ICOT Technical Report: TR-271

TR-271
Concurrent Program Synthesis with Reusable
Components Using Temporal Logic

by
N. Uchihira, T. Kasava. K. Matsumoto
and 5. Honiden (Toshiba)

June. 987

CH9RT COT

AMita Kodiusal Bldg O F UK 436-3181-- 5

|GDT 1= Mita 1-Chome Telex ICOT J32964

MMimato-ku Todkive 108 Japan

_ihstitute for New Generation Computer Te'ch-hology

CONCURRENT PROGRAM SYNTHESLS

WITH REUSABLE COMPONENTS USING TEMPORAL LOGIC

Maoshi Uchihira
Toshiak: Kasuya
Kazunori Matzumoto

Shinichi Honiden

Systems & Software Engineering Lab.

TOSHIBA Corporation

ABSTRACI

A concurrent programming model is provided, which is oriented to data
stream, software reuse, and protoiyping, Based on this programming model,
a program synthesis method is described. This synthesis method consists of
two parts: (1) retrieving and interconnecting components from I/O data
speciflications and (2} synthesizing a synchronization supervizsor from a
propositional temporal logic specification. MENDEL/E7, which is a Prolog-
based concurrent object-orienied language, is used as the programming
language in this model. This synthesis method has been implemented by

PROLOG on a PROLOG machine.

l. INTRODUCTION

The two major purposes of program synthesis and automatic
programming are to generate a program that is assured of being correct, and
to increase software productivity, Our main goal is the latter, especially for

CONCUrrent programs,

Recently, software reuse is expected to greatly increase software
productivity. In fact, many attempts have been made on research and
practical levels, and in various ways. Because of these many elforts,
sofware reuse is just getting under way. Accordingly, much research on
software components interconnection and soltware-resuse-based program
synthesis has been presented. However most of them are only for sequential

programe, not for concurrent programs.

For concurrent programs, verification has been investigated for a long
time. Some efforts involve verification using a linear time propositional
temporal logic (PTL). In this case, PTL is a specification language, and a
PTL decision procedure is able te verify whether the specification is
consistent or not. As PTL is decidable and has various decision procedure

algorithmes [1,2], verification is accomplished automatically.

Manna and Wolper [3,4] use PTL for program synthesis. They show a
theorem proving method which can synthesize synchronization parts of a
concurrent program using PTL or extended temporal logic (ETLL In this
method, a model graph, which is generated in the decision procedure, Is
considered as a state transition diagram for processes. From this state
transition diagram, CSP program codes which execute synchronization are

generated,

There are other works sbout synthesis using temporal logic in addition
to Manna and Wolper's work. Clarke and Emerson [5] propose a synthesis
method for the synchronization skeletons of a concurrent program using
branching time temporal logic, Fujita, Tanaka, and Moto-oka [6] show a
synthesis method of state transition diagrams using PTL for specifying
hardware. Katai and Iwai [7] propose a method ro generate scheduling rules

of concurrent system from PTL specification and a Fetri net.

We think the most practical approach to automatic programming in
large scale applications is a program synthesis utilizing theorem prover with
reusable components. Because theorem proving approach can synthesize only
small scale programs and can not support large scale applications. In Manna
and Wolper's synthesis method, @ synchrenization part is generated
automatically. However, another part, say a functional part, musit be created
by the programmer. This paper propuses a new synthesis method which 1s a
combination of software reuse and Manna and Wolper's method. This method
consists of two major parts: (i) retrieval and interconnection of reusable
components and (2) synthesis of a synchronization supervisor. This method
generates a MINDEL/B7 program. MENDEL/87 is @ Prolog-based concurrent
object-oriented language [B8]. Now we have been implementing a concurrent

program prototyping system based on this synthesis method.
II. PROGRAMMING MODEL
This section provides a programming model for 2 concurrent program,
which iz more or less restricted but very simple and intuitive. This model is

based on the following concepts:

(1] Data stream oriented programming

The program consists of a number of processes which can run
concurrently. A process itself is a scquential program. Processes communicate
with and synchronize each other only by the data stream through
communication pipes; so have no shared variables, Communication pipes are

statically defined before execution in the same way as Occam [al.

(2] Software reuse

Assume that a large enough number of processes have already been
created and stored in a library. In principle, a goal program can be
svnthesized by interconnccling some of the processes in a library. In this
case, & process is a reusable component, which cannot be maodified when
reusing it. Sometimes it is called a "black box" reussble component. Each
process looke like an 1C. Just as an electronic circuit is composed by
connecting a number of LSls, a program can be synthesized by

interconnecting a number of processes,

{3) Synchronization supervisor separaied from processes

When a programmer prepares reusable processes, he does not know how
these processes will be interconnected. A reusable process should be
independent [rom other processes, while synchronization is regarded as
interaction between processes. It is difficult and undesirable that the
synchronization codes be written in the internal part of each reusable
process, The synchronization supervisor should be scparated from reusable
processes, such as a path expression [10,11] Therefore, processes are
retrieved and interconnected first, then the synchronization supervisor is

provided on these processes (Fig. 1)

{4) Prototyping
Interconnected processes are executable with a synchronization

supervisor. This is a prototype. This prototype can be examined to determine

4

whether or not it runs in the way the user needs, If there is anything
unsatisfactory, the user can easily transfer to any previous programming step
and modify it. If this prototype is acceptable, the synchronization supervisor
will be transformed and cmbedded inside of each process automatically; so
the user can get a new, truly concurrent program without & synchronization

supervisar.

1ll. MENDEL/87

a, Overview

We suggest a concurrent object-oricnted programming language with
something like Occam + OPS5 + PROLOG; call this language MENDEL/87.
MENDEL/&7 program consists of one main program and several objects; the
object consists of several methods. The object can be regarded as a process.
Each object has finite pipe caps and can transmit messages only through the
pipe caps. The attribute is assigned to each pipe cap and s used to identify
input/output messages. The message is transmitted between objects through
the transmission pipe connected with pipe caps, as shown in Fig. 2. The
pipe is a one-to-one asvnchronous one-way path., Initial messages are applied
through the input nodes, and goal messages are extracted from the output

nodes. The gate and the signal gate are used for message stream control.

b. Object
A MENDEL/87 object consists of a declaration part, a method part

and a junk part.

<pbject names=

{

dec : {<declaration part> §

— 5 —

meth : 4 =method part= 1

junk : 1; <junk parts ?

The declaration part includes declarations of five items :
1} Input pipe cap attributes
inpipel <attributes, ...).
2) Qutput pipe cap atrributes
outpipel <attributes, .. L
3} Input signal attributes
insignal{ <attributes, ... L
4} Output signal attributes
outsignal(eattributes, ... L
5) Internal state variables

statel =attributes'<initial values,...).

The method part includes several methods, The method is described as

foliows :

method { <attribures 7 <terms, ..
cartribures ! <terms, ... |

«= epuards» I <Prolog goalss,

where, -attributes means pipe cap atrribute, signal attribute, or internal
variable attribute; "%" means input and and "" means output, like CSP; "|"
mcans commitment operator like GHC: and only Prolog predicates with no

side effect can be written in <guards.

ex. method hour 7 H, minute ' M}

— -

en I 2= 0 ‘ M is H*60, writelM), nl,

The method is selected when @

(1) Each of the terms after <attribute>? can be unified with a received
message from the pipe, signal, or state variable indicated by the attribute,
(2) All predicates in <guards succecd.

When the method iz selected, all Prolog predicates in <Prolog goalss
are evaluated. Each term after <attributes!, which has been unified in
<Prolog goalss, is scnt as a message into the pipe, signal, or state variable
indicated by the atrribute. If <Prolog goalss fails, warning messages are
given to the user and the method terminates without sending output
messages,

This method selection mechanism is similar to & Dijkstra's guarded
command, Occam's alternative construct, and GHC. Moreover, the method

can be considered as a production rule in & production system, such as OPS5,

The junk part includes some Prolog clauses, which may be called
by methods or other Prolog clauses. One example of MENDEL/ST object is

shown in Fig. 3.

c. Main program

A MENDEL/BT program has one main program which interconnects
several objects with pipes, and then activates them, sends initial messages to
input nodes, and receives goal messages from output nedes. The main

program seems like an extended module call and takes the following form:

communicate|
<object names:{ <attributes ! <term or pipes, ...

<attribute> 7 <term or pipe=, ...),

<object names={ <attributes ! <term or pipes, ...

<attributes 7 <term or pipes, ... l,

assamsramame sEkmEEERaRd RS

All objects in the communicate construction run in AND-parallel and are
interconnected explicitly with <pipes. The <term»> after <attributes! is a list
of initial messapes and the <terms after <attribute=7 is a variable waiting

for a list of goal messages.

In the prototyping system described later, this main program is

generated by system behind the scenes. The user need not know this syntax.

d. Gate and Gate controller

In MENDEL/87, a simple synchronization mechanism is given by a
method selection mechanism. The object is suspended until it can receive all
required messages, However, it is so simple that a complicated
synchronization reguires complicared pipe interconnection {many of them are
only for control stream, not for data stream), so an additional
synchronization mechanism using the gate and the gate controller is
introduced. Every pipe has only one gate which controls the message stream.
The gate opens, lets only one message pass through and then shuts. This is
an atomic action of the gate, With no message in the gate, the gate cannot
be opened. The gate is similar to the transition of a Petri Net (Fig. 4). The

gate controller controls all gates, that is the synchronization supervisor.

e. Signal gate and end of gate

The signal gate itsell is regarded as a kind of gate. When the input

signal gate opens, it generates one signal message which has no value and is

— B —

sent to an object only for the method selection, like a binary semaphor.
When the output signal gate opens, it consumes one signal message which is
sent from an object.

The end_of_gate is a system output signal gate. When detecting that
there are no more messages passing through the gate g in the future, the
system (interpreter) sends one signal message (O output signal gate eoglg)
{end of gate g). The end of gate fills the role of a terminal symbol, such as
end of file and end_of_string in C language. As a terminal symbol itsell is
not a data, but a control signal, it should not be treated in the same way as
other messages. In MENDEL/B7, the signal message and the signal gate are

distinguished from the ordinary message and gate.

IV. OBJECT RETRIEVAL AND INTERCONNECTION

MENDEL/87 objects can be retrieved and interconnected in two main

ways; manually and automatically.

a. Manual
Wrire a MENDEL/87 main program. Te be more precise, select an

object from an object library and interconnect these objects with pipes.

b. Automatic

Give program specifications as a set of input/output attributes. That is
a kind of 1/O data type. Objects are then selected from an object library
and interconnected automatically, according to the given 1/O attributes.
Automatic retrieval and interconnection are carried out, according to the
following principles:

{1} A pair of pipe caps having the same attributes can be interconnected.

{2) Al required output attributes must be reachable from given inpur
attributes through connected objects and pipes.
For example, if the following attribures are gven, object B, C, and D

are retrieved and interconnected as shown in Fig. 5.

Input attribute a, b

Output attribute e ;

c. More Flexible Automatic Binding

This auromatic retrieval and interconnection, which we call "automatic
binding”, seems to be not enough powerfull. The binding mechanism depends
on the simple pattern matching between output and input attribute names.
In some cases, it might find no candidate to fit the given /O attributes, or
g lot of candidates in other cases. More information must be needed to
zelect the most adeguite candidate,

To overcome this problem, we adopt a kind of semantic network
{called "Attribute Network" [12]) which represents the attribute structure and

define a metric to order the candidates on the semantic netwaork,

Attribute network
We define simple attribute as an attribute which has no structure {ex,
heart, human, animal, and reall. The simple attribute is also called class.
We can introduce several interrelations among these simple attributes. In
this paper, especially we consider 'IS_A' (& relation between superclass and
subclass) and '"HAS A’ (a relation between class and its properties).
EX. human I5_A animal.

human HAS A heart

—_— 1 —

The attribute network is defined as a semantic network where simple
artribute is assigned to node and two relations {"IS_A" and '"HAS_A'} are

assigned to links respectively.

Example

An atiribute 'heart' has the weight, the weight has a integer and the
'heart' is the lower concept of the 'pump'. Also, 'human's heart' is the
constrained concept of the 'heart'. These relations about 'heart' can be
expressed by the attribute network shown in Fig.6.

In the attribute network, there exists 'Object’ which is the superclass
of every class. Each class inherits properties of its superclass based on single

inheritance rule. This network has the same class structure as Smalltalk-B0.

Attribute definition

We define a new attribute syntax on the attribute network.

<arrribures e <simple attributes <complex attributes.
ccomplex attributes = <attributes of <simple attributes,
«simple attribute: = <class=.

<class> 1= <Prolog atome,

The 'of' expresses the 'HAS A' relation, and in the example shown in Fig.8,
Yinteger of weight of heart of human' means the weight integer value of

human's heart,

Binding Mechanism

The new binding mechanism will be defined, This mechanism makes it
possible semantic matching of attributes by using a semantic net. For the

given output attribute, the most similar input attribute ig uniquely found

automatically. Note that the binding direction is from the output to the
input.

For given output attribute, we define the bindable input attribute which
can be bound to the output attribute. An input attribute can be bindable to
the output attribute iff the input attribute semantically includes the concept
of the output one. For example, we consider following case.

1) integer of weight of heart of human

2) integer of weight of heart of animal
In this case, as 'human' is the @ subclass of 'animal', attribute 1) is able to
be bound to attribute 2), bur attribute 2) is not able to be bound to
artribute 1) because 1) is a more constrained concept than 2}, We define it

strictly.

DEFINITION 1. [Bindable Sel)
Let A { = a of Aq ol .. am] be an output attribute. UlA}l is a
hindable input attribute set from A iff U{A) = B (=D, of by of ... b} B

is an input atcribute, m-=n, and b]. is a superclass or same class of 8 for all

i E_:_ '(L 1,2,...,5 ; i

We introduce an ordering of similarity of attribures. As this ordering

construct total ordering, it can be used to get the most similar attribute,

DEFINITION 2. {Ordering of similarity)

Let A [= g of 8y of ... :1[] he an output attribute, and U(A)} be a
hindahle input attribute set from A. dﬂtm = dA{CJ means B is more similar
to A than C, where B { = b, of bz of .. bm} EuA)and C I = € of ¢, of
e £ Ula),

More precisely, define

dAfB} - dﬁ{k’:] iff (1) or (2).

— 17—

{1} there exists i € {].2,...,minlm.n] }

such that b]=cl, b2=c2, bt_lrc and c; Is a superclass of bi'

-1

(2) m>n, and b =c for all i = il,?...,,n]

THEOREM
This ordering defined above is total ordering.

{proof) It is clear from the definitions.

For example, let

It

'integer of weight of heart of human',

‘integer of weight of heart',

'integer of weight of heart of snimal’, and

i T .
i

= 'integer of weight of pump of human'.

In this case the ordering is d,(C) « dnfB) < d, (D)

By the way, the main topics of this paper are the how to svnthsize
the synchronization supervisor from PTL specification and how to utilize the
supervisor in the concurrent program prototyping sytem. Therefore, in the

following sessions, wc use only simple attributes for clear understanding of

main topics.

V. SYNCHRONIZATION SUPERVISOR SYNTHESIS

a. Specification language for synchronization

{17 PTL
PTL is a linear time propositional temporal logic which has the

following temporal operators in addition to usual logical symbols ('&' --

AND, '#' —_ OR, '-' - NOT, '=>' == IMPLY] :

—_— 15 —

[If (read always f) :

i 15 true for all future states
«»{ [read eventually f) :

f is true for some future state
@f (read next f):

f is true for rhe next state
f1 % 2 (read 1 until 2] :

fi is true uneil {2 becomoes true

{2) Model

An atomic proposition in PTL corresponds to an atomic acrion of the
gate (includes signal gate) in MENDEL/87. That is, "g is true for the state”
means "gate g opens, lcts only one message pass through, and then shuts at
the state™ In the same way, "<=g is true” means "gate g will open at some
future state”, and "[lg is true" means "gate g is always open". Moreover, it
is assumed that only one gate can open at the same state (rhis assumption
called single-event condition). The single event condition means that only one
atomic proposition is true for each state. For example, a specification that
"gates gl and g2 open by turns in Fig. 7" is expressed by the following
PTL formulas:

[gt => @g2)

[g2 == @gl)

b. Scheduling rule synthesis for the gate controller

In MENDEL/B7, the synchronization supervisor synthesis means synthesis
of scheduling rules, by which the gate contraller selects a gate to be opened.
While the gate controller selects a gate according to the rules synthesized

from a specification, the order of selected gates satisfies the specification.

14 —

This synthesis method is based on Manna and Wolper's tableau-=like PTL
decision procedure [3]. A brief summary of the svnthesis method s as

follows:

(Stepl) First initial PTL formulas arc decomposed into current formulas,
which include no temporal operator, and future formulas by the
decomposition procedure. Future formulas are also decomposed into current
and future formulas from the next state point of view., Alter every kind (a
finite number) of future formulas has been repeatedly decomposed, a graph is
derived. Cach edge of that graph corresponds to current formulas for each
decomposition, This graph is an incompletc model satisfying specifications

other than eventuality formulas, such as <>F, -[]F and -(-F1 % F2),

(Step?] Edges with unsatisfiable eventuality formula are deleted from the
graph by the elimination procedure. The graph remaining after the

elimination procedurc iz a complete model of the inital PIL specification,
P P

{Step3) This model graph can be regarded as a state transition diagram,
Scheduling rules are translated from this model graph. Each rule corresponds
to a transition on the model graph. These scheduling rules are completed bry

adding the following fairness strategy:
Fairness Strategy: If there are several possible transitions/rules, one which
has never heen selected or for which the most time has elapsed [rom the

last selection should be selecred.

The state transition diagram and scheduling rules for the previous

example arc shown in Fig. 8.

— 15 =

V. CONCURRENT FROGRAM PROTOTYPING 5YSTEM OVERVIEW

This system consists of four steps. {Stepl) Make MENDEL/8T objects
and store in a library. {Step?) Retrieve and interconnect objects. [Stepd)
Synthesize scheduling rules for the gate controller. (Stepd4) Set input data
and Execute,

Since this system supports software prototyping, it is possible to go
back to an arbitrary previous step (Fig.9). The system provides six windows
as the user interface: (1} Command window, (2} Object window which displays
MENDEL reusable objects in an object library, (3) /O window which shows
/0 specification of a goal program, (4] PTL window which shows a
synchronization specification written by PTL, (5} Diagram window which
illustrates objects and interconnections between their attributes, and (6)

System message window, as shown in Fig. 10,

For each prototyping step, details will be described helow,

(Stepl) Make objects and store in a library.
Make MENDEL/B7 objects in an integrared editor and store them in an
object library. Synchronously, objects arc compiled into intermediate codes.

Objectz in an object tibrary are displaved in the object window.

(Step2) Retrieve and interconnect objects.
The system retrieves and interconnects objects manually and
automatically as described in section IV. It is also possible to mix these two

methods; objects arc retrieved and interconnccted automatically first and

then modified manually. I/O specifications are entered using the 1I/O window,

and the interconnection result is displayed on the diagram window.

(Step3) Synthesize sheduling rules.

While looking at interconnected objects and gates in the diagram
window, the user provides a synchronization specification which define the
order of gate to be opened, using the PTL window, The system then
generates a state transition diagram from the PTL specification, and

translates it into scheduling rules.

(Stepd) Set data and execute.
From stepl to step3d, the system can obtain the following.

* Compiled intermediate codes of objects

* Interconnection information

* Scheduling rules of the gate controller

The system generates executable codes by appending new codes to compiled
intermediate codes to perform interconnection. The interpreter executes these
codes. Execution is pseudo-conecurrent on one CPU. The gate is implemented
as a mail box. Therefore, the interpreter selects one of the objects waiting
at the mail box and lets it receive a message according to the scheduling
rules derived in siep 3. This part of the interpreter that schedules a waiting
object queue at each mail box is called the gate controller. A process of

execution is displaved on the diagram window.

This system has been under construction using the object oriented

Prolog (ESP {13]) on a PROLOG machine (PSI [14]h

VII. SYNTHESIS EXAMPLE: KEYWORD COUNT PROGRAM

We are going to synthesize the Key Word Count Frogram. This program
reads a text (stream of characters) and a key word list, and then checks

sccurrence of key words in the text and reports ils summary.

— 17 —

STEP1) It is assumed that there arc many objects, especially text processing

ghjects, in an object library.

{(STEP2) In thiz example, the user selects the automatic mode and provides

1/O attributes for a goal program using the /O window,

goal program @
Input attribute stream, keyword ;

Output attribute summary

and chooses the menu command "aurematic”. The system then shows several
objects in the diagram window, which have been retrieved and interconnected

automatically (Fig.11). Here, three objects are selected:

WaordCut
Input attribute stream ;
Ourput attribute word ;
KevCheck
Input attribute keyword, word |
Output attribute check_data ;
SumRep :
Input attribute check data ;
Output attribute summary

WordCut reads & character stream and analyzes them to obtain words.

KeyCheck reads keywords and sequence of words, checks for words that

match one of keywords, and returns the result of checking. (This object was

shown in Fig. 3.) SumRep sums up check data and makes & summary report.

(STEP3) While looking at a diagram in the diagram window, the user inputs
a PTL specification in the PTL window, The user may require the following -
{1) Both keyword and strcam are finite. (Messages going through gl, g3, and
g4 are finite.)

{2} WordCut and KeyCheck can be processed concurrently. But KeyCheck
must not receive words from WordCut and not start checking unul all
keywords have been received. {Does not open g2 unul there is no more
message through gd.)

(3) SumRep analyzes all check data afrer KeyCheck has finished checking.
(Does not open sl until there are no more messages through g4.)

(4] As an exception, g5 is always open (l.e. out of synchronization).

(5) SumRep must make a summary report at last.

These requests are represented hy the following PTL specification:
(1) FINITE(gl), FINITE(g3), FINITE(g4)
(2] - g2 % eoglgd)
{3) - &1 § coglgd)
{4) g5 doesn't appear in FTL.
(5] «> sl, [){ s1 =» @halt }, HALT
where FINITE and HALT are "macros" of this specification language. Each

"macra" is expanded into the following PTL:

FINITE(g)} --» <>eoglg) & [Heoglg)==@([){-eoglgl& gl
The total numher of messages passing through gate g is finite, and after all
message have passed through the gate g, the system signal gate eog{gl must

be opend only once,

— 19

HALT --= eshalif [Jthalt=-@{[|halt)}

The program eventually terminates.

If an atomic proposition g dosen't appear in PTL, the gate g must be

always open.

From these PTL formulas, the system generates a state transition

diagram (Fig. 12} and translates it into scheduling rules.

(STEP4) The user inputs two kind of data, a list of keywords and a text
stream. The system then executes a synthesized MENDEL/87 program and

outputs a summary report (Fig. 13).

VIll. CONCLUSION

We have proposed a concurrent program synthesis method and described
the software prototyping svstem based on this method. This method consists
of two major parts: (1) Retrieving and interconnecting components from /O
data specifications (2) Synthesizing the gate contreller from propositional
temporal logic specification. This method and its system are also illustrated
with one example, Unique features of this method include: (1) A combination
of software reuse and synchronization supervisor synthesis using temporal
logic, (2] A new synchronization mechanism using gare, signal gate, and
end_of_gate, We helieve this method will become practical enough to help
programming on a qualified domain, such as parallel text processing and

cancurrent business transactions.

At present, much remains to be explored:

— 20 —

{1) Morc expressive specification language than PTL should be investigated.
It is another practical way to exccute temporal logic specification directly as
a program [15].

(2) We think that the object interconnection method based on the /O
specification has enough potential. But the current method is not fully
satisfactory.

(3} The PTL specification has nothing to do with an internal program of each
object. It iz desirable to associate PTL specification with internal programs
of objects.

{49 A more efficient implcmentation of the tablepu-like PTL decision
procedure should be developed.

{3) The degree of concurrency is low because of the limitation wherein the
gate controller can only open one gate at a time. It seems possible to relax
this limitation for some independent gates.

(6) A transformation technique that distributes synchronization sUpETVISOr
function into each ohject is necessary for a distribured COmpuULing

environment having no supervisor,

ACKNOWLEDGMENT

‘This research has been supported by the Japanese Fifth Generation
Computer Project and its organizing iInstitute ICOT, as a subproject of
Intelligent Programming System. We would like to thank Toeshio Yokoi and
Hidenori ltoh of 1COT for their encouragement and support. We are also
grateful to Seiichi Nishijima, Masahiko Arai, Takeshi Kohno, and Hideo
Nakamura of Systems & Software Engineering Laboratory, TOSHIBA
Corporation, for providing essential support, and Toshibumi Seki for

implementing the attribute network.

.2'-.

REFERENCES

[1] Plaisted, D. A., A Decision Procedure for Combinations of Propositional
Temporal Logic and Other Specialized Theories, Journal of Automated
Reasoning 2, pagesl71-190, 1986.

[2] Fusaoka, A. and Takahashi, K., On QFTL and the refutation procedure on
w-graphs, 1COT Technical Report TR-132, 1985.

[3] Manna, #. and Wolper, P., Synthesis of communicating processes from
temporal logic specification, ACM Trans, on Programming Languages and
Systems, Vol.6, No.l, pages 68-893, 1884,

[4] Wolper, P., Synthesis of communicating processes from temporal logic
specification, STAN-CS-82-925, Stanford University, 1982

[5] Clarke, F. M. and Emerson, E. A., Design and synthesis of svnchronization
skeletons using branching time temporal logic, Logics of programs
(Proceedings 1981), lecrure Notes in Computer Science 131, Springer-Verlag,
pages 52-71, 1982,

(6] Fujitz, M., Tanaka, H.,and Moto-vka, T., Specifying hardware in temporal
logic & efficient synthesis of state-diagrams using Prolog, Proc. of FGCS'B4,
1984,

[7] Katai, O. and Iwal, S., Construction ol Scheduling Rules for Asynchronous,
Concurrent Svstems Based on Tense Logic {in Japanescl, Trans. of SICE
(Japan) vol.18 nn.12, 1982

i8] Honiden, S., Uchihira, N., and Kasuva, T., MENDEL: PROLOG BASED
CONCURRENT OBJECT ORICNTED LANGUAGE, Proc. of COMPCON'8E,
pages 230-234,1986.

[9] Occam Programming manual, INMOS Lud., 1983

[10) Habermann, A. N., Introduction to Operating System Design, SRA, 1976,

i11] Andler, 5., Predicate Path Expression, Proc. of ACM 6th POPL, 1975,

[12] Chikavama, T., Unique features of ESP, Proc. of the international
conference on FGCS1984, 1984,

[13] Taki, T. et al., Hardware Design and Implementation of the Personal
Sequential Inference Machine (PSI), Proc. of the international conference on
FGCS1984, 1984,

[14] Uchihira, N., Seki, T., Kasuya, T., and Honiden, S., Program Synthesis in
Prolog Based Concurrent Object Oriented Language MENDEL {in Japanese),
WGSE Preprint SFE-46-8, Information Processing Society of Japan, 1386,

[15] Moszkowski, B., Executing temporal logic programs, Cambridge Univ.

Press, 1986.

Synchronization Supervisor

Reusable Reusable Reusable
| Process Process Process
; L]

FIG.Y Synchrontzation supervisor separated from
reusable processes

”‘DL{} node e Signal gate
L message g g -
s T -

pipe f

pibe cap
output node/

Fig.2 Objects, Pipes, and messages in MENDEL/G7

KeyCheck

{

o

ippipe (keyword,word? .
putpipe (ckeck_datal.
grate (keywordliet ! (1.

dec

]
meth i
% veceive & keyword apd store it in the keywordlist.
mctha&{kewwura?Rw,keywnrilint?KHL.kaywcrdlist![KH:KHL]I,
% receive A word and if it is a keyword., send it to check_datsa.
methaacword?w.keywnralist?KHL+check_data!H} -
menber (W. KWL} TTrue.
% receive & word and if it isn't & keyword. 4o nothing.
pethod (word?W) .
¥

Junk
pepkeri_, (1} = !, fail.
meonber (X.[Xi_1).
member (X, =X}V i- {.mezber{X.Y}.

Fig.3 MENDEL/8T7 Object Example (KeyCheck)

Petri Net /D O
o

stone place transition place
message
MENDEL/87
'~
Object [
attribute H/J Gate Object

Fig.4. Petri Net and MENDEL/B7/

- 2b =

Fig.5. Automatic Obect Retrieval and Interconnection

—— [S_A

— — == HAS_A
“\‘

(integer

Fig.6. Attribute Network Example

Animal Purnp Metric

(=

Fig.7 An example of gates

).
).
)

START
g1 g2 srule(n(1), n(2), gl
g1 srule(n(1), n(3), g2
srule(n(2), n(3), g2).
srule(n(3), n(2), g1,
g2

Fig. 8 State transition diagram and scheduling rules
synthesized from PTL

£
Make Objects < "
E l
Object Retrieve and
Library @ Interconnection \
Ty I- > 4
Synthesize
Scheduling Rules Y

l

Execute
MENDEL program

Fig.Q. Prototyping Model in MENDEL/87

- 30

T Toartut ranl Frogras Sunibesis

Ty n b

T/0_scecalicmiag:

o] o
; 1/0
)i P Window
f;?'_:__:h . _.f/ T“ TN
m%&ﬁ) A T —
. \ PTL
Diagram 1* | yindow
Window i
Dol iuBtay Bounmge_for you .___E:'"'_ﬂ;-'ﬂ_ﬂ‘-
mordeut Bwishertnmes = Message | Command
Object Window | e window Window

Fig. 10 Concurrent Progras Prototyping System

User Interface

siream

Fig. 11

summary

summary

Key Word Count Program

Fig.12 State transition ciagram for
Key Word Count Program

Cracorsdnl Feparar Gunllesis Syaier

LLFEE

i, [Fn BiET i GLBILDT

L6 Scnadaling moles 13

o jarule inigl o
%\H"HL. b g o b
wru e bn 380 o

COTCELT AL RV

'I[I-:--'nl file

piwlwindllon
s rpdedndll ond
pruledndllon
rruledaddl on
arulmin (2 .n
lsricdw dn (20 an
barwlw s 030 on
a v im0 E5h o

Il

t’liuui-l Irddgd om

LA CRET) [L T - —————
sruletn, &.ogdl
nouie bl homagigdl)
+B

b repn b
[fa ¥ L) o mui [1Fmr, 1010

dr list
w-repor1? window

bpecification

LA

iwugdgl) =3 I} wogpigll
Fgling .

laepigds =3 kil] wogigs)
[B& 1k

fir it =3¢ SiLTramiib} .

B3 B wegigld.
g,
[1igh = Braltl

4

Opgect lebrary

Wopsear Tor yon

Lomaeng wingse

gt
B s

L LU T T

== Now Wy core beck
[deie .,

vid Cwll D-Froley 33

fere mtala -—

FIL Fele bhpwd_mpe

L FLARL T

plrast’ Faflrasr.Dal
mwgwnre! FLEf thercomara 1
i bl

Fig. 13 Concurrent Program Prototyping Systesm

Execution of Keyword Count Prograr

i34 —

Appendix

Keyword Count Program (VordCut. SumRep)

Wordlut
{
dec i
inpipe(streem’.
cutpipe(word’.
etate (inbufilld.
}
meth i
pethod (stream?’ rLinbuf?lil,
method (stream?’ '.inbuf?CList.inbur![]‘wordtwurd} L=
true:rev(CList.RcListE}.name{wura.RCList}.
methoa(stream?c.inbuI?GList+inbuf!IC:CList]}.
¥
Junk:i
rev{L1.L2}:-revzap(L1.[1.LEJ.
revzap{[ITL].LE.LE}:-revzap{L.[xiLEJ,LE}.
revzapi{[l.L.17.

Sunkep
{
dec =i
inpipetcheck_datal.
nutpipe{summary}.
insignal (start_rep).
etate(sumlist! (1),
}
meth 1
methuafcheck_dat&?w.sumlist?x.Eumlist!Y} &=
truecountup_Bun_list{W.X, X .
methoafstart_rep?_.Eumlist?SL.summ&ryisLl.
}
Junk i

cuuntup_sum_listtw.{J,[sum{H.1}11.

cnuntup_sum_liﬁtiw.[sum{W.HEIEumList].[sum(i.n}:sumLiEt}}
Mie N + 1.

countup_sum+1istfu.EEum:EumL15t11.[Bum:ﬁumListElJ e
I.countup-sum_list{H.SumLiEt1.EumListE}.

