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Abstract

The P50, & special purpose machine [or logic programming
language, has been designed as an enhanced version of the Per-
sonal Sequential [nference Machine, the PSI-IY, Moreover, the
PSI-11 is also an element processor of a parallel inference ma-
chine called Multi- P51, which executes a parallel logie program.
ming language L1, The PSI-II has compact hardware in L3I
ehips, which reduced the hardware to a quarter of the size of
the P5I-I. The F5I-11 also lras very high performance, which is
401 KLIFP3 in deterministic “append”, and will be three times
as fast as the PS[-1 in most application programs. The per-
formance improvement greatly awes to the modification of Lhe
execution mechanism, and specialized hardware components
for multiple stack management and lagged data manipulation.
"I'his paper describes its architecture and hardware mechanisms
for logic program execution.

1 Introduction

This paper describes the architectural design of & logie
programming language-oriented personal machine, the
PSI-ITL

The PSI-1I belongs to 2 family of sequential inference
machines designed as & software tool in the Japanese fifth
peneralion computer systems project, The PSI-T {Taki 84]
was the first machine of the family and has the following
'|_'I:'|.iq“c Eﬂﬂ.tufﬂﬁ:

e High level machine lanpuage
& microprogrananed inlerpreter executes a Prolog-
like logic programmng language, KLO [Chikavama
B3]

» Tagged architccture :
Fiacl register or imemory word has 40 bits, six bits
of which are dedicnted for data type tags and two
bits for garbage collection. Special hardware com-
pangnds are pmviﬂ]r:l:l Lo sp:'r.'tl 1js £loe m;:nipulation
of the tag bits,

o Multi-stack-oriented memory architecture
Each stack can grow or shrink freely withoul any

"In this paper, we call Lie conventivnal P51 as PS1-1 to distinguish
fromn the PSIIL explicitly

Katsuto Nakajima

Institute for New Generation
Computer Technology

eollision nor copying as long as the total of ther
sizes does not exceed the total memory size.

+ Large matn memory :
The main memory can be extended to 16 Mwords,
enabling memory-consuming Al-like programs to be
programmed without too much memory saving =f-
forts,

+ Large writable control store
16 Wwords of 64-bit writable conirol store aliows
efficient micro-programmed exccution of Prolog-like
programs.

s Flexible man-machine interface
1/O devices such as a bit-mapped display and a
mouse provide a comfortable highly interactive pro-
gramming environment.

The PSLI i= a new mode! of the family which fune
tionally inherits the above features of the PSI-T, bt is
greatly modificd in both the architecture and the hard
ware flesign to improve the execution speed and to reduce
the amount of the required hardware. Moreover, the liard-
ware is designed to have enough flexbility to construct
multi-processor system, Multi-F3T

This paper is organized as follows: First, section ?
deceribes the ohjectives of the development of the PSI
Il machine; section 3 describes the machine architecture
section 4 describes detailed hardware design; section &
avaluates the performance; and seclion 6 gives the con-
clusion.

2 Objectives

There are three targets for the hardware design of the P35I

1. Tle fiest target is to reduce the hardware amount, the
second is to impreve the performance and the third is to
construct a mulliprocessor system.

2.1 Redurction of Hardware Amount

The PSI-1 was designed as a personal workstation for logic
programming, but its siee 15 rather larger than the size
associated with the waord “personal”. In fact, the CEU



of the PSI-1is constructed from about 2000 conventional
TTL MSI and MOS RAM IC chips, on twelve printed
cireuit boards,

The major strategy to reduce the hardware amount is
to pack hardware logic into LSls. There are four stan-
dard LS5 and uine custom LSls. The standard L5[s are
ALU and multi-port register files. The custom L3ls are
sliced from the CM{OS gate-array master on which 24,000
iransistor pairs are mounted. The drawing precision is
7 microns and the typical propagation delay 12 2 ns per
gate.

The L5Ts and highly-integrated MOS RAM chips have
made it possible to pack the CPU logic into three printed
circuit boards, each of which is about 310 mm by 230 mm.

2.2 Performance Improvement

The PSI-1 executes stack oriented machine instruciions
represented in table like format [Yokota 84]. The machine
instruction is syntactically similar te the Prolog sourze
coke, For example, a goal

o, glX,all,

is translated to the sequence of the address of the goal g,
the identifier of the variable X, the identifier of the atom a,
and the integer 1. This approach simplifies the design of
the compiler, but requires complicated micropr ogrammed
interpreter

Ancther approach to execute logic programs was pro-
nosed in [Warren 83]. In this approach, programs are com-
piled into the sequence of register oriented instructions
for an abstract machine (which is often called Warren
Abstract Machine : WAM ). The goal g, shown ahove, is
translated io the sequence of WAM instructions as fol-
lawes:

put_ralue Yo, Al
fat k2
put.constant 1,A3
call g/3

put _constant

Sinee those instructions are similar to the “Move” and
“Branch-and-link™ instructions of conventional machines,
it is fairly easy to execute them at a high speed.

The compiler of WAM can often reduce instructions
by sophisticated register allocation technique. In the ex
ample above, il the compiler finds that the value of X
remains m register X3 when g is called, put_valus Ya.&l
is replaced by put_value Xj,Al which transfers the son-
tent of register Xj to register Al and is faster than the
original instruction. Maoreover, if the value of X remains
in the register A% iteedl, put_value Al, Al canbe vrnitted,

To compare the PSI-I and WAM approaches, a WAM-
like microprogrammed interpreter for KLD was imple
anented in the PSII and its performance is evaluated
[Wakajima 85]. The Result was about twice as fast as that

of the original K L0 interpreter for both simple benchmark
programs and rather complicated appllcation programs
From Uis result, it was decided to adopt WAR approach
for the execution merhavism on the PSL-LL

Hardware fucilities, such as instruelion pre-fetch rop-
isters and the operand fisld extractor are also introducad
to support the execution of WAM-like instouctions As
will be described in section 5. a very high performance is
achieved, three to ton times faster than the PSEL

2.3 Multi-Processor System

The FSL-1114s uot onlyv a logic programming worksiatinn,
but also an element processor of a paraliel inference ma-
chine ealled the Multi-PSI [Taki 86]. The Multi-P5I is
mmstructed from up to 84 CPUs of the PEI-IT connected
by a two-dimensional mesh network. Fach processor ele-
ment has 40 bits by 16 Mwords {local) main memory and a
network comumunication controller, Sinee micio-operabion
rodes and an internal data bus port are reserved for the
network communication contreller, the contraller can be
easily attached to the PSLI-II CPY.

The Multi-PSI executes a parallel logic programming
language, KLI, which 1s based cn GHO {teda 6], KL1
is enalles the paraliel execution of AND-connected goals
cvnchronizing and communicating through shared logical
variables. Another machine instruction set which has paz-
allelism is required for KL1 execution. The PSLILCPU
is designed to have enough flexibility, allowing implemen-
tation of various abstract mechine insiruction seis.

3 Architecture

This section describes the architecture of the TSI-IE as a
KLD machine.

3.1 Implementing KILO

The sxecution mechanism of the P51 s based on that of
WAM, but is extended in order to implemen: KLO. The
main extended fratures are as iollows

(1) Built-in Predicates

110 bis various built-in predicates, such as thoss for type
checking, structure manipulation, arithinetic ane iogiral
aperation, comparison, exesition control, and npecaking
system support. Since they are frequently ealled in prac-
tieal programs, their execution speed greatly affects the
avsbem perfocmance,

Each built-in predicate is implemented as a machine
tastruction sad is directiy executed by microprogram. 0t
requires no environments and creates no choice polunts, un-
Like programmer-defined erdinary predicates. Thus, from
the point of view of the vartable classification. the inve
cation of o hmiltin predicate can he treated as part of e
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foliowing ordinary goal. That iz, a variable that occurred
ouly in a sequence of built-in goals and the ordinary goal
following it can be classified into temporary variables

There are two ways to pass arguments Lo built-in prec-
icates. Input arguments, such as the addend and the au-
gend of add(X,Y,Z), are passed by put instructions before
the predicate invocation. Output arguments, such as the
sumn of the add(¥,¥,2), are passed by ge! instruetions
following the invocation.

The arguments are passed through any argumnent reg-
isters, because the machine instructions for built-in pred-
icates have operands, each of which designates an argu-
ment register, Thiz mechanism greatly reduces the re-
striction of the optimal register allocation by the com-
piler. For example, the clause

nth_element{I,[X|L] ,E):-
I1 is I-1,
nth_element(I1,L,E).

15 compaled to;

get_list A2

unify_wveid 1

unify_wariabla A2

put_constant 1,74

subtract A1.X4 A1

execute nth_alement/3
{2) Cut

The cut operation is frequently used in practical programs
to eliminate redundant alternatives in order to improve
execution speed and save memory space. Bspecially, neck
cub eperations, which precede all non-built-in goals, are
tive farge part of them.

The clause indexing mechanism often makes a neck eut
rediundant. For example, a version of the deterministic
“eppend” is written as;

append([X|L1],L2,[XIL3]):-
!, append(L1 L2, L3}.
append([],L,L}.

When the eut of the ficst clauss 15 executed, the altes-
native is already eliminated by the switeh_sn_ters in-
struction. Many progrananers, however, will not delete
the cut mark, hecause some of them don’t know the clause
imdexing mechanizm and the others want to make sure the
deterministic execution, The compaler also can not delete
it because the Arst argument may be an unbound variable
(IXLD choesn’t hiave the mode declaration)

For the {ast exeoution of the non-operating neck cut,
we introduced the flag called DET, which indicates whether
the current clavse has alternatives or not. The DET flag is
turned on by the instructions zall | execute, trust{ me_
else} and the cut operations, and 15 turned off Ly

try{ me else) and retry{.me_else). The neck cut is
implemented as a special instruction called eutme to dis-
tinguish it froen cut marks in other pacts. The cut me
mstruction examines the DET flag and quickly finishes the
execution if the Hag indicates that the clause is determin-
istic. The execution time of the redundant neck cut, in
fact, 15 minimized to time taken by single microprogram
step, The effective neck cut is also faster than others,
because the choice point to be discarded 15 found easily,
that is, it is the last choice point.

Furthermore, it is planned to optimize the execubion
of the scb of clauses, all of which have neck cut. [Strictly
speaking, the last clavse of the set may not have the neck
cut). The optimization stands on the fact that the choice
point of the clauses should not be nested, that is, & should
be discarded belore any goal invocations. This character-
istic of the sireple cholce point greatly reduces the amount
of the information to be saved. For example, argument
registers don't nieed to be saved if the compiler generates
codes to aveid their destruction until the neck cut arcurs,
In fact, it is necessary to save only three pointers which
refer to the slternative clanse and the backtrack points of
the global stack and the trail stack. The reduction of the
information must accelerate the shallow backiracking.

A selective trailing technique also acceierates the neck
cut operation. In the exccution of those clanses, the bind-
i“E af the wariables which are net be:r'ﬂl'l.d the last non-
simple choice point is trailed to the special stack instead
of the trail stack, until the neck cut is encountered. The
neck cut simply discards the contents of the special stack
without complcated selective discarding of the entries on
the trail stack. The special stack can be placed on the top
of the local stack. because the local stack cannot grow be-
fore the cut.

{37 Dynamic Predicate Cali

WL has speeial predicate call mechamsms. One of them
is calied bind_hook, which is the same as the freeze fune-
tion of Prolog II. Another is calied exception_hook, whick
is very convenient for the exceptional case handling in
practical programs. Each built-in predicate requires reo-
stricted conditions o its arguments, such as data types
and the range of numeric values, Each such condition can
be associated with an ezcepfion hook predicate whizh is
ralled at its violation.

These dynamic call mechanisms bring a troubiesome
problem to the optimizing compilation. That is. predi-
cites may be called by the hinding of kooked variables or
the violation of the condition on the argument of built-
in predicates, before the first ordinary goal in the source
program is called. This eauses the ambiguity of the words
first goal, on which the variable classification and the neck
cut pptimization greatly depend,

We soived this problem by introducing a =pesial en-
wironment, which is created when a predicate i= caliad
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dynamically. The special environment is similar to ordi-
narv one except that it contains the contents of all argu-
ment registers instead of permanent variables. An ordi-
nary choice point is also created if the current clause is
executed in the swmple choice point mode. The contents
are loaded to the registers and the environment is dis-
carded when the predicate terminatss successfully. This
mechanism assures that the execution of the clause can
be coutinued as if no predicates were calied,

{4) FSF support

ES5P is the system description language for SIMPQS, the
progranuning and operating system of the PSI-Tand PSI-
IT [Chikayama 84]. ESP s not only a logic programming
language but also an object-oriented language. An object
1s representerd by a st of methods and slots in ESP

Calis of the same method may have different seman-
tics if the values of the first argument, which is an ESP
chject, are different. The slots are time-dependent state
variables, and thier values are examined and altered using
the built-in mnethod get_slot and sétJlu.‘t. The ficst ar-
guments of them also represent an object containing the
slot to be manipulated.

Since the value of the first argument generally cannot
be determined at the compilation time, the address of the
siot and the codes for the method are determined at the
execution time, To improve the execution speed, there is
a set of instructions and buili-in predicates to accelerate
the method call and the siot manipulation. They require
arguments which represent the abject and the name of the
mmethod or the slot. The address is obtained by looking
up 2 hash table connected to the object, using the name
s & key.

.2 Data Representation

3

Data is represented by a 40-bit word separated into 8-bit
1ag feld and 32-bit value field, as shown ia Figare 1. The
top iwo bits of the tag field are used as mark bits for
the garbage collection. The lowest six bits represent data
tvpe. such as:

o unbound variahle
reference (Lo variable)
* atoin

* integer

o floating point number

» lisl

» siack vector
+ heap veclor
» siring

4 Prolog compound term is represented by n stack
vector with the first elemment being the principal functor.

value

Fi};l,lre-: 1: Data Rl.‘f].ut:-':.':lte‘l.t.l"\.‘l'.l
al 28 o
AT&H
inner aren address
nuniher

Figure 20 Logicnd Adidress flepresentation

An element of the heap vector can be aitered by destiac
tive assignment [not by unification), and the result iz not
lost on backtracking. A siring represents a packed 5-bit
ASCII character string or 16-bit Kan)i character string
The value field for a constand contains its own vaiue,
that is, an identifier for an atom, or o nuneric value for
& number. For other tvpes, the value field contains the
32-bit logical address of a variable or a data structure.

3.3 Address Space

The PSLII can execute multiple processes concurrentiy.
Each process has 4 Gwords of logical address space rep
resented by a 37-hit address shown in Figure 2. The logi-
sal nddress spare is divided into eight distinet sub-spaces
celled area, which are identified by the top 3-bit field af
the logical address. Three areas eorrespond to the stacks,
a local stack, a global stack, and a trail stack, which are
local to each process. Two areas, heap and system area,
are shared by sll processes. The remanung three arcas
are regerved {or fulure extension.

The stacks is similar to those of WALL Tlhe neap con-
tains codes, ESP ebjects and data objects whose values
can be altered by the assignment operation. The system
area contains system coutrol information. such as process
control blocks, an interrupt vecter and mMemory Mantge:

ment tabley

3.4 Instructions

Figure 3 shows the instruction format of the P5I-1L Anin-
struction is represented in one or more 40-bit words. The
2 bit classification field divides the instruction set into
four classes, The first elass consists of basic Proleg in

structions which correspond to unification, predicate call
and return, and backtracking control. The second rom

prises built-in predicates. The third and fourth are re-
served for future extension, such as paraliel programmung
language implementation. The 8-bit instruction code fieid
can represent up to 256 instructions for each class

— 4 —



The 24-bit operand fieid of the first word of an instrue-
tion contains one of the following; three 8-bit operands;
one 8-bit operand and one 16-bit operand; or a single
24-bit operand. An 8-bit operand represenls an argu-
ment register number, an offset of a local stack frame,
or a {signed or unsigned) short integer value. A 16-bit
operand 15 used for a rel_atiw. bLranch address. A 24-bit
operand is used as an alom identifier. The second and
consequent words are optional. They usually represent
40-bit (atomic) eperands with tag.

The basic Prolog instructions are divided into the
groups, get, put, unify, procedural, indesing, method and
cuf instructions. The first five groups are similar to those
of WAM. The method instructions call ESP methods. The
eut instructions discacd the aliernatives of the current
predicate and the goals preceding the cul operator.

Built-in predicates are divided into the following
Eroups

(a) type checking
e g atom(+k), unbound(+X)
{b} structure manipulation

e g vecior element(+Vect  +Pns ,-Elem),
new heap.vector{-Vezt, +Len)

(¢} arithmetic and logical operation

e g add(+X +Y,-2),
shift_laefs(+X,+Count ,-¥)

{d} comparison

e g equal(#4,+Y), less_than(+X, +¥)
{e} execution control

e g bind_hook{+1,+Handler)
{I operating system support

e g change process(+Process)

4 Hardware Design

This section describes the hardwie design of the F3I-1L
Figure 4 shows the system configuration of the PSLIL
The machine cicle of the PSI-IT is 166.7 ns (24 MHz),
which is 20 % faster than that of P5I-I, 200 ns.

4.1 Main Memory

The P5L-11 has phyvsieal main memory of 40 kits by up
to 64 Mwords constrocted fiom 1 Mbit dynamic RAMs.
This large scale memory enables implementalion of most
of the memory consumiog applications without virtual
storage. For each wand, seven ECC bits are added to
correch single bit errors and detect deuble bit errors.

39 3433 3231 24 23 4]
inst.
0L | class ne aperand —_—
code 3
' tag ' value :
R SRR RSP,
33 1815 87 @
operatd | aperand operand ]
I 2 3
operand operand L !
1 T
aparand
L
Figure 3: Instruction Format
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Figure 5: Address Translation

4.2 Address Translator

Figure 5 shows the address translation mechanism. A
J32-bit lopical address is translated mmte a 26-bit physical
address by the two level table look up, The top 3-bit field
of the logical address, identifying an area, selects one of
the eight Poge Mep Hase Registers {PMBR ). Bach PMBER
roniains the base address of a set of entries of the Page
Muap Memory { PMM ). The entries are continuously set in
the MU, Each containg a 16-bit physical memory page
number allocated to the area. The middle 19-bit fieid
of the logical address, called the logical page number, 1=
addded Lo the PMBR Lo oblain a pliysical page manber
from the corresponding entry of the PMM. The resulting
physical page number is used as the top 16-bit field of
the physical memory address, The lowest 10-bit field of
the logical address is used as the lowest 10-bit field of the
phyvsical memory address diveckly,

Since stacks are local to each procese, the stack areas
of different processes must be mapped to different physical
memory space. For this mapping mechanism, PMBHs
associated to stack areas are stored in the process control
alock and restored ﬂurin; Process !‘.l-'.ril.l;:hing. PMBRs {or
shared areas, heap and system area, are common to all
processes,

Fhysical memory pages are managed using the de
manet page allocatinn technigue,  Unallocated physical
memory pages are pooled in a free pape List. If & stack
{or heap) grows up and more physical pages are required,
pages are allocated to the stack area from the free page
list. The new page allocntion causes new PMA entry al
location to set the page nurmbers of the obibaoaed pages.
This page allocation is performed quickly by a micropro-
Era:Tl1ncd I'['Lr.".Tﬂﬂr_'.' ]ilﬁ]]a.!.';ﬂl.'.

I no free pRESS Temam p{_mled or Lhes dlesived PWIA
entry is already occupied by another area, the micropro-

prasmaned memory manager ralses a trap to the operating
system. A memory manager in the operating system tries
to release pages allocated to shrunk stacks andfor relo-
cate PMM entries. Tooavoid frequent relocation of PR
the memory manager tries to distribute the set of eoliies
as sparse as possible. This distribution technique i3 en-
couraged by the fact that PMM has 96 I entries, more
than maximum number of physical memory pages, 64 I
pages.

The demand page allocation reguires that any siack
growth should check whether new stack top s within al-
ready allocated page. An naive implementation of stack
growth brings some overhead. This problem was soived by
introducing a sophisticated technique using buffer pages,
called gray page. Figure § shows the concept of the gray
[IAEE.

A PMM entry contains a flag bit, called the gray b,
indicating whether the corresponding page is grey. The
grav page iz allocated as the last page of each stack area
If the gray page is accessed, a new page requirement trap
s raised. The trap transfers microprogram control to the
microprogrammed memory manager at the end of the in-
struction which grows a stack in the gray page. The stack
growth is completed normally, because the gray page is
associated with a real physical memory page.

Different stack areas Diave different gray pages, be-
cause some instructions may grow multiple stacks. The
same stack area of difierent processes, however, can share
a single gray page, if it is certain tha! ne process swilch is
performed leaving the stack top pointer in the gray page.
All processes, In fact, share a single physical memney page
as a gray page for each stack to mininize redundant mem-
ory space. The microprogrammed memory manager gets
a free page and copies the contents of the common phivs-
ieal gray page to the obtained page. Since most of the
instructions giow a stack less than ten words, valid data
in the pray page can be copied quickly. The PMAL eatry
asgociated with the gray page 15 re-associated with the
sbtained page by resetting the gray bit, amd a new FAL[A]
cntry is allocated for the gray page.

4.3  Cache Memory

The cache memary has 40 biis by 4 words smaller than
& Wwords of the PSI-I. The capacity reduction required to
reduece the hardware amount will decrease the hit-ratio
However, we have estimated, by simuiation, that degia-
dation of the hit ratio is not much; about 2 percent.
The write-swap method is used for write operations,
In this method, data is written only to Lhe cache memory
when a write order is directed. After a2 eache miss-ind,
the eontents of a certion caclie memory hlock are writbon
back to the main memoary, if the contents are modified
after they were loaded to the cache memory. It was es.
timated that the write-swap racle memaory has sbout 10
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nercent betier performance than the write-through cache
TSmOy,

For growth of stacks, a sophisticated write operation,
calicd write stack, is introduced. Usually, when a write
operation misses the cache, a memory block is loaded
from the main memory to validate other words of the
Llack. For a wnite aperation which pushes a stack, how-
ever, validation for the words beyond the stack top iz not
necessary, The write-stack operation fun the first word
of a cache memery block does not load a block even if it
misses the cache, 1f the write back operation is not nec-
essary, the miss-hutting write-stack operation is as fnst ns
& hitking write operation.

4.4 Data Processing Unit

Figure T shows the configuration of the data processing
unit. An ALU, a register file nnd several discrete registers
are connected with three 40-bit wide data buses, called
Sauree-1 hus, Sonrce-£ bus and Desfrnation bus.

The ALU. performs addition , sublraction, and logical
eperations ineluding multiple bit shift and bit-field ma-
mipulation. An ALL aperalion is performed to the 32-Int
value parts of the Source-1 and Source-2 buses, amwd the
result 1s oubpnl to the 32-bit value part of the Destination
bus, The $-hit tag part of the Source-1 bus s passed to
the tag part of the UDestination bus. The tag parts of the
Seuree-1 and Sonree-2 buses are alse used to control the
microprogram sequence [see the next section ).

Various discrete registers are installed for special op-

erations. The main registers are as follows.

o MAR: Memory address register, containing a 32-bit
logical address of {he matn memory.

o IAR: Instruction address register, containing a J2-
bit logical address of the machine instrue-
tion It is the physical implementation of

the abstract register P of WAN.

» MDR: Memory data register, containing 2 40-bit
data which is read from or written to the
AL MEmory,

« [H: Instruction register, containing the 40-bit
machine instruction being executed.

o IBML:  Instruction buffer register, containing the 40-
bit pre-fetched machine instruction.

« IFTL:  Instruction fetch register, containing the 40
bit doubly pre-fetched machine instruction,
or 40-bit data of the main memory.

« GR: Global top register, which points the top of
the global stack.

« SE: Structure pointer, which refers an element of

a structure to be unified.

e LC: Loop counter, which is used for micropro-

grainmed DO loops.

Qutput ports of these registers are ronnected to the
Sonree-1 bus. The MDA, IR, IBR and IFR also have an
output port to the Source-2 bus via a byte ficld extractor.
The byte field extractor, especially for the IR, s used
bo exiract 8-bit, 16-bit, or 24-bit operand fleld with or
without sign bit extension. The MAR, TAR, GE, SH and
[.C hias aute-increment [deerement function without vsing
AL

The IR, IBR and IFR are used for pipeline registers
to pre-feich machine instructions. At the beginning of
execution of a machine instruction, the [H contamns the
instruction to be executed, the [BR containg the next in-
struction, and the [AR refers the instruction after ihe
aext one. The last micro-instruction for & machine in-
struction performs the following operations:

{a) Dispatching to the micre-routie for the next in-
struction by decoding the instruclion code ficld of
the IDN.

{b} Transferring the IBR to the the I

(¢) Fetching the instruction poiated by the IATL into
the TOR. incrementing the [AR afier that.
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Figure 7: Data Processing Element

These operations can be performed concurrently with
ather micro-operations, except for the main memory ac-
cess. 1f memory needs to be accessed (written] in the last
micro-instruction, the IFR is used as a pre-fetch buifer,
That 5. in the non-last micro-instruction, the instruction
pointed by the IAR is pre-feiched into [FR. In the last
micro-instruction, the IFR is transferred Lo the IBR 1n-
ctead of fetching a new instruction. This instruction feteh
mechanism 1§ fairly simple, and works well in most cases.

The register file (1F) has 2 capacity of 40 bits Ly 64
worde. The first half of the RF is used for argument/
temperary registers. The entry address for this area is
ssually supplied from the operand fields of the [ An-
other supplier of the nddress is the HF address regisier
{RFAR), which cnn be ineremented avtomatically. The
NFAR is used for multiple loading ot storing of the argu-
ment registers with auto-incrementing.

The special purpose register, LF validity flag reptater
{RVFR ). i= also installed to support the garbage collector.
Fach bit of the AVFIL corresponds to an entry of the
Erst half of the RE, that is, the least significant hit is
to the first entry and the most significant bit is 1o the
32nd entry. Each hit of the HVFR is tw ned on when
the corresponding entry of the RF is modified. All bits
of the RVER are cleared explicitly when the contents of
all the m‘gmnent r{:ﬁwh:rs becoine useless {l‘ur L‘xan‘.p'.-‘:, by
backtracking). Thus, each bit of the the OVFR indicating
the validity of the corresponding argument register tells
the garbage coliector that the argument register must be

a root of marking,

The rest of the RF is used as the control registers of
WAM, except for program peinier, global top register,
and structure pointer {which are allocated to the discrete
registers). Part of this area also 13 used for the werking
space of microprogram. The entry address for this area is
usually supplied directly from a micro-insbruction.

4.5 Sequence Controller

Figure § shows the configuration of the sequense con-
troller. The sequence controlier generates fricro-instoe-
tion addresses and fgtches micro-instructions fiom the
writable rontrol dtore { WCS), which has a capacity of
54-hit w16 [Kwords

Mast of the microprogram branch operations
farmed by the sequence controller are two-way. G4 by
branch conditions are defined, and they can he used for
hoth positive and negative conditions. Branch condition:
of checking data type by the tag, called the tag condifinns,
are one of the special features of the PEI-L

Cine of the frequently used tag conditions is the com-
panizon of the tag part of the Seurce-1 has with an un
ediate value in & micro-instruction. This condition is
used to examine whether data hias a sarticulnr type. [t
is also possible to compare the tag masking lnwer bits to
examine whether data is a member of a group of data
types. For example, assuming that otemic data consists
of atoms and integers, and that the tag representatlion for
them are same except for the least significant bit, atomic
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data can be checked by a single compatison masking the
least significant bit

Another important tag condition is the comparison re-
sult of the tag part of the Source-1 and Source-2 buses,
which is set to a bit in the micro-status register [MSTR).
This condition is used to examine whether two data have
the same type. [4is also possible Lo combine the tag enual-
ity condition with the value equality condition, which is
nhtained by subtracling twe data.

Dranch operations pesformed by the sequence con-
troller are a3 follows.

(1)
{2}

Dicect braach with relative or absolute addressing

Microprogram subroutine call and return using the
microprogram adaress stack (em MSTK), 16 in its

depth.
(3

Indirect branch using an indirect jump register {Jit).

Instruction cods dispatching using a 1 K-entry RAM
tabie,

()

(57 Data type dispatching using a 2 K-entry RAM ta-

ble.

The RAM table for the data type dispatching is par-
titioned into 32 blocks. Encli block consists of G4 entries
each of which corresponds to a data type and contzing
an ofiset On dispatching, the content of the tag part of
tlwe MDR or IFR is concatenated with the block number
specified in a micre-instruction to generate o table en-
try address. The content of the entry is ORed with the
hase address specifind in the micro-instruction to obtamn
the next micro-instruction address. This base-offset ai-
lows the same dispatching pattern to be used in different
parts of the microprogram. It is also pussitle that dif-
farent enlries of a Block have samne offset to perform the
same cperation for data of several different types.

4.6 I/0 Devices

Various 1/ devices are connected via an 1/0 bus. Stan-
dard devices are a 150 Mbyte hard disk, a § inch foppy
disk, a [anji printer, a key boa: d, an optical mouse and
a bit-mapped dizplay.

The bit-inapped display has a microprocessor as a con-
troller with a bit plane of up to 8 Mbytes of monochroms
or color. The microprocesser has manages the bit plane,
transfers a rectangle, tracks mouse movement, and draws
graphic objects. These funclions contribute to fast dis-
play speed under the complhicated multi-windew enviton-
ment.

Optional 1/0 devices ave large capacity hard disks,
magnetic tape drives, a laser printer, and an Ethernet
LAN interface.

5 Performance Evaluation

Table 1 shows measured performance of the PEL-1Hin sim-
ole benchmark programs. The first calumn of the ln
ble shows benchmark programs which are provided by
the First Prolog Contest [Okuno 85, except for apperndfil
They include two lists concatenation {appenddd), naive
roverse of 30 elements (nr=nd0), quicksort of 50 elements
{gsort50), tree traversing of 1000 elements {travi#00). B
gueens problem { fgnerna ), bidirectional cnmputation cal-
eulating factorial of inverse of fibonnce {fitfact), and slow
reverse of five elements (srevd). The executable codes of
tliese programs are generated by a cross comnpiler en the
PEI-1

The second and the third columns show the perfor-
manece of the PSI-I1 represented Ly execution time (1nsec)
and KLIPS. The forth and fifth columns show the execu-
tion time of the PSI-] and the WAM enmlater on the
PSl-[ [Wakajima gal. The sixth amd seventh columns show
the execution time ratio of the PSI1 to the PSI-T and
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Tahie 1: Perforimaaee of PSI-T1
WAM emulator. References

The table shows Lhat e PSEIT has very high pecfor-
mance, 0 to 400 KLIPS, and is nine to len bimes as {nst
as the ['SI-1, in deterministic programs such as append 53
and nrepdf, These results are mainly due to the clause
indexing technique which eliminates alternative clauses
hefore the head unification. In fact. no backirack points
are made in executing these programa.

In ather programs, the PSI-11 1s approximately three
times as fast as the PSI-I. These programns make many
backtrack points and cause backtracking frequently. Since
the operations to save and Inad information of backtrack
points are essentially the same with PSI-l, the perfor-
mance improvement of those programs is rather small
The neck cut optimization deseribed in 3.1, however, will
improve perforinance of grorli0 and Fueens.

The PSI-11 is also approximately one and a lalf times
faster than the WAM emulator on the PSLL This 1m-
provement owes to the newly introduced hardware facil-
ities which acceleraie the Prolog instruction execution,
such as the gray page. pre-fetch buller, and the operand
extractor,

6 Conclusion

& special purposé machiue, the P31 was designed for
togic progranuming languages. The hardware is vory com
pact becavse of high integration CAOS pate-array Lils.
A very high perforinance of 400 KLIPS is also achieved
by imprevernent of tie achiterture and hardware design.

The hardware has been manufaciured and the micro-
prograun tmplemented. Software imstallabion is schedulnd
10 completed by the end of the third quarter of the year,
Hardware design and manufncturing »f the Molti-PEDwill
alse he finasten ] an e ensd of Dhe thaed quarter, Al rmlti-
processor sysheny with a :Il1Jl':'Lr[:'I":.'_i'll'?.I'I]:'I.LI'_"Ei. istkerpreter of
a parallel programming lhnguage and operating system
Lernel will begin ils aperation in the first quarter of next

year.
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