PROTON.

» Static knowledge of the problemn domain
» Knowledge for prodlem solving heuristics

» KEnowledge for meta-level stretegies

Static knowledge is the knowledge required for modelling problem domains. A domain can
be described in terms of its structural objects, attributes and values of objects, and relations
among objects. The hierarchical and relational representation of frames is most suited to
this type of knowledge. Knowledge for problem solving heuristics is the expert’s domain
knowledge used for problem solving. Production rules are most eppropriate for this type
of knowledge. Production rules search objects or relations of the problem domain for their
premises and modify objects or relations in the action part. Knowledge for meta-lavel strate-
gies is the knowledge for controlling the usage of the domain knowledge. Meta-rules are
considered for providing this type of knowledge formalism.

Meta-KS =
Explanation Meta.rules - Edit
facility
Deb
User query K5 K5 g
e K5
Rules BRules § | | —
I Rules] ol Browse
vt Y
#wmms
relation
Knowledge
End user Pool systees S engineer
Interface Interface
ESP classes

Figure 1 Outline of the PROTON configuration

2

Figzoe 1 s2ows an outlize of the PROTOXN configuration. As ez sipent sysisz ool on the

P51 PROTON has the following characteristics.

(1) Toree knowledge representation comsirucis, production rules, irames, and meta-rules
are integrated under ESP's object-oriented programming. Therefore, each construct can
be used separately or in combination according to the application system’s configura-
tion. Thus, PROTON can provide a fHexible and powerful knowledge representation
environment on the PSL

(2) Rules (including meta-rules) are modularized into multiple knowledge sources (K3s).
KSs are implemented es class objects of ESP. KSs can be viewed as a specizl case of
ESP coding which allows description of the rule format.

(3) Frames are also implemented as class objects of ESP. Class objects and their instances
(instance objects) are stored in the poel system of the PSI (working memory: WM} and
accessed by sending messages to the ESP class, working memory management system
(#=wmms), in PROTON,

(4) PROTON provides two kinds of user interfaces, one for the knowledge engineer (KE)
and the other for the end user (EU). For KEs, PROTON provides an editor, a rule and
frame debugger, and a browser. They are implemented using PSI's multi-window and
menu system. For EUs, PROTON provides primitives for generating end user interfaces,

such as a graphical explanation facility and a user query facility for the developed expert
systems.

The next section first describes the major features of PROTON's knowledge representation.
Section 3 discusses the implementation issues of PROTON on the PSI machine. Section 4
presents current applications on PROTON.

2. Features of PROTON
2.1. Frame-based Representation

Frames are basically very similar to classes of object-oriented mechanisms, In PROTON,
frames are designed by incorporating necessary additional functions, such as relations, has-
part, facet facility (constraint, default, etc.), and attached procedures, on the basis of ESP
class mechanism [Kubono 86].

(1) Relations

There are two types of relations, inheritance relations (e.g., is-a, instance-of) and non-
inheritance relations {e.g., set relations or any arbitrary relations).

Inheritance relations : is-a and instance-of relations are expressed by the token, super.
They are not distinguished, because they play exactly the same role in PROTON from the
functional point of view.

{e mari_car fe car iz rehicle

Super car super vehicle aiizhutle
aliribule attribule capacily

id maker end

cuner "Mark” kas_pari

color if modified ofter engine/le:engine)

espifrdizpley/Fwindon, end.
id,color))
end.

Here, te stands for template of element (TE). mark_cer inherits the properties of cer and
vehicle. mark_car is an instance of the car. The car has an engine 2s one of its parts. The
color attribute of mark_car has an attached procedure of the ESP method. These declarations
correspond to the class definitions. At runtime, instances (in the sense of class-instance) of
those classes are instantiated and accessed. Multiple instances of mark_car, for example, can
be instantiated at the same time, supporting the situation that Mark has more than one car.

Non-inheritanc ati : The following example shows a very simple declaration
about academia. This example includes two set relations, prototype-of and element-of.

te professors e professer janes
attribute atiribuie super professor
duty name end.
stalus majeor
end. end.
ir prototype-of ir elemeni-of
substifulion restrici{professors jones)
profotype-off X, ¥) substitution
—=— has-prototype(Y, X) element-of(X, Y)
end. —— has-element(Y, X)
end.

Then, relation instances prototype-offan instance of professors, an instance of professor)

and element-offan instance of professors, an instance of jones) should be created. (an in-
stance of ig omitted in the following description.)

Here, tr stands for template of relation (TR). PROTON provides a separate expression,
ir, for non-inheritance relations. restrict specifies that the relation is valid only among the
indicated classes. It is also true that #r declarations correspond to the class definitions of ESP.
To improvise the specification mechanisms for inverse relations and the relation’s transitivity,

substifution is introduced. For example, the has-prototype relation is the inverse relation of
the prolotype-of relation.

It is not always sufficient to declare element-of as a relation only between professors and
jones. We might want to use the elemeni-of relation with a more general meaning (the

4

ezsies: wav is, of course, just to remove the restrict). In thet case. the relztion petween
professors end jones should be an instance of the element-of relation. Then, the folicwing
modified code is obtained.

tr elemeni-of ir p-jeelement-of
restrict{group, individual) super element-of
substifution resirict{professors jones)
element-of (X, ¥} ead.

—— has-element(Y, X}
C‘ﬂd.

For the request of element.offprofessors, jones), PROTON tries to establish the requested
relation by searching the subordinate relations (e.g., p-j-element-of is subordinate to element-
of), which gives the relation between the given objects. This mechanism is based on the idea
that the subordinate relation is just a more specific instance of a superordinate relation.

In the following segment of substitution code, transitivity of relations is more fully demon-
strated.

descendant-of (X, Y) —— son-of(X,Z), descendant-of(Z, ¥}
descendant-of(X,Y) —= daughter-of(X,Z} descendant-of(Z,Y)
descendant-off X, Y} —— son-offX, Y}

descendant-offX,Y) —— daughter-of (X, Y)

By this formalism for relations, PROTON enables users to describe the hierarchy of rela-
tions and the Prolog-like specification of the transitivity path. It is also possible to cary
out searches just by specifying relation names, then obtaining objects which satisfy those
relations, because the relation itself is treated as a frame object.

(2) Attached procedures

Table 1 summarizes the invocation timing of attached procedures. For instance, the combi-
nation of if modified, null and afier indicates the usual "if-deleted” condition.

Items Ciptions
Event if_gol/fif_ modified if_error_oceurred
Slot value null/any velue

Timing before/afier

Table 1 Invocation timing of attached procedores

An ESP method call, a forward-type rule or the user query are allowed as procedures. When
the user query is specified, a window (Figure 2) will appear and the end user will be asked
about the value of the slot concerned.

581 edribuie vaius
simel Eisci we gat |
abisleuly |
—ripwigt e]
mgserinl
si2a]
grav
5.0 —
} }“eiih.; TEITICLIOQ
Tl typs
size__1 mot_set
il ¢a.rE:IL‘.13.'_:u:
ew B 1DF.2
- zazge
= oot sel

Figure 2 User query window
2.2. Rule-based Representation
(1) Multiple knowledge sources

Rules can be organized into groups, and the selection of a certain group at a given time
can be described using the knawledge of meta-level strategies. Usually, this erganization
1s realized by utilizing the context mechanism [Brownston 85]. PROTON introduces the
multiple knowledge source (KS) mechanism for this purpose. Using this mechanism, problem
solving knowledge (rules) is well modularized, and from the implementation point of view,
rules are executed efficiently because the KS mechanism limits the size of the conflict set at
any one time. The following example shows a fragment of a KS coding.

HRE KS Header RRRRRGERT
ks : farmers_dilemma,

strofegy : crs,

type : fe.

BH%E Now rules follow FHERE TR

1 ST
hit © single,
tezstart:Startg# fattr”_)
==l

remove(testart:Slart),

make(te:hypo: g former side_I for “side_I,
goal“side_I,cabbage “side_1)),

{:ereatefFstandard 1o window sg, sz (300,400,
position(manipulator), title(" FARMERS DILEMMA")], 1),

:ahow{ W)},

In the header part, the KS has the declaration for its name, conflict resolution strategv,
inference type and exit condition. Table 2 shows the strategies and types currently supported.

Stratagy dol Ezeculs tis Sem ki muls
ers LEX type conflict resolution
frecency, secerily of LES, priorify)
Type fe Forward chaining
be Backwerd chaining
Table 2 Supported strategies and types

Each forward rule cen have a specification on hit type and pdority. For the hi: iype, two
types, single and multiple, are allowed. Single means that the rule can be fired only once
during an invocation of the KS, while multiple means that this restriction does not exist.

A forward rule has a left hand side (LHS) and a right hand side (RHS). On the LHS, WM
elements, TEs or TRs, are specified for pattern matching. On the RHS, actions for the WM,
make, modify or remove, are given to modify the WM. ESP predicates or methods, system
defined or user defined, can be specified (inside the braces) on both the LHS and RHS,
enhancing the expressive power of the rules,

Backward rules have different syntactic appearances. A rule corresponds to a Horn clause
of Prolog. The LHS of the rule is the head of a Horn clause and the RHS is its body.
When a propose predicate is specified to the LHS, the WM instance of the LHS will be
asserted to the WM after successful chaining of backward rules. The major difference of
the inference mechanism of the backward rules between PROTON and Prolog is that, in
PROTON, predicates are WM elements and the WM must be searched to check whether
they exist before other rules which can prove them backwards are searched for,

(2) Meta-rules

The knowledge about the invocation of the KSs belongs to meta-level knowledge. PROTON
provides a K3 (called a meta-KS) with forward rule format to express meta-level knowledge.
The following code shows part of the sample coding of 2 meta-KS.

meta ; meta.contrel,

straiegy : dof,

first -
tercontert:C#(goal "gel_paths)
==3
call-ks{gel_paths),
modify(te:contez!:C# (goal "reporiresult)).

nert :

te:contezt: C# goul “reporiresult)
==>
call-ksfreport_result}, halt.

7

Invocations of KSs are specified on the RHS of the meta rules. Invocation of a RS directly
from other KSs is not permitted. For the invocztion of 2 KS with bzckward chaining rules,
goals to be proved are attached. A backward KS may fail to prove the given gozls. In that
case, the execution of the RHS is curtailed at that point.

The advantage of rules over other programming svstems is their modularity. However, rules
interact with each other, and it is hard to guarantee the modularity of rules especially when
controls are to be incorporated in rules. The grouping technique using context elements
{control elements) 15 very common for implementing controls. Meta-rules can be viewed as
the collection of the context element portion of domain rules separated from the main body
of rules. By introducing the meta-KS mechanism, it is very easy to implement controls in
rules, and domain rules in KSs can be organized with much more modularity when controls
are not considered.

PROTON takes a rather conventional way in extending the rule-based representation, namely,
the introduction of meta-KS and KSs. However, the meta-KS and KS mechanism in PRO-
TON can be viewed as 2 simple implementation of the blackboard medel [Nii 86]. The black-
board architecture generally consists of three major components, the knowledge sources,
blackboard data structure and control. The knowledge source mechanism in PROTON
is almost the same as that of the blackboard model. The blackboard data structure can
be represented using objects and relations in the frame-based representation in PROTON.
The control of the blackboard model performs opportunistic reasoning: data-driven and
expectation-driven reasoning by responding to the changes of the blackboard data and de-
termining the focus of attention. PROTON’s meta-rules (forward rules) easily perform data-
driven reasoning. However, an implementation of the sophisticated full control mechanism
of the blackboard model demands additional coding by the user.

3. Implementation of PROTON

ESP’s logic programming and object-oriented features are useful for implementing PRO-
TON's knowledge representation environment. Unification and backtracking mechanisms are
powerful for the implementing matching mechanism of the recognize cycle of rules. The

frame system’s configuration is fully dependent on the class mechanism of ESP, which is a
very convenient and efficient environment for implementing the frame system.

3.1 Frame

(1) Inheritance

The TE or TR frame's inheritance relation, super, is mapped (translated) onto the ESP
class-subclass inheritance mechanism, neture. Since all inhented attributes are copied once
at compilation (by the LSP compiler), the inheritance has the meaning of the default setting
at the initial setup rather than referring to attributes of the super frames at execution. This

B

ratbar static inhesitance mechanism was chosen for ESP because of its execution efciency,
although some Sexibility was sacrificed.

In the case of multiple inheritances, super frames of 2 frame form a tree, called 2o inheri-
tance tree. PROTONX searches left-most and depth-first for the inherited attributes on the
inheritance tree just like ESP does. For example, if 2 class X inherits from classes A and B
in this order, and A from Al and B from Bl, the inkheritance order for X is:

X -+ A Al->B— BL
(2) Implementation of frame’s features

This section shows how substitution and attached procedure are implemented. TEs and THRs
inherit classes Zte and #tr as defaults. #te and #tr inherit a class, #tf, for their common
methods. They are all classes defined by the PROTON system. Classes #te and #tr give
the basic methads for realizing the frame’s functions, e.g., searching for certain instances in
the given TE or TR classes, and accessing attributes of the given TE or TR instances, Class
#tf gives common functions, such as clearing pools for instances of the given classes, creating
and deleting instances.

Substitution : The substitution specification is translated into ESP codes. The following
code shows a fragment of class, #tr and the translated ESP code of the prototype-of relation
(in Section 2.1). First, a request for the search of an instance of prototype-of relation goes to
class #wmms. If the request fails, then the message, request_subst, is sent to the prototype-of
class for the substitutional fulfilment of the request. Tn class #tr, the method, :request subst,
is also given for termination, if no substitution is specified in the TR concerned. The call
of the method, :refind_rel_first, is the recursive request for the relation, has-prototype, to

#wmnms.
elass tr has

nature 1fy
rask_find_rel first{Class, Relname,
Arg-list, Time-Tag) - ...

srequestsubst(Class, X) - [fadl;
end.

cless protetype-of has

nature Ir;

crequest.subst{Class, [X, Y]}
= refind_rel first{Aumms, kas-protoiype, L [Y X[)
end.

Attached procedure: The body of the userspecified attached procedure is easily trans-
lated into the definition of the ESP method. The following code shows a fragment of class #Fte

g

enc tetrenslated ESP code oftie meorkicor oject (in Section 2.1). The access meguest for an
attribuie is expanded with czlls of methods for attached procedures. e.g.. rmodify cffer_sed.
The dummy definitions of clauses {or tZose metbods for attached procedurss which alwayvs
return successfully are coded in class f5te, anticipatiog the cese of no specified attached
procedure.
class te has
nefure 1f:

cmodify_afier seff OB) - true;
end.

class mark_car has
nalure ear, 1e;
insfonce

aliribute id, owner:="Mark®, color;

smodify_sfier.set{ Obj, color)
= rdisplay(Fwindow, 04fid, Objleclor);

end.

3.2 Production Rules
(1) KS and meta-KS

The meta-KS and KSs are translated into ESP classes. The KS invocation is implemented as
sending a message to the KS. An invocation message to a KS from the meta-K§ goes to the
top level inference manager once for supervisory tasks, then an actual invocation message is
sent to the KS. (See Figure 3.) Forward KSs always sncceed, while backward KSs’ failures
are returned as the failures of the invocation messages.

Top-level inference manager

mI.’-.ks/

Meta-KS

fruseatian

KS KB L KB

Figure 3 HKS invocation

i

(2) Rules

Rules are tranzlated into ESP code directly rather than preparing a rule interpreier or com-
piling into the Rete network. An easy yet efficient implementation of rules is sought taking
advantage of the ESP’s unification and backtracking mechanism.

For forward rules, the LHS and RHS are translated into ESP clauses sepzratelv. In the
recognize cycle, LHS codes are checked one by one for executable rules utilizing backiracking,
and the rule names and unification information are collected as an agenda (in the case of
crs strategy), then followed by the conflict resolution. In the act cycle, the RHS coce of the
rule selected from the agenda is executed. Although a LEX-like conflict resolution strategy
is given as a standard strategy in PROTON, it is easy to implement a user defined strategy
by replacing the small crs class in PROTON with the user’s definition.

Backward rules are more ezsily translated into ESP code. For example, the following back-
ward rule means that if sub_goal_f is proved or exists in the WM then goal is proved and, as
a result, goal is asserted into the WM.

riu
propose(te:goal:_#lattr ‘normal})

£28

tessub_goal :_#{slir "normal).

Then, the above rule is translated into the following ESP clause. feich_be of #lop_be tries
to prove sub_goal.1 first by searching the WM, then by issuing the :rule_bc method to this
backward KS class recursively. Finally, the proved goal is asserted into the WM.

crule befBe ks_class, ri, ﬂ:,yuuf,_,ﬁuﬂr,namniff) -
fetch bef#top be, fte,sub_goal_1,[[attr,nermal]]),
:generate_elm(Fwmms, gosl, [[ottr, normall]};

3.3. Integration with PSIT Environment

The only underlying programming system of PROTON is ESP on the PS]. ESP functions,
user defined or system defined, can be easily incorporated into the description of rules or
attached procedures in frames. In rules, segments of ESP code are enclosed by braces and
placed anywhere on both the LHS and RHS.

The PSI is supported by the single language principle, that is, the use of only vne high-
level language for describing everything from the operating sysiem to application programs.
The advantage of this principle is that the system can be guite open to users. The user's
application programs can use any level of system facilities through the inheriiance mechanism
of ESP. PROTON users can easily utilize the P5I's window manipulation system, menu
system, graphic system or file system, simply by inheriting provided classes.

11

<. Applications on PROTOXN

PROTON has been used so far 10 implement two demonsiration-level expert svstems, a
support system for the design of the skeleton of a camera lens and a diagnosis svstem for the
thynstor converter equipment of the cold rolling mill in steel factories, mainly for evaluating
PROTOXN's features. More elaborate expert systems on PROTON are under way in the
project, such as a placning system for the time and route schedule of material distribution
by trucks in a local area and a CAD system for mechanical desizn.

One example clearly showing the usage of PROTON's knowledge representation is the camera
lens dezign system. The support system for the design of the skeleton of a camera lens is a
typical parametric design system for the zoom lens of a camera consisting of five lens groups.
The task of the system is to determine the skeleton parameters, e.g., the focal length of each
lens group, mutual displacement of lens groups and diameter of the diaphragm, under given
constraints, e.g., the total length of the lens system, zoom ratio and diameter of the front
end lens group. :

The design procedure is generally depicted as in Figure 4. The first step of the procedure
s to select an appropriate set of parameters (2 hypothesis). The sccond step is to ealenlate
2 more precise skeleton configuration under the given set of parameters. The third step is
evaluation where design constraints are evaluated by caleulating the constraint parameters.
The fourth step is to identify the reasons why the current design is not satisfactory, using the
expert knowledge of the designer. The fifth step is to modify the current sct of the design
parameter following the knowledge of the design expert.

i]

Modifieation of

Initinl st od
parwmelars

. hypathesiz
/ {n Bypetsisl parermgiery
Ehelelon Dingreals el
eaiflguratica duiige 1
i

=/ |

svalualion —

Am ipslenee ol theahelwion
Figure 4 Design procedure

Numerical simulation progams are used in the second and third steps. This expert system can
be viewed as an intelligent front end system for conventional simulation programs. Domaiz
knowledge of the design expert is separated and organized as sets of rules, i.e., knowledge
sources.

12

Thae svesem conSoo=eiion = PROTON is shown in Figuss 5. Eact boowledzs enes

r-

sponds to one siep of the design procedure. The meta-KS expreszes kmowisdze about ke
overall design procedure. The koowiedge shows how and when 1o use the domain knowledze
expreszed by ezch knowledge source. The system consists of roughly 30 rules in total and an
additional 300 lines of ESP code {or implementing simulation programs and graphical wser
interfaces. Figure 6 shows the displey of the PSI running this system. The user of the system
interacts with the svsiem through 2 grephical window whickh displeys 2 tree of hypotheses of
the skeleton. One hypothesiz usually makes several modifications possisle. The choice is left
to the user who is suppozed to be an expert in this domain. The user caz also conirm the
current design visually in another window.

This lens design expert system is also implemented in ART on ICOT s Symhbolics machine.

It is found that PROTON’s meta-KS and KS mechanism rather than the delicate viewpoint

mechaniem of ART is more suited to this type of general parametric design problem.
ESPclasses

«Simulation programa «Graphical userinterfaces

: 1

Meta-KS

Knowledge sources

Caleulation of Conakraint Diagousis of Modification of
skeleton evaluation design the bypolhesis
configuration

L 1

s Hypothesiaschema «Skeleton schema «Constraint schema

‘n‘l’qu'_i.n.g oRmary

Figure 5 System configuration in PROTON

LTRSS T
Pk s LEL AT
et paal IRTarenEn |
Wt any 1
Slp .
Sarmieabe TE S il d

ot S N\‘F’ 7N N f:;’ 1
Y

Tudal
1an, mare. H
""FS"'_“*: " —] f
2 e T iy]

tu v [T [t P

L =T
TR O R e I e e e

Figure 6 Display window of the lens design system on PROTON

13

5. Conclusion

This paper described PROTON, an expert sysiemn tool on the PSI. PROTON provides three
major knowledge representation constructs, production rules, frames and meta-rules. These
knowledge representation constructs are implemented and integrated utilizing ESP's logic
programming and object-oriested features. The usage of PROTON is showz in the example
of the design support expert system.

A more detailed evaluation of PROTON 1s currently being carried out by implementing
expert systems in various problem domains. More efficient implementation of the production
rules and frames 1s being sought.

For the expert system tool or expert system development environment, three levels of support
hierarchy can be identified, the programming language level, general problem solving level
and generic task level [Chandrasekaran 86]. PROTON. like other genera! expert system tools,
provides the lowest level of support, that is, the programming language level. Facilitating
higher levels of support is the focus of future research. At ICOT, we are working on the higher
level of problem solving mechanisms, such as hypothetical reasoning by ATMS [de Kleer 86],
distributed cooperative reasoning and qualitative reasoning on the PROTON environment.

ACKNOWLEDGEMENTS

We would like to thank members of the fifth research laberatory, ICOT, for their valuable
discussions on the design and implementation of PROTON. Part of the implementation is due
to K. Tsubaki of the fifth research laboratory and M. Hoshi, H. Ohsaki, and K. Amanuma of
JIPDEC (Japan Information Processing Development Center), We also thank T. Asano and
K. Kikuchi of Canon Research Center of Canon Inc. for providing us with the knowledge for
the lens design system. (This work is partly supported by the ICOT-JIPDEC Al Center.)
Our thanks must also go to Dr K. Fuchi, Director of ICOT Research Center, who gave us the
opportunity to conduct this research in the Fifth Generation Computer Systems Project.

REFERENCES

{Brownston 85] L. Brownston et al., Programming Ezpert Systems in OPS5 : An Introduc-
tion to Rule-based Programming, Addison-Wesley Publishing, 1955

[Chandrasekaran 86] B. Chendrasekaran, Generic Tosks in Knowledge-besed Reasoning:
FHigh-level Building Blocks for Ezpert System Design, IEEE Expert, 23/30, 1986

[Chikayama 84] T. Chikayama, Unigue Features of ESP, in Proceedings of FGCS'84, ICOT,
1954

[Clayton 83] B. Clayton, ART Prograrmming Tutorial, Inference Corporation, 1985

I4

[Fixes 85] K. Fikes, T. Kehler, The Role of Frame-besed Representation in Recsoning, Com-
rrunication of the ACM, 23, 9, September 1335

[Hayes-Roik 83] F. Haves-Roth, D.A. Waterman, D.B. Lenat, Building Expert Systems,
Addison-Wesley Publishing, 1983

[Iwashita 86] Y. Iwashita, J. Sawamoto, Development of Ezpert Systems in the Fifth Gener-
ation Computer Systems Project, 2nd Int’l Expert Systems Conference, London, Septembe:
1986

[KC 83] KC 3.0 Reference Manuual, CGI, 1935
[KEE 86] KEE Reference Manual, IntelliCorp, 1956
[de Kleer 86] J. de Kleer, An Assumption-based TMS, Artificial Intelligence, 28, 2, 1986

[Kubono 87] H. Kubono, J. Sawamoto et al., Fact/Model Representation Environment in an
Ezpert System Tool on PSI, Compcon’87, San Francisco, February 19387

[Nii 86] H. Penny Nii, Blackboard System: The Blackboard Model of Problem Solving and
the Evolution of Black board Architectures, The AT Magazine, Summer 1986

[Taki 84] K. Taki, Hardware Design and Implementation of the Personal Sequential Infer.
ence Machine (PSI), in Proceedings of FGCS'584, ICOT, 1984

15

