ICOT Technical Report: TR-278

TR-27E

Inference Machines in FGCS Project

by
5. Uchida

June. 1987

T, 10T

flta Woksan Dlde. 20F (030 45h-3181— 5

“ :O I =28 Mita 1-Chome Telex 1COT J32964
Mmate-ku Tokvo L08R Japan

Institute for New' Generation Computer Technology

Inference Machines in FGCS Project
Shunichi UCHIDA

Institute for New Generation Computer Technology (ICOT)
Mita-Kokusai Building 21F., 4-28, Mita 1, Minato-ku, Tokyo

Abstract

In Japan's fifth generation computer systems (FGCS) project, logic programming
is adopted for the base for software and hardware systems to be developed. As a
primitive operation of logie programming is syllogistic inference, machines studied and
built in the project are called inference machines,

One of the project’s target machines is a parallel inference machine (PIM) having
about 1000 processinz elements. Smaller scale PIMs are also planned as intermediate
targets. In addition to PIMs, sequential inference machines (5IMs) have been devel-
oped for a software development tool. A personal type SIM is called PSI which is a
logic programming workstaion. For parallel software development, a multi-PSI system
which consists of several CPUs of PSI connected with a high-speed network, is also
under development.

In this paper, these sequential and parallel inference machines, some of which have
already been developed, some are planned, shall ba described with their langnages and

operating systems.

1 Introduction

Japan's fifth generation computer systems(FGCS) project aims at the research and devel-
opment of new computer technology for knowledge information processing systems (KIPS)
that will be required in 199(0's. The project started from April 19382 as a ten year project.
[t is divided into three stages, namely, the initial stage (1982-1984), the intermediate stage
(1985-1988) and the final stage (1989-1991).

The knowledge information processing systems are considered to have logical infer-
ence mechanisms using knowledge bases as their central functions. Logic programming is
adopted as the base for software and hardware systems developed in this project. The final
target computer system is generally considered to have two types of functions, namely, a
high-speed inference function and a knowledge base management function. Two types of
the machines have been studied, namely, parallel inference machines (PIM) and knowledge
base machines (KBM). The target of PIM rescarch and development is a highly parallel
machine having about 1000 processing elements. In addition to these research and de-
velopment items, software development support systems are also being developed. One
of these systems is a personal sequential inference machine (PSI), a logic programming
workstation.

The machine languages of all these inference machines are based on logic programming,.
These languages are called kernel languages (kln, n=01 or 2). KLO is a sequential
language for PSI. KL1 is a parallel language for PIM. KL2 is for the final target machine.

In the initial stage, main research efforts of the inference machines were devoted more
to the design of machine architectures than to the fast and compact implementation of
machine hardware. From the intermediate stage, the implementation efforts using custom
LSls began with the development of the smaller version of PSI (PSI-II). Now, we plan to
implement the intermediate stage PIM (PIM-I) containing about 100 processing elements.
We have to use some custorn VLSIs for this implementation.

In this paper, the inference machines, some of which have elready been developed and
others which are planned, shall be described with their languages and operating systems.

2 Sequential Inference Machine (SIM)

In the initial stage, we developed two types of sequential inference machine (SIM) as a
software development tool. One was named PSI and the other was named the Cooperative
High-speed Inference machine {CHI).

PS] was intended to be used as a common software development tool in the project. It
was designed as a logic programming workstation having its programming and operating
sytem on it. The development must be completed in a year and a half. Stable operation
and smooth delivery were considered to be important. PSI adopted a rather conservative
implementation technology using fast TTLs.

On the other hand, CHI could be designed more freely. We intended to design the
fastest possible Prolog machine. It was designed as a backend high-speed processor and
implemented using CML (Current Mode Logic). Its machine language was designed based
on the abetract machine instruction set proposed by Tick and Warren [4] which is now
widely known as WAM (Warren's Abstract Machine instruction set).

The SIM programming and operating system (SIMPOS) was developed on PSI. To de-
seribe SIMPOS, a now system description language, ESP (Extended Self-contained Prolog)
was developed. SIMPOS is a personal OS having a multi-window based human interface
and a programming environment for ESP like the LISP machine 0S. SIMPOS has been
continuously improved and extended. Its size is about 370K lines in ESP consisting of
abeut 2100 class modules.

ESP is 2 new type of language combining object oriented language features and logic
programming language features. It can be used not only for system description but also
for knowledge representation. SIMPOS is fully written in ESP and its module structure
is completely based on the object oriented concept. Thus, SIMPOS modules (class defini-
tions) ean be easily inherited and customarized by the user like the flavor system of the
LISP machine OS. ESP is a higher level language than LISP, Prolog and Smailtalk. The
productivity of software is very much improved, however, a variety of firmware and hard-
ware support and compiling techniques are necessary to make execution speed satisfactory.

About 130 PSI machines have been distributed to ICOT, our cooperative companies,
some universities and research institutes. All these PSI machines are comnected by LAN
and the public packet switching network.

From the beginning of the intermediate stage, we started the effort to develop a smaller
version of PSI (PSI-II} and CHI (CHI-II) using custom LSIs. The CPU of the PSI-II is
also intended to be used for the multi-PSI system which will be used for prallel software

— T}
-

Table 1: Main features of PSI-I and PSI-I1

PSI-1 | PSI-1I
Device TTL (Fast) CMOS-G.A., TTL
Cycle time 200 ns 200 ns
Word width 40 Dats 40 hits
WCSs 64b x 16 KW | 53b x 16KW
Cache memory 4KW x 2 AKW x 1
Main memory 16MW (Max) | 64MW (MAX)
Memory chip 256 Kbit 1 Mbit
Max. No. of Process | 64 S/W defined
Machine code Table type WAM type
Structure data Shanng Copying
Exe. speed(Average) | 30 KLIPS 150 KLIPS
Exe. speed(Append) | 35 KLIPS 333 KLIPS

Tahle 2: Performace of PSI-I and PSI-1I

PSII|[PSLIT

(KLIPS) | (KLIPS)

Append 35 333
Naive Reverse 34 271
Quick Sort 40 132
Tree Traverse 41 100
8 Queens 60 162

development. We have almost completed the hardware development of PSI-II and CHI-IL
They will be used from this fall in this project. Main features of these machines are shown
in Tables 1, 2 and 3.

In the implementaion of these hardware and firmware systems, compilers and inter-
preters, multi-window systems and other parts of the operating systems, valuable experi-
ence and design criteriza have been accumlated at ICOT. They are now being used for the
development of PIM-T and its OS, PIMOS.

3 Parallel Inference Machine (PIM)

3.1 Outline of PIM research plan

The research target of PIM in the final stage was roughly described in the project plan
that it would have about 1000 processing elements and attain 100 M to 1 G LIPS. We now
feel that this target will be feasible in five years. As an internmediate stage target, we now
plan to develop PIM-I which will have about 100 processing elements and attain about 10
to 20 MLIPS including some overhead caused by the operating system.

In the initial stage, we studied several PIM models such as reduction and dataflow for
the parallel execution mechanisms of logic programming languages. In the beginning, we
used pure Prolog and examind both OR-parallel and AND-parallel execution mechanisms.
We built several software and hardware simulators. For dataflow, we designed a machine

- 3 -

Table 3: Main features of CHI-I and CHI-II

CHII [CHI-II
Device CML P CMOS-G.A, TTL
Cycle time 100 ns 170 ns
Word width 32 bats 40 bats
WCS T8b % 16K'W | same
Cache memory 16KW x 2 same
Main memory 64MW (Max) | 128MW (MAX)
Memory chip 256 Kbit 1 Mhbat
Machine code WA type extended WAM
Structure data Copying same
Exe. speed(Append) | 280 KLIPS about 400 KLIPS

model and implemented a hardware simulator which was named PIM-D. It executed logic
programs in a goal-diven manner. The hardware simulator consisted of 16 PEs and 15
structure memory modules. They were connected by a hierarchical bus network, Each PE
was built using the AMD’s 2000 series bit-sliced microprocesors and TTLs.

For the reduction, we designed and implemented a simulator, PIM-R. It consisted of
16 MCBSI processors connected by 2 common bus and a shared memory. For the study of
the hardware support of job division and allocation in a multiprocessor environment, we
designed the Kabuwake-method and implemented it by software on a hardware simulator
which consisted of 16 MC63K based computers connected by a switching network and a
ring network.

Through this research, we learned many lessons on the parallel execution of logic pro-
gramming:

1. We must have a simple and elegant language which enables us to introduce compiler
optimization compiler effectively and also make the machine hardware simple and
fast.

2

. The machine langnage must have such features as to describe an operating system.
Some features like process synchronization have to be included in the language model.
Then, AND-parallel-type language features are necessary.

9. The amount of the hardware system can not be large for stable implementation
of many PEs. For example, commercially available VLSI technology would not be
sufficient to fully implement eomplex architectures such as a dataflow architecture.

In parallel with the PIM research, the design of the parallel logic programming language
far PIM {KL1) was carricd out. Copsidering the requirements imposed by the PIM design,
a simple parallel logie programming language, GHC { Guarded Horn Clause) was designed.
It is a comunitted-choice AND-parallel logic programming language. We decided to use it
as the base for the PIM and PIMOS research in the intermediate stage.

In the beginning of the intermediate stage, we made the detailed plan for PIM research
and development. We had realized the importance of the knowledge about paralliel lan-
suages and parallel software systems, especially the parallel operating system, to design
the efficient parallel hardware systems.

onm

The functions of the software systems, for example. the optimization made by the
compiler and the strategy of job division and aliocation in the operating system greatly
influence the optimal design of the machine language and architecture of PIM.

We decided to adopt a simple and fast architecture for the PE suited to the GHC
execution mechanism and the cluster structure for the connection mechanism. In addition,
we decided to make the hardware system fast and stable so that we could build larger scale
parallel software systems Like the experimental operating system.

To be able to design the practical hardware of the PIM, we decided to develop an
experimental parallel operating system, PIMOS, in more systematic way. To provide
the software researcher of PIMOS with a parallel hardware environment very quickly, we
decided to develop the multi-PSI system. The second version of the multi-PSI system
will be a multi-processor having up to 64 PEs being connected by two dimensional mesh
network. The PE is the same as the CPU of PSI-IL

In the multi-PSI system (V.2), the KL1 interpreter will be implemented in the firmware
of the PE. Its execution: speed will be sufficient to actually support the large scale parallel
software systems including PIMOS.

3.2 PIM-I, Intermediate stage target

" As the intermediate stage targert of PIM, we now intend to build the experimental system
as follows:

1, The number of PEs is About 100,

3

Target processing speed: For the total system, 10 to 20 MLIPS including some
overhead caused by PIMOS. For each PE, 200 to 500 KLIPS for KLI.

3. Connection mechanism: In a cluster, a shared memory with parallel cache. Between
clusters, a switching network.

4. Machine language: KL1-B based on GHC.

We decided 1o use the tag-architecture for the PE optimized to GHC (KL1-B). GHC
can handle from very fine granularity to coarse granularity. The key problem of the PE
architecture is how to make the process switching faster. The optimization by the compliler
to reduce the frequency of process switching is also an important research item. Some
support for garbage collection is necessary because GHC tends to consume much heap
ATEa.

For the connection mechanism, we iniroduce the cluster in which around 8 PEs are
connected by a shared memory with a parallel eache system [12] [13] [14] to achieve fast
couvimumnieation among PEs. This mechanism is chosen because the language features
of GHC require very quick responses for communications which are issued in unification
operations. The granularity of GHC programs, namely the size of the processes, could be
very small, and the synchronization of the parallel processes 1s made using shared variables.
Then, the lock mechanism is also required. To deal with these difficult conditions, we
decided to introduce the rather complex parallel cache system. For the connection among
the clusters, we introduce a packet switching network. We have not yet decided its details,
however, one example is the connection network of the multi-PSI system. The connection
mechanism is very closely related to the strategy of job division and allocation among

]

Inter-cluster Network

PE, PE, cc | | PE PE, cc
cache cache cache cache cache cache
Bus
sM B SM
Cluster CC : Cluster Controller

Figure 1: PIM Overview

CPU
'Y &
Controller
i %f&c CD : Cache Directory
CDI{LD Array LD : Lock Directory
Cache
BUS

Figure 2: Cache and Lock Mechanism

clusters and PEs. Then we will design its detailed mechanisms considering the requirements
imposed by the PIMOS design.

We have not vet completed the implementation details of PIM-I. However, we roughly
plan to implement a PE on a printed circuit hoard the size of A4 paper using standard-cell
WLSIs and 2 to 4 clusters in a standard cabinet.

3.3 PIMOS and Multi-PSI system

The research and development of PIMOS started with the design of the KL1 language
svstem. The basic formal model of KL1 is given by GHC just as pure Prolog is a model
for practical logic programming languages such as DEC10 Prolog and Prolog-II.

We defined three language layers for a KL1 language system as shown in Fig. 3.
The core part of this system is KL1-C, namely GHC. KL1-U is the user language or
svstemn description language which is now under design. KL1-P is a notation to permit
a programmer to explicitly specify the way of dividing a job into parallel processable
subjobs and also assign the amount of computational resources to each subjob. KL1-B is

— O —

=1

KL1-U: User language

| |
KLI-C: Flat GHC ‘KL1-IP

KL1-B: Base language

Figure 3: The KL1 Language Systems

the machine language which is directly executed by the PEs.

For KL1-U, we intend to introduce the object oriented concept for its modularization
just as we sucessfully introduced it for ESP. KL1-B 1s now under design in parallel with
the design of the architecture of the PE. We are designing KL1-B so that we car make full
use of optimization by the compiler.

The experimensal versions of the KL1I language sytem include a GHC compiler, and
a KL1-B interpreter on such machines as P31, mult-PSI{V1), VAX, DEC20 and Balance
21000. Several small parallel programs were written in KL1 and run on these machines
to evaluate the KL1 execution method and also observe the effect of the job division and
allocation strategy. '

We have started to design PIMOS. Main design features of PIMOS are summarized as
follows: :

1. Itis designed as a single unified operating system which controls the parallel hardware
sysiem just as one system. Main functions are the hardware resource management
and the control of load distribution and balancing.

2. Basic functions for the programming environment are implemented on it. Debug-
ging, man-machine interface, measurement and evaluation and exception handling
are being considered.

3. It is fully written in KL end implemented ¢n the Multi-PSI system. The interpreter
for KL1-B is implemented in firmmware, and will be moved to PIM-I after the PIM-I
hardware system is completed.

PIMOS will be acrually built on the multi-PSI system { V2) which will be developed in
the end of 1987.

The multi-P50 system way planned to encourage the software researcher to actually
make larger scale parallel programs in i{L1. Especially, the development of PIMOS needs
fast and stuble parallel hardware. The mulii-PSI is best suited to this purpose at ICOT.

As the key item of parallel software research is the job division and allocation problem
and the mapping between software models and mechine architectures, we adopted a sim-
ple topology for the inter-PE network for the multi-PSI, namely, two dimensional mesh
structure,

We built the first version of the muiti-PST using 6 PSI-I systems. We made a specialized
network hardware. Lach node of the network lLias & simple routing control mechanism and
5 channels. One chaunel is connected to the PSI and others are connected to 4 neighbors.
Each channel has two 8 bit-buses and two independent FIFQ buffers which are used for
read and write data transfers. The data transfer rate is 500 Kbytes per second.

-

The multi-PSI V2 is now under development. One PE consists of a CPU, 16 MW
main memory and connection hardware for one node of the network. The connection
hardware is improved to achleve faster data transfer and augment the routing function.
Some hardware support for load balancing is added to the connection hardware. Two
custom LSIs are included in the hardware. As one PE is not so small, 8 PEs will be
implemented in one cabinet. Up to 8 cabinets, namely 64 PEs, can be connected.

The KLI-B interpreter will be implemented in the firmware of the PEs. The firmware
interpreter is expected to attain 100 to 150 KLIPS for KL1. The communication delay
between the two PEs of the multi-PSI is much longer than that of PIM-I which uses the
shared memorv with the cache system. The job division and allocation strategy must
he more optimized on the multi-PSI than PIM. This means that we have to find betier
method for job division and allocation which makes full use the locality of communication
in the given progrms. If this is successful, we can atiain a few MLIPS for well organized
parallel programs on the multi-PSI. Research resulis of this kind will be reflected in the
network design of PIM.

4 Concluding Remarks

The research and development of inference machines is closely related to many other re-
search fields. Inference machines are considered to be general purpese machines for Al
applications. They need more general and powerful functions than conventional machines.
Limitless symbol crunching jobs are apparently existing although many of them are not
well formalized to be suited to existing parallel architectures. The implementation of
sophisticated parallel architectires will require more advanced VLSI technology.

Considering this background, we have been making the best effort to combine current
advanced knowledge in software, language, architecture, hardware, and VLS. Our first
effort was the development of PSI and SIMPOS where we combined a multi-window based
personal operating system, a logic programming language and a tag architecture. We did
not combine the most advanced VLS] technology because our project was planned to use
commercially available L5 technology.

Our next effort is much more difficult than the first one. We are trying to combine a
parallel software system, a parallel logic programming language and a parallel architecture.
Naturally, we have to use the most advanced VLSI technology availabe to us.

We decided to combine the above elements in a step by step manner. The first step is
to combine KL1 and PSI as the multi-PSI svstem, the PE of PIM-I and VLSI switch in the
cluster, and, KL1 and a parallel OS5 as PIMOS. PIMOS is probably the most difficult job
among the three because we have very little knowledze about parallelism in programming
languages, operating systems, paradigms, algorithms and applications.

Finally, we intend to build fast, simple and stable hardware systems to allow software
svstems to be as large as possible. Advances in VLSI technology will enable us to make
more sophisticated PEs and network systems in the near future. This will again enable us
to build larger scale software systems. This bootstrapping development will be the most
ratural strategy for inference machines research.

REFERENCES 8

Acknowledgment

The author would like to express his gratitude to the researchers of his laboratory, espe-
cially, Dr. Atsuhiro Goto, Dr. Kazuo Taki and Dr. Takashi Chikayama. He would like to
thank Dr. Kazuhiro Fuchi, the director of the ICOT research center, for his encouragement.

References

[1] A. Goto and S. Uchida. Toward a High Performence Parallel Inference Machine -The
Intermediate Stage Plan of PIM-. TR 201, ICOT, 1986.

[2] S. Uchida. Towerd a Parallel Inference Machine TR 196, ICOT, 1986. Proc. of
COMPAR 86, Sept. 1986,

[3] H. Nakashima, K. Taki and K. Nakajima Performance and Architecture Eveluation
of the PSI Machine To appear in Proc. of ASPLOS-II, Oct. 1987.

[4] David H.D. Warren. An Abstract Prolog Insiruction Set. Technical Note 309, Artificial
Intelligence Center, SRI, 1983.

(5] K. Ueda. Guarded Horn Clauses. TR 103, ICOT, 1985,

(6! K. Taki. The parallel software research and development fool : Multi-PSI system.
Technical Report No. 237, ICOT, 1986. Proc. of France-Japan Artificial Intelligence
and Computer Sl:ie_nce Symposium 86, October 1986.

[7] H. Nakashima, K. Nakajima Hardware Architecture of the Sequential Inference Ma-
chine PSIIT , To appear in Proc. of 4th Sympe. on Logic Programming, Aug. 1987.

18] N. Ichiyoshi, T. Miyazaki and K. Taki. A Distributed Implementation of Flat GHC
on the Multi- P§I. Technical Report No. 230, ICGT, 19386, To appear in Proc. of 4th
International Conference on Logic Programming.

[9] S. Hebata, et al Co-operative High Performance Sequential Inference Machine: CHI
Froc. of IEEE International Conference on Computer Design: VLSI in Computer and
Processors, Oct. 1987,

10! Y. Kimura and T. Chikayama An Abstract KL!I Machine and Its Instruction Set
Technical Report No. 246, ICOT, 1987. To appear in Proc. of 4th Sympo. on Logic
Programming, Aug. 1987,

[11] T. Chikayama and Y. Kimura Muliiple Reference Manegement in Flat GHC. Techni-
cal Report No. 248, ICOT, 1986, To appear in Proc. of 4th Internaltional Conference
on Logic Programming, May, 1987,

[12] M. Sato et al. KLI Ezecution Model for PIM Cluster with Shared Memory. Technical
Report No. 250, ICOT, 1986. To appear in Proc. of 4th Internaltional Conference on
Logic Programming, May, 1957.

(13] R. H. Katz et al. Implementing a cache consistency protocol. In Proc. of the 12th
Annual International Symposium on Compuier Architecture, June 1985.

— O —

REFERENCES 10

[14] J. R. Goodman. Using cache memory to reduce processor-memory traffic. In Proc.
of the 10th Annual Internattonal Symposium on Computer Architecture, 1983

[15] P. Bitar and A. M. Despain. Multiprocessor cache sychronization. In Proc. of the
15th Annual International Symposium on Computer Architecture, June 1986.

— 1

