ICOT Technical Report: TR-263

TR-263

Polymorphic Type Inference in Prolog by
Abstract Interpretation

by
K. Horiuchi and T. Kanamori {Mitsubishi)

June. 1987

LI987, 1COT

Mits Rolkusar Blde 21T 3y 4M-3101 =~ 3
Il D | A-d8 Alita I-Chome Telew 10T T34064

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology?_

Polymorphic Type Inference in Prolog by Abstract Interpretation

Kewji HORIUCHL

Tadashi KANAMOLII

Central Rescarch Laboratory, Mitsubishi Electrie Corparation
& 1-1, Teukapguchi-loumacki, Amngasaki, Hyogo, 661 JATAN

Abstract

A polymamplic type infercuce method for Prolog programa by abstract mterpretation is prescuted. The method is ag
extension of our mouomorphic type nference method, whick is one of the examples of analyeing patterus of Prolog poals at
calling time and cxiting time by abstract interpretation. The framework is based on QLDT resolution by Tamakl and Sato, a
Liybrid of the top-down and hottom-up interpretations of Prelog peograms. Oy abstracting the bhybrid juterpretation directly, we
can compute approximately not ouly the type information at calling time apd exiting time without iwhmte looping but also just
the pecessary and relevant imformation without waste. The moovmorphic type inference method is extended for polymorphie
types by introduciug parameterized type defiuitions and generaliziog operations for manipulatiog type information accordingly.

Keywords @ Program Aualyzis, Type luference, Prelog, Alistract Luterpretation.

1. Introduction

Most prorraming lauguages for symbolic processing,
like Lisp ur Prolog. can work on a variery of objeets with-
out type checking. Thouzh such Aexibility is useful for pro-
gramuers 1o construct programes with less burden, ne type
checking makes it more difficult to find program bugs. lu-
ferring data types of arguments from program texts provides
wzeful isforwation uot ouly to programmers on debugging but
also to meta-processing systems, hke a compiler.

In Pralog, typea ran be int roduced Ly definiug type pred-

icates, 2.8,

et [).

List{[A[L]) - Nist[L).
In peoeral, when the set of all terms satisfying the defiuitiou
of a type ean be wuiguely determived from its defiuition,
the tvpe is called » mopomarpliic type. For example, list
is & monomarphic type, since the sct of all terms satisfying
the definitiou above, depoted by [t is woigquely determined,
Similarly, the following is the defuntion of a mounomorphic
type num,

wam|).

munisucd X} - waml X).

Thie cxpressive power of mouoinerphic type system, how.
ever, is neither Aexilie nor sufficient. Suppose that we would
like to express a set of terms not ouly by fist and num but
shan by lists of num, lists of ief or lists of lists of pum ete. I
we wonld ke to ftroduce s st of unmbers a8 2 type, we can
defiie it as a new moncinorpbie type pumibist by

munhst(]]}

wanlist (| ALY - s A, wnmlist{L)
Dt such s overluading of type coustructors | | and [| | eanses
tipe followine II!‘U]J]{'JIIF.

o The sets fiat s perelis? are uot disjoint though they are
twg distinet types.

» The iutersection of bt and numliag is uot clear from the
sy ntax

s Type defuitions like this have less syntactical regularity

The approach to extend monomorphic by pes to paramet-
ric ours, called pedvorplic type, is mvestizated in [R][10].
A for the above cxample, siuce the car part A of the list [A]L)
=n't wentioned at all w the defuition of fist, we can expreas
the bype numbial by parameterizing the type of the car part
i fad and meatantiating it to num

In this paper, a polymorphic type inference method for
P'rolug programs by abstract interpretation is preseuted The
method 12 an extension of our monemarphic type inference
method |3], which 12 one of the examples of aunlyzing patterns
of Prolug goasls at calling time and exiting time by abstract
interprotation [2)(7]. The framework is bazed on OLDT reso-
lution by Tamaki and Sato [1?:, a hybirid of the tog-down aued
battom-up ulecpretations of Mrolog programs. Dy abstraet-
g the bybeid ivterpretabion directly, we can compate approx-
imately mot vuly the type wformation at ¢alling time and ex-
itipg time without mhuite looping but also jese the pecessary
and relevaut information without waste. The monsmorglic
Lype wference method g extended for polymorplie types by
1otroduciug para:n:'!i':'ixl'i! typre elefinitions and generalizing
operatious for mawipulating type information arcordingly.

After prescuting the].l:,'hrid mterpretation of Frolog pro
grams in Section 2, we will introduce a monemorphic type
iute Prelog and extend it to a polymorplur type i Section 3.
Then we will show a polymorplic type lnference method,

Lo the followine, we assume familiacity with the basic ter-
minology of first order logic such a3 term. atom fatomar for
mla), fornoela, substitution and most geoeral uoifier (mogou.)
We follow the syntax of DEC-10 Prolog [11]. As syutactical
variables, we uae XY, £ for variabies, a. & foor Lerwes amd A, D
for atoms, poessildy with prises aud subseripts. In addition
wi use a, ., b for substitutions,

2. Interpretation of Logic Programs

In this section, we will prescut a Lybrid loterpretation
methed of Prolog programs (12} by comtrasting the well
known top-down method and bottomeap metbod. Then we
will show an npluweatation of the Lybrid interpretation
method suitable for the hasis of the abstract wterpretatiou
presented later,

2.1 Hybrid Interpretation of Logic Programs
(1) Search Tree

A search tree s atree with its nodes labeled with pegative
or mall elauscs and with its edees labeled with substitutions,
A scarch tree of negative elause (7 13 & scarch tree whose root
wode g labeled with &, The relation between s wode and
ite child nodes iu a search tree s specified in various ways

depending on various strategies of “reanbition”.

A refirtatfou of negative clause 3 is a pathoin asearch tree
of (¢ from the root to a pode lalcled with the mall elause 0.
Let 80, 85, ... 8% he the labels of the edges on the path, Then,
the answer spbstitntion of the refutation is the '-'.Dliipﬂh‘d
subetitution r = 0z - - o, and the solution of the refutation

i et

Let 3y, (74, Gs b a sequence of labels of the nodes
aud #,, 8, ..., 0 be the labels of the rdges on some path n
a senvel tree. The path iz called a subrefutation of H when
Go, 0y, 72, ..., Gy, Gy are of the form

SELLGT, I G0 T, SH Gl 0T,

SHy g G0y By G0y 07,
vespeetively, whepe H, Hy, Hs, ..., Hioy, G are sequeoces of
atoms. [lu partienlar, when H is an atom A, the path is calied
a it subrefutatiog of A} Then, the answer substitution of
thie subeefutarion iz the composed substibution » = 08y - 0,
aud e solutian of the subrefutation s Hr.

[2] Solution Table

A solution table is a sot of volcies. Back entry iz a pair
of the key and the solution list. The key is an atom such that
there i= e identical key {module rennming of wariables) iu
the solution talde. The solution list 12 a list of atoms, ealled
sehutions, suely that cacly solntion in it is au nstance of the
correepouding key.

{2] Association

Let Tr be a search tree and Té be a solution table. A
peele in Tr iz a Jookip gods when e left miest atom of the
peative clanse 32 8 varinut of some key in Th, and it 15 a
sedittion tiende otherwiae, That i, all nodes i T'r labeled with
uon-tnll elanses ave elaesificd nto elther solution wodes or
tockngy uodes,

A aszoriation of Tr and This a set of pointers poluting
from each lookuy node i T'r foto 2ome solutiog list in 76 such
that tlee Inbek of the lookap node atd the key of the solution
Tist are variants of ench otler.

(4) OLDT Structure

The Lybeidd Prelog mterpreter is modeled by OLDT res-
ofution. An OLDT strueture of negative elanse & is a triple
[Tr. Th. Aa) sutislyine the following conditions .

{a) Tr g o search teee of €70 The relation betwern a node
aued its clild wodes i a seareh tree is sperified Ly the
fiblowing QLD T resedution.

(L) Thi= a solntion table, Back key o T is gt seccssarily
of peacrnl form plX,, Xa, .., Xn)

(¢] Aais auassociation of T'r and T, A tail part af asolution

list prainted from a lonkup node is called an associated sofition

izt of the looknp unde.

Lot 7 e a saeeative clanse of the form “Apds.. . AlT

[= 1], A node of OLDT structure [Tr, Th, Ax) labeled

with neeative elunse 7 is said to be OLDT resolvadide whea it

satisfivs either of the following conditions :

ta) The nade 15 a terminal solution node of Tr and there i3
some definite elawse *Oy o By, Ba, o0 0™ (m 2 0) o
program I such that A; and Dy are unifiable, say by an
m.ga. 0. Tle vegative clause {or possibly uull clause)
SO0, Dt B0, Asl L., Apl” is zalled the OLDT
resolvent,

(L] The node is a lookup nede of Tr and there is some so-
lution Fr in the associnted solution list of the lookup

pode such tliat e bs s oustanee of A sny by anoasstan-
tiation #. The wegative elause {or possibly null elause)
“Aal, ... An 0 s called the QLDT resolvent,
The reatriction of the substitution § to the variables of 4y s
called the substitetion of the OLDT resalution.

The sitial QLDT stroctare of nesative clnse 15 the
triple {Trg, Tho, Aag), where T'ry is asearch tree consisting of
just the root solution pode labeled with 7, Ty 2 the solation
table cousisting of just ouc cotry whose key i the leftmost
atom of & and solution list is the empty list, acd Asp is the
empty set of pointers.

An unmediate extension of OLDT stoacture {Tr, TI'.ASJ
in program I is the result of the following operations, when
s pode v of OLDT stracture {Tr, Th As}i= OLDT resolvabile,
(a) When v is a terminal solution node, lev 07, 05,000, Oy

(k2 0] e all the elavses witl which the wode v OLDT
rezolvalile, and 7, s, ... (7, be the respective OLIFT
resolvents, Thew add & clild wodes of v [abeled with
e Gr, to v The edge from: v to the node Lo
beled with) is labeled with 0;, where 8 3= the sulstie
tution of the OLDT sesolution with 7,0 Whrn v 15 &
lookup node, let Dyrp Dorg, oo, Deme (8 2 0) he all
the solutions with which the pode v s OLDT resolvalile,
and 7.9, ... 0 be the respective OLDT resolvents,
Then add & cLild nodes of v Inbeled with 74, (7a, .
to v. The edge from v to the pode labeled with 67 is Ia-
beledd witli 8, where §; i the substitution of the OLDT
resolution witls Hyr. A wew wode is a lookep wode when
the leftmost atom of the vew vesative elanse is 8 variaot
of sonwe key 1o Th and it b5 a solution wade atherwise,

(L] Dteplace the pointer from the OLDT resolved lookug node
with the one polnting to the Bast of the assacinted salution
liet. Add a peister from the pew lookup node to the
solution list of the corresponding key.

{e} When » pew nade is a solution nede. add a wew eutry
whose key iz the leftmost atom of the lalel of the pew
node aud whose solution list is the cpty list. When
a new node is a lookup node, add no new eutry. For
each unit subrefutation of atom A (0f any) starting from
a solution nade and coding with some of the new nodes,
ade e eedution Ar to the last of the solutioo list of 4 in
Th, il Aris pot m the selution Dst,

Au OLDT structure (Te' T As") is an extension of
OLDT structure (Tr.Th Aa) if (T, T 44"} b5 obtained
from [Tr, Th, As) throuch successive appheation of lmedi-
ate extensions.

N

Example 2.1.1 For example, consider the fllowing program
of “grapls reachability™ by Tamaki aud Sato [12].
reacli{ 2.Y) - reachi{ 2,2}, edge(2.Y).
reach(X X
edgelab)
cidge|la).

cdpelac).

edge(1d).

Then, the bylrid interpretation gewerates the following OLDT
structures of “reachin, Yyl™, The nadecline denntos tHe lnok-
up node, aud the dotted live denotes the association from the
lookup node.

First, the initial OLDT atructure is generated. The root
pade of the search tree is a solution bode.

Secoudly, the root node “reach{a.¥q)” is OLDT resobverd
using the program to geoerate two cbild wodes, The geuerated
left child mode 15 a lookup node, because its leftiost atom is
a variaot of the key in the solution table. The association
asanciates the lockup uode to the bead of the solution list of

renefla. V], The generabed right elald pacle i3 the end of o
it sulwelatation of reqchin, ¥u)o Irs solution reachia,a) is
aclileel to the solution list of reachin, Y],

ceachia, ¥y
4':.'[’;."_'}"..:».# \.ffg‘-‘:ll:‘-"
r1':'nr]_.1_|::_|._.ﬂj:I_,L‘:l:___'r[ﬂ-;._'k_r_l_] 0

reachin,r) ¢ m'mh{n.ﬂ.]i
Figure 2.1.1 Step 2

Thiedly. the lockup node i2 OLDT resolved using the
golution talile 1o geucrate one eleilel sedution node.

Pourtbily, the geuevated selution node s OLDT resolved
firther naing the program to geicerate bwe new padues laleled
witly the wall elanses. These two gudes add twe solutions
reachi{a, b aud redckia, e} ta the last of the solution list of
rerefeli, 1), naned twe sobutions edge{a, §) and elge(a, ¢) to the
it of the solution list of edgela. Y}

reachin Yyl
7 !
penelif Ty edeed 2,9 0
i
L edge{a,)
S St =T Ve Y=
~ B o

-

reachiaY) : [n':'.{'l|[:\.a}?§r'|'nrh[n,'|n] reachia.cl]
I‘Lll_:t":il._\r} . El'l;:lgl.‘[n.h:: .t'!’.l,':t{'E ﬂ.f‘”

Figure 2.1.2 Step 4

Filthly. the lookap node @2 OLDT resolved using the
solation tabile, siuee wew solntions were aidded to the salution
List of reaehfe, V) 5o that the sesociated solution hst of the
[oakug: nede 12 wot cmpty.

Sixtlily. the loft new solution node “edgetb. Y17 is OLDT
respleeel, and oue pew sointion reachia,) is added to the
enlutiow list of reachla, 1)

reachif{n, Yyl
, A
roachin. 2 Jedpe[20.Y) u]

e ! j Z b= N F =
edzof{alY) eden[h.Y) celgele,)
v S Yoelyeman/ Vel =de
‘o O] O

e o E am E= o Em R s Em T AR e

reaclfa Y] : [:rr'nth[n.-"ti.rl‘:!.!-"h[ﬂ..h].n‘ﬂrll{ﬂutﬁfhfll[a-d”
edgela Y} fedgelabhedzelac)]

edgelln¥) : [edgelb.a)edge(lad)]

edpete,¥) 1}]

Figure 2.1.3 Step 6

Lastly, the logknp node i= OLDT resolved once more
using the =solntion talile, Breawse the Ialwels edpefe, ¥) aud
edgelid. ¥e) of the solutiou uodes Lave wo deBnite elanse with
untfinhle beads, the extrnsion process sto]s,

Thouel all sclutions were fonnd wnder the depth-fiest
fran-left-ta-rizlit cxrension strategy iu this cxample, the strat-
epy is uet complete iu geseral. The reazon of the lucomplete
tress i two-fold, Owme 1= that there mizlt be generated in-
fwitely many different solution nodes. Auother = that zome

reach Y

! i\
. reach{a &, | edpe{Zy 0)]
-7 TN ez =d>

s oodygefa,Yy) edge(bY) edgefeY) edgefd,Y)
A N \

renchi{a, ¥y o [reackia,a) reachia b reach{ae) reach{a,d);
edpe(a, Y} ¢ [edpe(als) edge(a.c)]

edge(b.Y) : edgeib.a)edge(ld)]

vdpge{c,Y) o]|

edpe(d. Y] 0[]

Figure 2.1.4 Last Step

lookup node might gewerate infinitely mauy child nodes 2o
that extensions at other nodes riglt to tle loakup node might
be iulibited forever.

[5) Soundness and Completeness

Let (7 e a negative clauge, An QLDT refutation of 7w
propram P iz a refutation in the search trev of some extousion
of OLDT stroaeture of €. fThe arswer sulstitabion of the
OLDT refutation amd the solution of the OLDT refulation

are defiued in the same way a3 before. It s a basis of the

alistract uterpretatiou iu this paper thint QLDT resolution n
still sound and complete,

Theorem [Soundness and Completencss)

I irr im o salulion of an OLDT refutation of & in 17 Gt
upiversal elosure ¥ X, Xo - X, r 15 a lovical covseruence
of . a univerzal closure ¥1, Yo - ¥, Ga iz a logieal
eonsequence of P, there iz Gr whiicls iz a solaticn of an OLDT
refintation of (7 in P awd Geris an instance of Gr.

Proaf. Though our bylrid interpreration is different from the
arigival OLDT resolotion by Tamakl swd Sato [12] in two
respocts {see [3]), these differruces do wot allect the proof of
the sonduess awd the completeness. See Tamaki awld Sato
[12] pp 53 -04.

2.2 An Implementation of the Hybrid Interpretation

Ly arder to make the couceptual preseutation of the by
Lrtcd interpretation simpher, we Lave aot cousidercid the derasisz
of how it 13 tmplemenied. o particular, it s oot obvioens i
the “immedinte extension of OLDT structure”

{a) bow we can know whether 8 new node 19 the end of a
eubirelutation startivg frow some solution node, and
“J] bew we ean obtain e solution of the uoit sobeelut ation
efficicutly if any.
It iz an easy solntion to insert a special call-exit marker (A4, 8]
between 0, Dl oo, O 8 and Aa8, ... A ® when & solu-
tion pode 2 OLDT resalved nsivg anomegoa §, and ebitam the
uuit sbrefutation ef A, and 1s solation A, 7 when the left-
most of a new OLDT resolvent 15 the spectal eall-exit mnrker
[A1, 7], Dut, we will nse the following wodified framewark.
[Though such redefinition might be coufusiag, it = a litte
Lnrd ta grasp the intnitive meawing of the modifivd frame-
wark without the explanativn o Section 2.1)

A zoarch tree of OLDT structuee o tle modiied frame-
work 12 a tree with its noedes labeled withe a pair of & negative
clanse aud a substitution. {The edges are not labeled with
substitutions.) A scarch tree of (7, 2) 12 & search tree whese
raot nude is laleled with (7, #). The clanse part of cach laliel

i mounll clanze O, era LR o ATl "n:', ey, . ﬂn‘ rnugigtiug
of vitler atomes in the hady of Pu {7} ar ealfexit markers of
e forme B4 0. A refuration of (67, a) i3 a patly o a searcl
tree of (03,) from the root o a node Jalwled with (g, r).
Tl asrswer stilastitntion of thie pefitation 13 the subsriont ion
roatnel the sodubiog of the refutaeion ia Gr. A solution tabde
ek any amsornnd fon ace defioned w the same Wiy hi brefore,

Ant DLDT struetuee iz a triple of a scarch tree, a snfution
tuble nued an associntion. The relatiou between a node and
ite clild nodes iu search trees of OLDT structures is specified
Ty thie following modified OLDT resolution,

A wode of OLDT structure (Tr, T Aa) lalicled with
(5 ama o ig) b sabd to be OLDT resalvalde when it
satisfivs cither of the following cowditions
ia) The node i= a terminal selutiou vade of Tr aud there is

some definite clwwe *0y = Ty, Oy, ... Bg" {(m 2 0] in

program I* such that aje auwd Dy are unifiable, say by

an n.go, 0.

(1) The nede is a lookap vode of Tr amel there 35 sone
solution O 1 the associated solution list of the lookup
pode eucly that Or is an mstance of aye, say by an
nEtnat il s 8.

The QLDT resolvenut is obtiined threugh the following
two plinses, calling phase awd exiting phase. The case in
wlhirli 2 node is QOLDT resalved vsing solutivas iz the solution
talide is processed without geuerating call-exit markers in the
calling phinge, When theee is a call-exit marker at the feftmost
af the clanse part iu the exiting phiase, it means that some wit
subyrefutakion ws alitained.

[#) {Calliug Pliase) When a uode Iabeled with { o, o, .,
an " a) s OLDT resalved, the wteomeliate |a-h-:_l I5 geu-
crated s follows <
a1 When the node is OLDT resolved using a defi-

ity clavse * Oy - ﬂl.ﬂ:.--'-nm- in Progristi r
aped an e #) the ideomedinbe clange part e
R £ P s PO 4 (R [f]] .-;rl,nz.. courg ™ and the imter-
medinte sulstitation part ry is &

a-2 When the nocde i2 OLDT reselvadd usivg a solution

Dr i the solutisn table aned an instantintion 8, the
wterinediate clanse Trintt 1= Ty, .uﬂ*. and the
imtermedinte substitution part 5 s of,

() {Exitmep Phsse) Whets thiere ace k call-exit markers [4,
.?ti_ |,;-1.-_._ﬂ-:E, cow A] at the leftmost of the interme-
dliate clwuse part, the alel of the wew vode is generated
as follows
bal The cianse part is ohtained by eliminating all these

call-oxit markers, The substitution part i3 & com-
posed sulsiitation o <o @am iy,

b2 Add Ayemym, Asmamity. o Army oo to the Tast

of the solution lists of Aym), Avoz, oo, Agayg, ro-
sperlively, of they nree uot the solution Jists,

The preeize algorithm s sbown jo FPigure 2210 The
processing at the calbog phase iz performeed s the Tt case
statement, while that of the cxitiug phase is performed io the
cocon] while statement successively,

" Note that, wheo a wode is labeled with (7], the sub-
stitution pact & always shows the mstantiation of atoms to
the left of the loftmost eall-cxit marker 0 &, When there is
a vall-exit marker [A;, o] at the leftmost of elanse part 1o
the exiting pliase, we need to update the sulstitution part by
COMPOFIIE 7y i order that the property above still Lawrlels after

OLDT-resolvel{ ey, a2, ...
1= 0
case
w}ll‘n H1 ﬂﬂl:l'l‘il:(.'u].“J".]L' IIS GLDT I.'tE-l:':ll'-'l.‘J
with “0h, - By o0 0T m P
let & be the mogn. of oy anel Oy
let g be a vesative clanse
“0y, Ba, . 0, o) 0.0
let ry be the snbstitation § — [A]
when a lockup pode is OLDT resolved with “IOr” ju Th
let & Bre the wstantiation of oye to Or
let &g be o negative clause g, 0. g
1y be the composed sulstitution af ;
endcase
while the lftmost of &) 1=
a call-exit marker [A4,4y, 0,45,) do
let Gy be Gy other than the feftmost call-exit marker |
et rgr be oo — [}
add Ay g to the last of A, 440 solution st
if it is pot oot g
=14 0
endwhile
[Crcw Tacu} 1= (G, 0h

return (. Tuew -

v T) label) o Iabel

— {n)

Figure 2.2.1 An Implementation of OLDT Resolution

elimivating the eall-exit marker. The sequence 7m0, 0%
denotes the sequence of updated substitutions. ln addition,
wlen we pass o rall-exit marker |47, 0;] in the while loop
above with suhstitution r;, the atom A;r; denotes the sobu-
tion of the wuit subrelitation of A;m;. The solution A5 i3

added to the solution list of Ajr;,

A pnode labeled with (foy. o, ..
node when a varinut of atom ey aleeady exists as a key
the 2odution tabdle, aned a zolution oode otlierwse,

can”, @) is oa lookup

The irdial OLDT structure of {G,a) is a toiple (T,
Tha, Aap), wheee Trg ia a search tree of 7 cousisting of Just
thie root sehition uode labeled with (3,7}, Thy i2 a solution
table cousistiug of just oue entry whose key is the beftost
atern of 7wl rolution list is |], and Asg s the cinpty set
of poiaters. The pnmeecdiabe exdenson of (HOT struetorre,
extension of OLDT structure, answer sabatifartoa of (OLOT
refutation and solution of OLDT refttation are defined in the
same way as hefore.

Example 2,21 Couseler the example o Seetion 2.2 again. The
maodified lybeid inteepretation geoerates the following OLDT
structures of reachin, Y|

First, the iuitial OLDT structure is generated, in which
the roeel pode s labeled with {“recch{n. Yo)™ <2

Secondly, the root node [“reach{n, V5], <>} 1= OLDT
resolved nsing the program to geoerate two cbild nodes, The
interinediate Iahel of the left child node is

(“PeachiX,, ¥, 0 edge(2, V), [reachla Yoh <2 7.

<Yo=Y¥, X 'i'-_-l:I}].
It is the oew lalre] Bomedia v]]. singe ite leftinest ie a0t a eall-
exil macker, The lotenmediate label of the right cliild nede
is

(“[reachin Yy, <>}, < Vp=a, X, sa>)
Dy clinﬁu:ttiug the leftmozt calloexit marker and rmu]m#lmg
the substitution, the new label is [0 ¥y = a, Xy 4= a2).
{When the ciause part of the label 5 O, we will oot the
assipnments irrelevant to the top-level goal 1 the Bgures, e,

< X, = a) Duriag the climination of the eall-exit marker,
reachin, a) s added to the solution table.

reach(n, Yol
-
! A\
veacki{ Xy, 2y) edae(.Y), I {n-ar_lf_{jﬁ]_,c::- | ()
T T e e Xy sa> < Yye=a>

L

) Y .
reaclia,) ¢ jreackla,n))
Figure 2.2.2 Step 2

Thivdly, the left lookup node is OLDT resolved nsing the
elution tuble fo generate oue child solutios wode.

Fonptlly, the penerated solation wode is OLDT resolved
wsinz a wunit clanse “edge(a, 87 i program I to geperate the
ptepaeilinte Ialeel

(“Jedge{Z). 1), < Yo=Y Xy =0, 2 =a> 1.

[reachla, Yol <> |7 <Vi=b>)

Dy elimiuating the leftmost call-exit markers and B L
anbstitutions, the wew label s {0, < Yy = b X =a, &=
A, ¥ e=) During the climization of the eall-oxit markers,
edpein.] aud renclida, b are added to the solution talile,

Similarly, the node is OLDT reselved nsing s nnt elanse
“edge(n. ¢)™ in program I to geuerate the intermediate label

(“Jedge{ 2. Y1) < Yo =V, Xy =0, Z =a> l.

freachia, Yyl <> b'oaVi=ex)

Dy climinating the leftmost call-exit markers and compesing
subistitutions shnilarly, the wew Inbebis (O, <Ya =g, Xy =a,
2, = a. Yy = ») Tlas time, mlge(n, b) awd renchia b) are
adddod to the solution table during the elimination of the cali-
exit markera

reacli{z.Yo)
@
! !
reacki X5, 2]_':'I'i:.rl.'[z.l.,-‘fll. [rrnr]l.[:h"f..]-.{? ! a
S <lhe¥, X, =n> - “Ya=az
l I
'

" 1'&[1;1.'[3-_.11']] i r-.'m’ll.{!l,'!l.n],{} L
\'1‘ <YoeY . X, &u Sy%a>
\ / Y
""\ a o
~. 2Yya=bs clpe=em>
reach{ay) h;rnr].-[.-;.?ﬁ_r-.-m'lL{n..h].4':'&;:15[-‘:,-:}1'
cdeelaY) 5 [edge(al fedge{ac]|

Figure 2.2.3 Step 4

The process of extension procecds similacky to obtain all Flie
sohietions as in Example 2.1.1

Tiemari Note that we no louger peed to keep the edges aniel
the poy-rerminal selution nodes of searcl trees. I addition,
wr e throw awny assigaments g foe the vanables w O
at step I'E} atd rhoes in T for varables nat o A_,'+1|‘!'J.+| At
atep (C) i Fugure 2.2.1

3. Type Inference by Abstract Interpretation

Suppose that a poal “mep-plus{ X, ¥, 217 15 excented with
tle serond armument instantinted to s wanber and the otlers
to any term, where moapeplus and ples are delined by

map-plasi| |.M.]]).
:J:l.'l.ln-;ﬂus[[)’LlLl.M,lﬂ[N” =

[}

plnsl A MO}, mapeplas{L M N}
plus{0.%.0).
plus{suc ()Y sue(Z)) - plas(2Y, 7).
Then, the first and thind arpuncnts of map-plus are always
instautiated to a bst when e exceontion succeeds, Dt owe
wonhd like to kuow more detailed type infornation i pesailie,
In farct, these arpwarnts are always nstautiated to lists of
wumlsers, How cau we sbow it mechanically 7

In thiz section, we iutroduce a monomerplic type jute
Prolog and extend it to a polymorphic type, aud show Low
a polymorphic type is inferred in the framewerk Lased oo
OLDT resolution in Seetion 2,

3.1 Polymorphic Type Inference
{1} Monomerphic Type

We introcdure type coustruct into Prolog to scparate
definite clanses defining data structures from others defining
procedures, e,

typea.

hist{]]).

list{[X|L]) = list{L}.
end.

type defines a usary relation by definite clauses. Tle
Wend of definite clase takes a termu defining n data stctore
as its argument, either a coustant b ealled a bottom clement
or a term of the form ety ta, oo, t,] where & 1= called a con-
stritetor. The body shows type conditions on proper subiferims
af the armaneut,

Here mote that the set of terms iz preseribed by type
precicates, The set of all terme ¢ such that the exeention of
pith succeeds is ralled the type of p, aud denoted by p.

Ex:ump]'{‘ 210 Let the defuition of a type num Lo
type.
unm (U],
oo see{ XYY o (XK}
end.
Then num s aosel {Ooswe0) suwelauc{0)) .} Note that
terms 1o each type s net pecessarily provad, simce the ex-
ecution of plt) sometimes anceceds withont instaniation of
varinbles e £, For exmmple, we mcbele "Ll i foat, siee the
excention of Hat{[X}) succeeds withont jnstantiation of the
varishile X,

Suppose there are & type precdicates pyops, .
using the type coustruct snch that py. pe, oo e are dispoiat,
A type 15 oue of the following & + 2 sets of terms,

'k defed

any the get af all torms,
py : the st of all terme eatisfying the type defnition of g,
pz : the sct ef all terms satisfying the type definition of 2,

pi the set of all terms satiefying the type deftion of 4,
B othe ety set.

(2] Polymorphic Types

We extend the “type” romsiruct o the above to a paly-
:'.'.nrp]tir Oi1e, C.E.,
typo,
hat{a](]).
list[o]([A|L}) - a{A), hatje][L).
end.

Lo Floee elotinni® bone of reameleat in Section 1, its body, e unmi{ A
speel soneelist (L), is its type condition. In the definition above,
the num is paramcterized to o and nombist is to Hetja),

I general, we iulrodure polymorplic types by param-
etersie e prediearcs of their type comditions {firectly or
ihivect]y) as Tollows:

....O'J:][I!'I i

ploey, ma.

pleg, e,)il)

Pl o, ,nk]f.:l{x“.."f;:.. . |xl-n-|1||.:| -

.F"Jj RSy :'-I":'_'[xlit}-- . s -J":n.{xlnq:l'
plagez, . me]leal Xng Xazeo oo Xung) =
f"rhii‘t-n’-l.]-f';q[xh.} ----- Ih,,*{:‘rﬁn“]

where pois a new palyiorphic type prodicate, b = a new
constant enllecd batrom element, £ is a wew function symlal
called eanstructors, p:; 1= eitlier a fype preshicate of an achi-
trary palymerphic [or mowomerphic) type (ueluding any} or
type parnmeter oy -

A type defuition oltaned frow ploy, ... eg] by substis
tuting type predieates wy, o ug for paramcters @y, ..., @ 13
called] an fustance of ;erxj e], and denoted by pluy... .,
vy]. The corresponding et of torms is called a type instanee
of pley,.. ., gl and denoted by piul Y. ---'-Hcl The =ct of
Ferins ;[ur.y....,.my] ix denoted simply by p The II:'I-:I'H.:IJH‘E!"I
reg 1 called A fype paramerer, meed tlie puart euclosed wills [

aned s eadled tle paramcter pare

Example 3.1.2 Let num be defied as before, Thew, we can
cxprvee a ligt of nombers. numlist in Sertion 1, as a type
mstance of fstjal, Le. the set of all lists of num is deaoted
by det[num]. where a polymorphic type definition of Hain] is
e[]

list[a]{{AIL) - alA). et (L

arty] means fiat of 0 wonemorplie deluition, mueel rrurn
ean’t e dewsted by any other expreesions, A list of lists of

f1al

mum ig elewatod Ly Desd [feat | mom]|

Exauiple 3.1.3 Suppose that fiag b2 defined in the same way
as Example 212, A Hinary tree whose nade is labeled with
soame ter in fat 35 defined as follows.

[rrec|oi[4).

lepev|ad{ler{ LY = Drpee|nliL), list[aj{N),]I:rulr:' (I
Then. a term o the t
unele |rl]]l led watle a teren in Hadjnum).

v oo nwm] i oa biuery bree with ts

S el pfo) are not
] are digjoiut wlien-

Iy general, polymorpli Il‘ T'l-]u‘- _Ia
peecssarily disjoiut, while pil b wd pyl.
ever prgoand pyoare different type pt:-*:iir-'\lm.
aaul dint]omy! e wot disjeiut, aod Istinum] and
Battlest] are ﬂ'l.*_ihitﬂ.'-."

For rxanng e,

{1ad | reeran

{3) Orderings of Polymaorphic types

Snppose that there are & type prodicates py paoo. P
such that pyopa,. e are disjoint. Theu, a type iz either
gy, tome type imetanee of g palAzlee o palde] or B
wlivre ary 18 the sot of all terins, A is a seguence of bype
Llill'iltlll:it‘l.':‘. sl W o thae cangty set.

Palymorplic types ave ordered fu two different ways. One
i thr instautiation ordering. A type instance plug,. ..)
is said to be smaller thau s type wstance glug, ..., v,] wort.

b anestantiad o or I.J'rrm" i any terms iu p,uh . ,u..., are fu-
atnatees of terms o q[u lovany ﬂ..] and demoted by p[ul. . !.t,,.|
= gluge..oova] The lustantiation ordering between polymor-
phie types is defined az follows:

(a) any < pluy uz, .o]
(b) plug,ue,) 20
fel pluy, ue... -.Hm] mntl q[ul,lrg 1_.'..,: are tweomparalle

when p aod g are different type predieates,
(o) whew p and g ave the s e type prodicate,
(0 plug uz, .. Jva], when w;oand g
are the same ty‘n:' oru; 2oy |'1:rr any g um.l vy
(i) gley,ee, gl = p[ul s,u...] wihien uy awd vy
are the same type or vy < iy fur auy L ancd Vs
{iii) otherwise, pltey uag, ..t {aud l;r[‘l'.l; vz, .
iwcomparable.

u.c,.J = gl ul.t.l*

Ig,_,l are

Example 3.1.4 Let num and list be defined as before. Tlien,
fist < Dat[mum]
list[liat] = Hat{list]rum]].

fisi[fist) and Haf|pum| are iweomparable,

Example 3.1.5 Suppose that the type defuition of diree is
dtrecfry, oA B} - oA, oz(D.
dtrecfoy, og]{der{L.A BR}) -
dtreefay, oali L), ag(A), aaf Bl divec]my. aa] (1)
Then, direelfiar num| and direc]nuem fist] ace imcomparabide,

The otbher ordering 1% the set dorinsion onlering. A
type iwstauce pley, .o e B8 osaid to be smaller tlhan s
bype mstanee gluva,.oove] worits the set ipelusion omlering
T plug, oo um] de ineluded daoglyg.. v). and denoted by

i 1 (]
Pl € yleg,- ..]

Exampie 3.1.6 Lot rium aaed oot e defined as Lefore, Tliea,
!u:[num: C leat,
I_:I.\!.fllll:'agl 1 e |] C it .H.li'l
liat[lest] and Hatlpum] are disiotat.
(4) Join and Union of Polymorphic Types
We dehue the jon amd wiion opeestions of polymorplue
tyjars re fermulating the 1||r>1|.r=|||.ur|r|1ii‘ ot Tlee join u]wr;ﬂir.u

w.et, the instautintion orderine, denated by v, i defued as
fullows:

s -] Vil] =
||=:11| r.:m] when |”|-1.,., ,t',.! is i,
qluy..... vyl whoen plug.. .., [Ty T
. whew proanwel g are differeut, or

vither plug.. . um] or
E’[t‘j praa -.!-"n: = 4l
plocvwi Vg] when poand g are identical.

Simsilarly.the union aperation wort the set melusion or-
decine, denoted by U b defined as follows:

Mlug.-. .. U | U] 0g e V| =
plui... .. | when gleg, o, vn) 1= 0
glvi Wt wlicn p[u, . 'u,,,k iz
any, wlien poaned g are dhillerent, or
- either pluy, ... um] or
vy, .- Ua] is any,

J"[- T 4] .. 1 wilww s el i oare slentical,

Examgple 3.0.7 Let num aud liaf be defined as belore, Thes,
h!![num] W H.l!.{m:y] = fl'at_lr}um!
leatlfaat] W listrum) = @

Eﬁ]!tgf] U list|num] = fat[any].

Exsnple 218 Let divee]ay, ag] be defiued as hefore,
dires] |_=[:5{.;1mn| W r.fircu[nu:ﬂ.:l_r_tyl = dtree|mum num],
diree]any, gum| U dirccfnum uny] = direeluny any].

(4) Type Inference

A tppee sabatitution pobe s expression of e Tern
= X, {:tllx-zl_;l_:"._.‘}:gﬂéﬂ},
weliere piyogim, ... g are typues. The type assipued to variabibe
X by type swbatitution s denoted by p{X). We stipmlate
that s type substitution assigns any, the minisum clement
w.r.t, the ipstantiation ordering, to wariable X when X is oot
i 1he demeain of the type subetitution explicatly, Hewee the
ety type substitution <> assigns ny 1o every varialle.

Lot A be s atom in the body of some clacse in PU{G}
and g be a type snbstitntion of the form

<Ny e, X =g XIEp >
Then da is called a typpe-abstrneted atam, and deootes the
sot af all ateme ebisived Ly replacing each variable X; 1o
A with a tern in py. Two type-aistracted atoms Ay aud
e oare said to e unifiakbde wlenw Ap o lie # 00 A list of

typreabsicacted afoms [Ajpy, Azpa oo A jin] devstes the
sot ation W Ao, Silarly, G i called a fypre-alstracted

pewative clause, awd denotes the set of negalive clauses ob-
tamred Dy replacing eack Xy w7 with o tern ooy

The conventional top-dowu Prolog wterpreter is modeled
Ly OLD vegolution. The relation between a uede and its child
podes in OLD trees is specifivd by GLD reselution.

Lot 07 e nonepative elvse of the form "4 Az, AL
fre 2 L1l €8 b acdefoite clavse in progeam ol the oo
- By 0. 07 (moE U)o A nede of OLD tree In-
Poler] with segative clanse 60 i2 gaid to e QLD resalvabie
with (53F A, aned Gy are anifinhle, say by soomegoa 8 With-
ot lose of gewerality, we nestme thot Ble megan § substis
tutes a teenl entistung of freel varinbles for every varialde
i Ay and 0 The nepgative chnee [or possilily ol clause]
0,000, .., B At AL 0" i ealled the OLD resol-
vert of (0 with 7, The restriction of the substitution § to the
variaddes of Ay i ealled the sudantation of the OLD resodue
f1oe.

An atam A appencing ot the eftmest of the Inlel of
woele in soame GLD teee of 608 iz ealled eallive pattern of G
Mote thal any ealling pattern of 7 02 an justauce of some
atows i the body of a elase i U {7}, Each calling pat-
tern r-:|1'|'r:=|ruu-:].'-i o sonee hey i the suhation talie of OLDT
shructure.

A salution Ar of o enbrefutation in an QLD tree of & is
callvsd an exiting pattern of 70 Note that any exiting pattern
of €7 i nlap an imstanee of =ome atow o the body of a clanse
i Moo}, Baels exiting pattern carreepowds to epme solution
i the salutiven bzis of OLDT structure,

Let (7 be a type-abstracted pegative elanse, C(Gp) be
the set of all ealling patterns of uegative clanses in G and
D16 be the set of all exiting patterns of pegative clauses o
(7. The type iuference wort, Gp iz the problem to comypute
[a] some list of type-alstracted atoms which is a superset of

C{Gul,

{5} somre list of typr-abstracted atowms whick is a superset of

Elirpu).

2.2, Type Inference by Hybrid Interpretation
3.2.1 OLDT Structure for Type Inflerence

A searelt tree for type infercnce is a teee with its nodes
labeled with a pair of & [gracealized) negative clanse a2
type substitution, (For brevity, we will sometines ok Hae
term “for dype wferenee” boreafter in Section 3. A search
tree of {7, p) is & search tree whose root nade i inbeled with
{67, 1), The clanse part of vack pair bs & sequenee Yoy e,
o, consisting of citler atoms ju the body of PO 00} or call-
exit markers of the form [A e, b A refutation of (G,) i a
P“th i a scarch tree of [1‘:.;1] from the root to a aode Tnbeeled
with {0, e, The answer swlstiftion of Hee pefutadion is the
typee substitution v, and the safttion of the pefatatinn e (e,

A salution table for type wnference is o st of cutrics,
Each votry cousists of the key awud the solution list The
key is o type-abstracted atom, The salutioe fist 3= n lier of
type-abstracted atoms, called solutiens, whose all solutions
are greater than the key wort. the mstantistion onderiog.

Let Tr he asearch tree whose nodes fabeled with sous
oul] clansce are elasaificd inta cither sefation nedes or fookug
aoers, and let Th be a sobution table. An association for type
inference of Tr and This a set of poiurers pomting from carls
laokuap wode in Te into some golntion list iu TH zarch that e
lahel of the lookup wode and the key of the salution bst are
variants of early otler.

An OLDT strurture for type inferenee 15 a triple of a
searchs tree, a solution tabile and an assaciation. The relation
Letween a pode awd its ehild nodes e speciiied Ty OLDT
resoluetion for type fufercnee i Section 3.2.3

1.2.2 Overestimation of Data Types

We peed to slpﬂrif}' the mn-cs'lmn;[mg opwerations ab step
(AL) nud {C)in Fignre 2,21 for type inferense, Inoorider
to specify these operations, we weed to consider the fllowing
problems. Let A be au atom, X XA, 0 X all the viwialdes
in A, g a fype substitution of the form

< Xy=p Xpepn o Apspe e,

I an atent, Yo, Yo, .., ¥ all the varmbles i 02, and o a type
substitution of the form

<Vie=q. Y e T
Then o
{a) How cam we know whether there 13 au atem in As = Or

in o Apn e T
(b If thore s such aw abom, what ters are cxpected to be

?L"Hltgu('[i te ¥y Y=, 1 h]" r?

Example 3.2.1 The followiug two type-albetracted aboms
piLy euc{Ny)) < Ly o lint[num), Ny =nem >,
PRzl la] Ny) € Xss=any, Lz =any. Nes=any >

are unifiable. Theu, the enmmon aton is of the lonn p((X] L,

auc| V)], and terns in num, ﬁ,_u¢|.-1|,:m_: aned mumomust be

arsigoed to variables X, L and N,

(1) Overestimation of Unifiability

When two type-nbstracted atoms Ap and T oare wafi-
able. twe atomns A and I ozt be wnifabile o the wsual genge.
Let o Le an wegu. of A aud I of the form

< X, Eh,x; ¢=t},....,_X|_'E=tk,

Yie=a,, Yotma, . . Yisa>.

If we ean overestimnate the type assiened to each acourrence
of £ in ¢; from the tvpe substitntion g oaud that of £ in s
from the type substilution e, we caw overestimate the type

assignedd to the varinble Z Ly taking the joiu V wort the
ingtantiation ordering for all ocewrrencen of Z. If it is the
eraptyaet @ lor some vasdalile, we can’t expeet that there exiat
an atom Ag = Drin Apn D

Wihien o tertn § ronbalning at orourrenee of varialde 2 in
instautiated to a tern in p, we compube a by e sek coutaiuing
all instances of the vecurrcuce of £ as follows and denote it
hy £f <is=p>.

Ef<tep>=

[P, when £ 15 2
Eny, when s any;
z_f_:‘-'. b &= po >, when § s ef the form :{th . ,.ln},
N Zisin ¢,

pisatype pluy,... vl

¢ is noconstructor of plog, ..., om| and
piy 8w type assigned to &)

L@ oilierwise,

Example 3.2.2 Let num and liat be defined as before. Then,
Al < |AIL] «list|num]> = num,
L < |A|L] =hgt[num|> = hst[pum|.

If we would Like to chieck the unifiability of type-abateact-
ed atomns Ag and Fe exactly, ie, would bke a procedure
rebuning true o and ey i they are unifinble, we can check
it using the estimation £/ <) 2)e=p>. The exact wifiability
check, bowever, takes more computational time beenuse it
can't be reduneed ta the wniBabibity of terms. Dnt, if we would
like just to overcstimabe the wifability, e, would like a
11|‘nn't111r:~ returning tre if they are snifialile, we iy use
e naifiadality chosk of A nml 2 lnstead of the mare tines

COIEL b INE oL

Example 3.2.3 We cau check the mifinhility of p{X) < X <=
list = aud plaus(¥V)) < ¥ = lat > by computing 2/ <
aur{ Z) e list »= 0 aud) < Z=liat 2= lat, Lieeanze on
peran of pX) aud plawc(¥)15 € Xe=mrue(ZlLY =2 = 1
we uze the nmbability check of plX) amd plaue(Y 1) wetead of
the exact o, we would consicder these type-nbstracted atams
vnifinble,

{2} Une Way Propagation of Type Substitutiuns

We will restrict our atteutions to the case where ¥ =<2,
Suppase there is s stam Or ju Ap 1 De. Theo, what termg
are vxpecled to be assigued to varialles in B by ¢ 7

Ar we Liave Just shown, we can overestimnate the type
arsizned to the varialle 2 appeaning o the g, 1 of A and
B dur to the type substitation . Dy collecting these type
neaments for all variables, we can overestimate the type
suttitntion X for the varialles by, e, ..., ty substitnted by
the meopa n Then, il we o overestimate the type assigned
oo ay. fram the type sulstitution A obtained aliwe, we cau
ehtain the type substitution ¢’

< ¥y el iegh. Yieq >

by enllecting the types for all variahiles ¥i.¥e,.... ¥

When each variable Z ju term s b instantiated Lo a teos
iu A 2], we compute a type set containing all ingtances of s
as follows awd denate it by =/ A

afd =
Q. whee AMZ) i2 @ for some Z in 5
AR when » 13 a variable Z;
qiﬂll . ,ﬂ} whr o 15 a Bottom elewent of
gloy e ... o [
qltig, .oy u,_r'_‘.] whow & i oof the fora elag, ..., 0.0,
1 . e s a ennstractar of qlag, ..., 6] and

#:{ A G g, for any & (142 n),

where g, 18 the type condition of

the e-th arpument of ¢ in q|1nir, oy,

u; is & type ohtained as below; -
any, olherwise.

Ly

Let g1 < ¢ = n) be the type coudition of the -tk
arpument of ¢ o oplay, oe, . oyt] Then, far all cecurreices
of a parameter ay in all gl's, uy(l < 5 = m) is a union
w.r.t. the set inclasion orderiug of the types. Bacl of these
types is 2,/ 4 when an accurrence appears as a predicate of .
the corresponding type io a parameter past of 4, /A whew an
prourreuce appoars inoa paraincter part of gf

Example 3.2.4 Let num and st be defined as Liefore. Tlen,
[/4 = Hat|B], for any type sulstitution 4,
[A|L]} < A & num L <= listinum] > = [ist[num],
[AJL}) < A« rnum. Le=lat|any] > = latiany].

Let A be a type substitution
< Adenum, Betist, L= lisotfd] >,

trecjal(4).

tree]a](1e(L N R - treclaf(L), a[N], tree[a]{ 1)
and A be o type aubstitution

< A< troe|num|, B fiat, © = teee|list] >,

And let 2!, al? and a2 be ocourrences of the parmneter o
at treclai L), a{N] and treela]{R) respertively, Suppose that
we compiite br(eh, 000 A Then, the type olstnieed from
al™ je B Lecanse afl! appearz in a parnmeter part of the
type ennelitinn of the 1st argpument, Le., tree|nft], aid A
is treel®] The type obtained fren 2™ s list, beeanse al?
apprars in that of the 3l armument, Lo teee[as], amd OF4
is frec]lietl. The type obtained from al® s OfAL i, .
Leeanse al2 appears as the prodicate of the type coudition of
the 2ud arpument. The union af these types s st theeefore
triw DG A = dreciiiat].

MNow suppose that we compaate te{ A 80, C)f A The types
pbtaived from ﬂ“],i'llﬂ,-".-:j:I are numn, fesl, Ieal respectively
because AfA D/ OJ0 are freeinum], list, trecfliat] resprece
tively. Then, becanse the union of these types is any,

trb A B)[4 = treelunyl. T

The rype subatitnion abitaioed from poam! g nsing 2/ <
7] =t aud &/ 3 above is depoted by propagate(p.n). (Note
that o depenids on just s sl o)

{!.J. Overestimation of Type Substitulivns

Az for the operation at step (A} for type infereure, we

can adopt the one-way propagation
propagalelp,),
sisee the destination side type sulatitution is £33 As for the
nperations st step (D) aad (C) for type wferenee where the
destination side type suletibetion s oot uecessarily equal to
<>, we can adopt the join wor.t. the instantiation ordeciog
gV propagate(v.n]

e, clementwize joiu of the type Mﬁip;uul L'-;u' HIT pn:\l'iv’.ru'.'r type
substitution and the oue by the one-way propagalion.

3.2.3 OLDT Ilesolution for Type lnlerence

The relation Letween a pode amd its clild oodes of a
searcl tree is specified by OLDT resolution for type iuference
s follows.

A wode of OLDT structure (Tr.Th, As) labeled with
[“etgig,. . 0,7, p)ig saii to be OLDT resolvable {no2 1)
when it satisfics cither of the follewing conditious,

{a} The node is a terminal sohitivn pode of Tr and there 1a
some deSuite clanse “By - By, By, 0w [m 2 0] in
progra P suck that ey aud D are unifiable, say by an
Mo R

{b) Tle pede iz a lookop uode of Tr and there is some type-
abetracted atom Fe iu the associated salution list of the

lockup uade. Let i be the rewaning of D to ap,

The precise algorithm of OLDT resolution for type infer-
cuce @5 as helow. Note that only the operations at steps [A),
(18} aned (€7) e modified.

OLDT-resalvei{®

= (I

I LI Inbel) ¢ label ;

[T
case
when a solutiou nede is OLDT resolved
witiy "ﬂ[:. h Bi.ﬂg......ﬁ.n' o P
It o e thee mogow, of ay wud Do
let Gy be & negative clanse
Lﬂ;.ﬂz,..,.ﬂ,.., ELILH.I]I. a7, .
let vy be propagatelw, 9] — [A]
when a looknp wode is OLDT resolved with *Dv™ o Th
let o L the repaming of I to oy 5
let 7y be s wegative clause ®ez,....

N

L
B G

let g be pu W propagateiv,nj
endcase
while thie leftinost of) 13
a call-exit marker [4,40, g1, mi+1] do
let Gy be G other than the lefomost call-exit marker ;
let sy Be pryer W propagute(e, gie) — (<]
add Ajagiigr 1o the last of Ay s solution List
o i s b ao ol
=41
entdwhile
[CFnew. I-':n-f.u.-_' = ‘r-".l-
return [Gn¢w1Fnrw:|-

— (B}

)

Figure 3.2.1 OLDT Rezeolution for Type Inference

A wvode labeled with (%2, as,..., 0,7, 4) 12 8 lookup
node when the fype-abstracted atom agp i8 a key in the
solution table, and a salntion node otherwise.

The initia! QLDT structure, innnediste cxteosion of
QLDT structure, cxteasion of QLDT structure, answer sub-
stitutivn of OLDT refutation and selitzon of GLEFT refutalion
are defiued sinilarly az o Section 2.3,

3.3 An Example of the Polymorphic Type Inference

We chow a simple example of the polymorphic type in-
Ferenere, Heeall the following defiuition of map-plue and plus.
weng-plus(] L]).
pap-plus [A|LLM [CIN]) -
plus[A M.C), map-plus(L M,N).
s 0Y,0],

L
i

plus{auc{ XY suciZ) - phes{ XY 2],
Thet the polymorphic type infereuce of map-plus Xo, Yy o)
procecds as follows, when it iz exeruted with the secomd ar-
prumeat mstbiantiated to a wamber

Firat, the mitial OLDT structure below is penerated. The
root pade 1w solution vode Inbeled wills (*eop-piusl Lo, M.

al7, < M = num =)

Hecoudly, the root uede lpﬂlﬂi"l"'“![Lo My Ny)™ = M
<= num >) is OLDT resulved nsiog the program. The Jeft
child node gives a solution map pies Ly, Mo, No) = My =
numt, Lo, Nog = h'.u![@l| =, The rght elald uocde 13 a sulution
oode lebeled with [“pheel Ay, Mo Oz) mapeplus) La My, Na 17

< M; = num =) [From uow on, the guantities

Jllﬁl';.ll' r:i:i
exit markers are omitted due to space lumit so that they are
depicted simply by {].)

map-plesf Ly My Ny
< My = num >
%
plusf &g Ma.Ca).
mapeplaesf Ly M2 N2)]

< Mz <= num >

O
< My <= num,
Lo, Ny = hat[8] >

magephingl LM N < A < num 20
|mep-plusiL, M N) € M = num, LN <= lia|0] >

Figure 3.3.1 at Step 2

Thindly, the solation pode s OLDT rescived using the
program. The left child pode is & lookup node labeled
with [“map-plus(Lg, Mz N:2)®, < M « nwn >}, whick
pives a solution plus| Ao, My) < A M7 0 = num >
The right clild node also is & leokup sode labeled with
(“pluaids, Ma, Ty) mup-plusl Ly, 8z, N2)™. < My <= num >,

::Lap-]:ilu!ﬁl.-n..h'!n_h]n}
< My &= num >
!
w]
=< My == num,
Lo Ny = I_”_'—Wi >

\
pluzf Ag Mo Og),
map-phog| Lo Mz Mo]
< Mz <= num >

!
_map-plus{la Mz Nz 2Ll ples{ Ax Mz, Ca L]

L < My = rul:rri.".#_ map-rl 11..";1.-;.1'-1 BLFN e
* T < M, = num = :
map-phnal LM N < M o= pong = . L

“[fap-plusi L, M. N) < Af <= num. LN <+ Hae[T] > 7
plos{ A MO« M <= num > ¢ ‘_,
[;rfu*[.ri M. C) < A MO = num > e
\,__...-"' B L L L L

['lgurn 3.3.2 at Step 3

Fourthly, The left lookupr nade is QLDT resolved further
using the selution table. The child wode gives a pew solution
map-plus] Lo, Mo, Myl € My = num, .T.-..J‘hn o= lint|num| =,
Fifthly, The right lookop node is OLDT resolved using the
anlution talile. The clild is uhohu]t Enrlt |-|-'|?r |t:1“itL ["r-‘u L
plus| Ly, My, Mo}, < Mz <= num
II-IIE.I-J |:..r’|;].. hfﬂ,c_—;] L .4.!_."&.1_]_. [rx e A P

Lastly, the lockup node is OLDT resolved nsing the so-
lution table. Becawse the peavrated child wede gives ne new
pedution, the exceution progess stops,

wap-plus{ Ly M, Ng)
< Mp = num >
/
0
<, My <= num,
Ly, Ny <= list|8] =

%
P]'I.I.E-:'ﬁl.g.h'jg.c-_\-].
rakge-pins(Lo, by .?\':L[E

= a 4= num o
- m——

! \
map-plnef L. Ma Na)] plus{ Ay My, Ca)]

P < My <. num > Mg ;:]lls[H.M:,Ng_I:EJ .
H H < M,y = num >
i O I
| < Ay = num, n_;.}p-]uluylng.Hg,]‘\';].1]
v Ly Ny o= listjrum) > 7 < My = num >
"\ I o
s | < M, %= num,
.. o _ o Na = Lsnt] musn] >

-

mapeplus| LM N)j< M &= num = 1
[I’H.u"l-f.’h‘-ﬂ[.:r, M, .I"l"l < M &= num, LN = fu'lf[ﬂ] o
map-plusl LM N) < M = num, LN < lst[num] 2]

phis{ A M.C)< M = nwm = @ ;
[plea{ A M, C) < AL M. C += num > L

S
Fignre 3.2.3 at Step &

4. Discussion

Type inference for fuuctional programs has beea studied
by several rescarchers, while i fuw attoupts to introduce types
wte Prolog are done [10[3]1.0114].

Bruynooghe [1] discussed the addition of type aad mode
information te Prolag in order to increase the reliability and
renclalilily of the prograws, They gave a method to check
tlhe cousistency using data fow analysis, Myeroft et al. [10]
sliowed a type systew for Prolog based on Miluer's type poly-
morplism [8]. L their system, type declarations are consid-
ered as the syntactical restrictions on arguments of predicstes,
and the eongistency between type declarations and programe
is chiecked. Doth of their systems are type checking systems,
not type wference systeme. Their slogan is *Well-typed pro-
reaans do ol ge wrong.” Note that their notioy of “wrong”
ie idependent of suceess, failure or lonping. For example
[0, plua[aue{), sucleucl{0)}, sue(0]) is well-typed Tmt Duils,
wlihe egrum| foe, foo) ie ilaryped but succeeds, where plua
aud egnum are defined with type declarations by

type-declaration plusi reuem, s, tun).

plus{0,Y.00

plus(suc{ X} Y surl2}) - plus(X.Y.2).
type-deelaration eguum| rum num].

O JJJ{X,:{] .

In contrast, Mishes [9] cousidered types as sets of terms
wlicl were deseribued by some regular expressions, and gave
an algorithom for infeceiug types from Irolog programs. He
didu’t requure either type declaralions or auy other type an-
wotatious.
arguinents are mot the terms deseribed by the types of its
predicate, That iz, Lis slogay 15 “Tl-typed program can't sue-
veed.”™ Dut bie approsel i@ moncmaorphic and it is pot clear
whether bis iden can be vasily extended to polymorploe cases

He claimed that uo atom ean saececd wlen ite

lu our approsch, types are eansidered as e set of all
terine satisfring the definition of type predieates Although
we need to define type predieates, we don’t reguire type dee-
larations. Our system lufers types of the arguments from
tLe definition of the predicates using abstract ipterpretation.
Henee, our appronch iz close tu Misbva's one rather thau
Druyncoghe’s or Mycroft's, Moreaver we extruded mousiner-
phic types ta polymorphic oues, and gave a precise algorithn
for wferring polymorphic types.

Oy approach 2 uew ju the following respects
11

L]
]

10

(1) The meavmg of types (ucluding palymorplic types) is
clear due to the wiroduction of the explicit definition of
type predicates.

{2} Our system can infer polymarplic types.

(3) Our system ran work ou goals of auy forms e, the goals
whose types are iuferred are oot nceessacily o geucral
form plXy, Xs Xnl

6. Conclusions

We Lave shown a polymorphic type inferemee method
by abstracted iuterpretation. This method iz an element of
our system for analysis of ["rD!ﬂE programa ArgusfA nnder
development [3][41.]51.]6].

Acknowledgments

Crur amalysis system Argus/A under development is a
suliproject of the Fifth Generation Computer System |[FGOS)
“Intellizent Programmiog System”. The authors would ke
to thank Dr.K.Fucki {Dicector of ICOT) for the opportumty
of doing this research sud Dr.K.Furukawa (Viee Dicector of
ICOT), DrT Yokoi {Viee Director of ICOT) and Dr.H.lte
| Chief of ICOT 3rd Laboratory) for thelr advice and epeour-
agement.

References

i1} Bruynooghe M., “Addiuy Redundaney teo Chtain More
Reliahie apd More Readsble Prolog Programs™, Proc,
of 1zt International Logic Programming Coaference, pp.
12%-133, 1982

| Couset, I and R.Cousot, “Abstract luterpretation @ A

Unified Lattice Model for Statie Aualysis of Programs

by Construction ve Appresimation of Fixpoints,” Confer-

ence Mecord of the 410 ACM Syrmposium on Privciples of

Programmiog Lanmages, Los Angeles, pp238-232, 1977,

Kanamaori, T, and T.Kawamura, “Aunalyzing Saceess at-

terus of Lugic Prosrams by Abstract lnterpretation,” fo

sppear, 00T Technical Reports, 1987,

C Kanamer. T, and K. Horiuchi, “Detecting Punctionality

of Logic Programs Based ou Abstract Iuterpretation,” to

appear, ICOT Techmenl Report, 1087,

Famamon, T., K.lleriachi and T {awamura, ~Detecting

Termmation of Logw Progeams Dased an Abstract Iuter-

pretation,” tnoappear, 100T Teclue al Neport, 1087,

! Macji M. oand T Kanamaori, *Top-dowa Zoomiog Diagne-
gig of Logic Programs.” in preparation, 1587,

[} Mellish OS5, “Abstract luterpretation of Poleg e

Proc. of drd Interuational Couoference ou Loge

Programming, 15380,

Milzer, JU. *A Theory of Type Polymorplusm i Program-

ming”, 3. Computer aud Systems Beience, Vol 17, pp.

J48-375, 1978,

Mishra P, *Towanls a Theory of Types 1u Proleg”, Proc,

of 1984 luternatiomal Sympoeium on Logic Drogramming,

P 769-208, 1984,

Myeroft A, aod TLA.O Keefe, “A Polyinorphic Type Sys-

tem for Prolog” Artificial lutelligenee, Vol 23, pp. 230G

S0, 1084,

Pereira, LM, F.O N Pervira aud IVH.D. Warren, *User'’s

Guide to DECsystem-10 Prolog”, (eensional Faper 13,

Dept, of Artificial lutelligence, Edinlwrgh, 1079,

| TamakiHaud T.Sato, “OLD Resolntion with Tabula
tion.” Proc.of 3nd lutvruational Confereniee ou Logie Pro.
gramining, pp84- 18, Loudnn, 1986,

—_
Lo

Frams,.”

18]

