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Abstract In this paper we will present a new inductive inference algorithm for a
class of logic programs, called linear monadic logic programs, in the sense that it is
different from the Shapiro’s Model Inference System. It is known that a set of trees
{or terms) is rational if and only if it can be computed by a linear monadic logie
program, and that the rational set of trees is recognized by tree automata. On the
other hand, several efficient inference algorilhms for finite automata are developed.
Then we will extend them to an inference algorithm for tree automata and use it to
get an efficient inductive inference algorithm for linear monadic logic programs.
The correctness, time complexity and several comparisons of the algorithin with the

Model Inference System will be shown.

1. Introduction

The study of inductive inference of logic programs was initially and mostly done
by E.Shapiro and his work is known by the Model Inference System [8,9]). He devises
a program that infers first order sentences (Horn clauses) from examples of their
logical consequences. The target of the inference is an Herbrand model. Thus

Shapiro’s algorithm (especially the diagnosis algorithm) deeply depends on the



theory of predicate logic and logic programming. In the theory of logic programming,
the least model NM(LP) of a logic program LP is taken as the mathematical
semantics, called model-theoretic semantics, for it. This semantics provides the
denotation of a predicate symbol P in a logic program LP

D(P) = {(t1,eonsbn) ¢ PlL1yernstn) € NM(LP)}.
D(P) is the denotation of P as determined by model-theoretic semantics. Thus model-
theoretic semantics gives a nice characterization of the set of terms computed by a

logic program.

On the other hand, algebraic semantics which connects between the thery of tree
languages and the semantics of programming languages is now well known and
recently introduced to logic programming in [7]. It studies the use of tree languages
in the semantics of logic programming. Intuitively, a term is a tree, whose nodes are
labeled by symbols in such a way that the arity of the label of each node is equal to
the degree of that node. Then the set of terms computed by a lugic program LP can be
viewed as a tree language. That is to say, the denotation of P, D(P)={t : P(t)
¢NM(LP)}, is a tree language. From the result in [7], a set of trees is rational iff it
can be computed by a linear monadic logic program, where a rational set of treesis a
cet of trees which can be recognized by some tree automaton Ty and a linear monadic
logic program is a class of logic programs defined hy syntactic restrictions such that
predicate symbols are monadic, the height of terms involved is less than or equal to 1
and the variables in a term must be distinet. Therefore, the denotation of P can be
written as D{P)={t : t is accepted by a tree automaton Ta about P in LP}. Based on
such an algebraic semanties, we can establish a new inductive inference schema of
logic programs so that the problem of inductive inference of logic programs is
reduced to the probiem of inductive inference of tree automata which accept tree
languages computed by the logic programs. Then we can get an efficient inductive
inference method of logic programs which is extended from the one of automata. In

this setting, the problem will be set so that the inductive inference algorithm can



identify in the limit a class of logic programs, linear monadic logic programs, such

that the denotation of P computed by it is equal to the one in the unknown model.

2. Basic definitions of tree

Definition Let N be the set of positive integers. Dom is a tree domain ifl it satisfies
a) Domc N* and Dom is finite,
b) Dom is prefix-closed, i.e. if a, bé N* and ab¢Dom then acDom,
¢) ameDom implies anéDom for 1=n=m, neN.

A direct successor (direct predecessor) of a node x is a node y, where y=xa (ya=x)
for aeN. The frontier of Dom is the set of all nodes in Dom which have no direct

SUCCESS0rs.

Definition The depth of aéDom is defined recursively as
depth(a) = 0 ifa=¢
depthiax) = depth(a)+1 forx¢N.

If tis a tree domain, then depth(t)=max{depth(i) : iet}.

Definition {(2]) A ranked alphabet is a pair (T, p) consisting of a finite set I'and a
mapping p : [N which defines the rank of any symbol { in I'. For such a set I', we
denote by I', the set {feI : p(f)=n} for nz0. In many cases the symbols in ['y will be
considered as finction symbols. The rank of a [unction symbeol is called its arity anda

symbol of arity 0 is called a constant symbol.

Definition ([2]) A tree over a finite ranked alphabet I' is a mapping t : Dom—T,
which labels the nodes of the tree domain Dom. Furthermore we require the
following eondition which concerns the rank function : iftlay=fofarity k=0, then for

ieN, aicDom(t) iff 1=i=k, Let I'T be the set of all trees over I

Definition Ifa, b, b’eU and b=ab’, then bifa=b0". If te I'T, then the subtree of t at a,

where a iz in the domain of t (a¢Dom(t)), is defined as t/a={(x, b} : (ax, b)et}, The



replacement of the subtree at a with a tree u is defined as t(a«u)={(b, x): t(h)=x and
a<b}U{{ay, x) : uly)=x and yeDom(u)}. The replacement (substitution)} of terminal
nodes labeled ceT" with a tree u is defined as tlc—u)={(b, x) : Ub}=x and x= ¢ H(dy,

x): t{d)=¢, uly) =x and y¢ Dom(u)}.

Definition Let $ be a new symbol of arity 0 that we add to I'. (TU{$}T denotes the
set of all trees over [U{$}. Especially we are interested in the subset Sub of (TU{SHT
which is the set of all trees te(TU{$})T such that t exactly contains one $-symbol. We
use the notation T'gT for the Sub. For trees tel' and 5¢T'sT, we define an operation - to

attach s to the node labeled § of t by s-t=s(§ 1) (like concatenation of strings).

3. Tree automaton and linear monadic logic program

Definition ([10]) A deterministic (frontier to root} tree automaton over I is a 4-tuple
Ta=1Q,T,8, F), where
a) Q is a nonempty finite set of states,
b) I'is a nonempty finite tree labels,
¢} 6=1(50,61,....0m) is a state transition function such that

f1: M Q*—Q (k=0,1,...m),
d) FcQ is the set of final states.

IF6 is a state transition function from [ X Q" to 29, then Tp is nondeterminisiic,

§ can be exlended to I'T hy letting :

B 1,nti)) = Bidf, B(ty),...,B(tk)) Tor k>0 and fel'y,

= §y(f) for k=0 and felyp.

The tree t is accepted by Ta iff 8(t)e¢F. The set of trees accepted by Ta is Lhe subsel
L(Ta) of I'M defined as : L(Ta)={t: 8(t)eF). A subset L of I'"is called rational ifT there

exists some automaton Ta such that L=L{T4).

Proposition 3.1 {[10]) Nondeterministic frontier to rvot tree automata are no more

powerful than deterministic frontier to roul tree automata.



Given a rational set LR, by the above proposition, there always exists the

minimum state deterministic tree automaton which accepts LR.

For the definitions of logic program and the semantics of it, we use the notations
of [3]. Especially, we reserve the predicate symbol P for the inferring predicate. We

state some useful results about semantics of logic programs.

Proposition 3.2 Let LP be a logic program. The least Herbrand model for LP which

is the intersection of all Herbrand models fur LP exists.
We denote it by M(LP).

Proposition 3.3 Let LP be a logic program. If AgeAq,...,Ap (nz0) is a ground
instance of a clause in LP and Aj,...,Ape "M(LP), then Ag¢ AM(LP). Conversely, if
AgeMM(LP), then there is a ground instance Ag+At,....An (n20) of a clause in LP
such that Aq,...,Ape NM(LP),

Definition ([7]) A linear monadic logic program is a logic program in which all
predicate symbols are monadic and all the terms occurring in atomic formulas belong
to one of the following two forms :

a)x; (ieN}

b) f(xq,,., %) with Felm, {i1,...imJC N the iy being pairwise distinct.

Now we state very important theorem from [7} which connects a linear monadic

Jogic program with a tree automaton.

Proposition 3.4 ([7]) A set of trees is rational iff it can be computed by a linear

monadic logic program.

By the results of logic programs in [3), we can restate the above theorem as

follows,
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Corollary 3.5 If LMLP is a linear monadic logic program and P is a predicate
symbol in LMLP, then the set of trees {t : P(t)¢ NM(LMLP)} is rational. Conversely, il
a set of trees T is rational, then there is a linear monadic logic program LMLP such

that T={t: Pit)e nM{LMLP)}.

Definition (A) Let'I'a=(Q, I', 8, F) be a tree automaton, We define a set of predicate
symbols R={Rq: g¢Q} in one-lo-one correspondence with the set of states of the Ta.
To code the computation of T, we need a clause for each transition. So, foreach fel'n
and each n-tuple of states (q1,...,qn), we define the clause Cryy,
Crap,..an = Ro(7.q1eqol T LX) B, (x1),... R, (Xn).
Another set of clauses is necessary to take care of the set of final states. So, for each

qeF, we define the clause C'g as:

C’q = P(x)Rg(x).

Proposition 3.6 Let Tao=(Q, I', 8, F) be a tree automaton and LMLP be a
corresponding linear monadic logic program in the above sense. Then Rylt)

¢ AM(LMLP) iff §(t) =q4. Furthermore, P(1)¢nM(LMLP) iff 8(t)isin F.

(Proof) We prove it by induction on the depth of t. Suppose first that the depth of t is
Then clearly Rygla)lenM(LMLP). If 8(a)=q, then Rgyla) =RirajlalenMLMLEP).
Conversely if Rq(a)enM(LMLP), since Ty is determinislic {so § is deterministic), 5(a)
=q.

Next suppose that the result holds for all trees with depth at most h., Letthea
tree of depth h+1, so that t=[(uy,...,uy) for some trees uj,...,Un with depth at most h
and some feT,. For the if part, assume that 8(t)=q. By the definition of &, 8(L)
=5(f(uy,...,un)) = 8(F.8(u1),....0(up)) =q. By the definition of the clause Cigq,, g, there
is a clause Ra(r,siuy),...,5lunfx] veeesXn ) —Ratu ) (X1), e Ri(n,)(¥n) 1n LMLP. Forl=i=n,
by the induction hypothesis, Ry, (ui)¢ AM(LMLF) iff 8(u;)=68(u;). The right-hand
side of this statement is obviously true. Thus Rauluilen M(LMLP), and so

Rt 6uy),... 8l 0 14 un ) ENMILMTP). Then



Rq(t)=Rgut), by the assumption,

=Rs(ftuy,...,u((U1,..up))
=R(r,50uy),....5lu) UL, un)), by the definition of &.
Hence Rqg(L)¢ nM(LMLP).

For the only-if part, assume that Rq(t)é nM(LMLP). Then Rg(f(ug,...,unl)
enM(LMLP). For Ry(f(uj,....un)), there is a ground instance Ratt.ay,...q,001,...,u0))
«Rg,(u1),...Rg{un) of a clause in LMLP such that 8(fqi,..,qn)=q and
quiul},...,an{u,.IEHM{LMLP}. By the induction hypothesis, 8(uj)=q; (1=i=n).
Then

8(L) =8(fluy,...,un)}

=5(f.6(uy),....50un)), by the definition of §,
=8(f,q1,--.,qn)
=q.

This completes the induction.

Furthermore, if 8(t) isin F, there is a final state gr in F such that 8(t)=qr. Then by
the above result, Rq(t)enM(LMLP), and by the definition of C'q, P(t)enM({LMLF).
Conversely if P(t}¢ nM{(LMLP), there is a ground instance P(t)«<Rq4(t) of a clause in
LMLP such that Rq(t)énM{(LMLP) and g is a final state. By the above result, &(l)=q,

and hence §(t)isin F.

By the above result, in the inductive inference schema of linear monadie logic
program, we have only to consider inferring a linear monadic logic program of the

form in definition (A).

4. Predicate characterization matrix

Definition A set of test predicates S is a finite set of trees of I'T. The set of test clauses
is defined to be X(S)=I(S*)—S={ftu) : felj, 0eS', and fa)¢S for iz0}). A set of

experiments E is a finite set of trees of T'sT. S is called subtree-closed if s¢85 implies all
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subtrees of s are elements of S. E is called §-prefix-closed with respect to S if e<E
except $ implies there exists an e' in E such that e=¢"{(sy,...,5i = 1,3,5{,....5n 1] for

some [¢n, 81,...5n—1€8 andi(l=i=n).

Definition A predicate characterization matrix is a triple (S, E, M) where M is a
matrix with labeled rows and columns such that

1) The rows are labeled with the elements of SUX(S).

2) The columns are labeled with the elements of E.

3) Each entry of M is either O or 1.

4) If s;, sj¢ SUX(S) and ej, gjcE and ej-s; =e;j'sj, then the (sj, ej) and (sj, ej) positions in M
must have the same entry.

The data contained in M is DIM)={(e-s, y) : s¢SUX(S), e¢E, and the entry of M is
ve{0, 1}}. Thus we can regard D(M) as a finite function mapping E-(SUX(S)) to {0, 1}.
If s is an element of (S'UX(S)), then roux’s) denotes the finite function f from E to {0, 1}

defined by fle) = D{(M)(e-s).

Definition A predicate characterization matrix is called closed il every row(x) of test
clause x¢X(S) is identical to some row(s) of test predicate séS. A predicate
characterization matrix is called consistent if whenever sy and sg are test predicates
of S such that row(s;) is equal to row(sg), for all feéI', and up,..,un—1€5,
rOW (W ,m Wi = 1,51, Uiy — 1)) i8 equal to row(f(uy,...,ui - 1,82,04,...,uin 1)) for 0=i=n

in={).

The ideas of the closed, consistent predicate characterization matrix and the
algorithm using this are essentially the extensions of Angluin’s ones [1] (the
extension from string automata to tree automata and so to linear monadic logic
programs). A sequence of following lemmas and theorems are guided by those
Angluin’s results. The idea of the characterization matrix is also related to the work

by Gold [4].



Definition Let (S, E, M) be a closed, consistent predicate characterization matrix
such that E contains $. The constructed linear monadic logic program LMLy aver T’
from (S, E, M) is delined with predicate set Pre, calling predicate P, and the set of
clauses LMLPy as follows.
Pre={R owis)(x):5¢8},
LMLPy = {P(x)=Rrowis)(x): s¢S and D(M)(s) =1}
U{Rrowtiisy,... s, 0 X100 Xn e Rrow(s, {X1 b Rrowis, ) Xn) 1 € 'p, n > 0}

U{me[aliﬂ}*—‘ PEg l_'[]l'.

LLemma 4.1 Suppose that (S, E, M) is a closed, consistent predicate characterization
matrix such that S is subtree-closed and E is $-prefix-closed with respect to 5. For
the constructed linear monadic logic program LMLPy and for every s in (SUX(S)),

Rrowis)(s)€ MM(LMLP ).

(Proof) We prove it by induetion on the depth of s. Suppose first that the depth of s is
0,i.e., sel'y. Sinee Rygwis)(s)+ by the definition of LMLPy, the result is clearly true.
Next suppose that the result holds for all trees in (SUX(S)) with depth at most h. Let
tin (SUX(S)) have depth h + 1, so that t=1{51,...,55) for some sy,...,5p in (SUX(S)) with
depth at most b and some fin [y, Since S is subtree-closed, 51,...,5n must be in 3.
Then

Riowit t)e AM(LMLP )
,,,,, 5 ST, 5n) EOIMILMLE y)
iff Rrows;)(81)...,Rrow(s,)(sn)€ MM(LMLPy),

IﬂernW{ﬂE.

by the definition of LMLPy and proposition 3.3.
By the induction hypothesis, Rrow(s,)(S1)s....Rrow(s,)(8n)€ MNM{LMLPp). Hence BErpwit

{tre MM{LMLIPy) is true.
O

Lemma 4.2 Supposc that (S, E, M) is a closed, consistent predicate characterization

matrix such that 8 is sublree-closed and I8 is $-prefix-closed with respect to S. For



the constructed linear monadic logic program LMLPy and for any tree tover 1, there

is exactly one function value row(s) such that Rrow(s)(L)€ AM(LMLPy) and s¢S5.

(Proof) We prove it by the induction on the depth of t. Suppose first that the depth of
tis 0, i.e. t=ael’y. By the definition of LMLPy, for acl'y, row(a) is exactly one
function value such thal Rrowiafa)é¢ 1M(LMLP)) and a€S. Next suppose that the
result holds for all trees with depth at most h. Let t be a tree of depth h+1, so thatl
t=f{uy,...,un) for some trees uy,...,un with depth at most h and some {in 'y, There are
several clauses of the form : anu'[ﬂvl,,..'l-'n]]{r{xlv--mxn”‘_Rruwfvﬂ{xl}:u-quuw['.'n}{'-"in} in
LMLPy. However by the induction hypothesis, for each uj (1=i=n), there is exactly
one function value, say row(sj), such that Reow(s)(uil€ AM{LMLP)) and si€S. Since
(S, E, M) is consistent, there is only one clause of the form : Reowifis,,...s)(f(X1,-.s%n))
«Rrowis; (X1} Rrow(s,)(Xn) i LMLPyM. Thus row(f{s1,...,5n)} is exactly one function
value such that Regwifisy,...s,)(f(01,...,un) )€ AM(LMLPy), and since (S, E, M) is closed,
row(f(s],....8n)) is equal to row(s) for some sin S. Hence there is exactly one function
value row(s) such that Rrow(s)(t)¢ "M(LMLP}) and s€S.

O

Lemma 4.3 (replacement) Suppose that (S, E, M) is a closed, consistenl predicate
characterization matrix such that S is subtree-closed and E is $-prelix-ciosed with
respect to S and that LMLPy is the constructed linear monadic logic program.
Suppose thal Rrpwis)(t)e MM{LMLP ), Rrow(sn(L)€ AM(LMLPy) and row(s) =rowl(s’)
for s. s in (SUX(S)) and trees t, t' over I'. For e in E, P(e-t)e "M(LMLP M) iff Ple-t")
¢ NM(LMLPyq).

(Proof) We prove it by induction on the depth of $ in e. When e is §, if Ple-t)=P(t)
¢MM(LMLPy), then there is a ground instance Plt)«=Rrowlsqtt) of a clause P(x)
—~Rrywisgi(x) in LMLI'M such that Rpgwisg)(t)¢ MMLMLI M) and sgeS. By lemma 4.2,
row(sy)=row(s). By the assumption, row(sg) =row(s') and Reow(s)(1 1€ NM(TI.MLPyu).
Hence P(t)¢ NM{LMLPy). Interchanging the roles of s and §' and of t and t', we

obtain the converse.



Next suppose that the result holds for all e in E where the depth of & is at most h.
Let e be an element of E where the depth of § is h+ 1. Since E is $-prefix-closed with
respect to S, e =e"f(57,....8i = 1,%.81,.-.8n - 1) for some felp, 81yenSn—169, 1 (1=i=n) and
some ¢ in B where the depth of § is h. Since (5, E, M) is closed, there is some sg in S
such that row(sg) =row(s). Then Rygwisgi(t)¢ NM{LMLP ) and by lemma 4.1, Rpywis,)
{51)ye-e Rrawis, _,/(5n-1)€ AIM(LMLP3). By the definition of LMLPy, there is a clause
of the form
Reow(flsy,..5: - 1505005 g WX Lo Zp D= Reowis, X 1o Rrowsgl Xikyo o Lbrowis, _y)(%n)
in LMLPy and so Rrawtfisy,..., sl_hsu_;i____lﬁn_1;J{ﬁsl,,..,si_1,t,si..-.,3n_ e IMULMELP b
Sinee row(sy) =row(s’) and Rrqwie)(t1e MM{LMLP M),

Reowi(f(s|,....8  1,50,8is--150 - S 18— 1,V S Sn = 1))€ AM(LMLPMm).

By the induction hypothesis, Ple"fi5],.8i— 1,581,080 - 1))E AMLMLPy) T Ple
(81,0051 — 1oL SireeeySn — 1)) ENM(LMLPM). Therefore Ple-t)¢ "M(LMLPy) iff Ple-t’)
€ NTM(LMLPy).

U

Theorem 4.4 Suppose that (S, E, M) is a closed, consistent predicate
characterization matrix such that S is subtree-closed and E Is $-prefix-closed wilh
respect to 8. Then the constructed linear monadic logic program LMLPy agrees with
the data in M. That is, for every tree s in (SUX(S)) and e in E, Ple-s) AM(LMLP) iff
D(M){eg)=1.

{Prool) We prove it by induction on the depth ol $ in e. When e is § and s is any
element of (SUX(S)), by lemma 4.1, Regwie-s)(es)= Rrowis)(s)e MM(LMLPy). If sisin
S, then by the definition of LMLPpn, Pl)<Rrow(s)x) in LMLPy iff D(MMs)=1.
Henee Plsle "M{LMLPy) iff DiM)s}=1. Ilsisin X(S), then since (5, E, M} is closed,
row(s)=row(s’) for some s’ in S, and Plx)«— Ryowiei(x) in LMLPy iff D(M}¥sT=1, and
s0 Plx)— Rrowis)(x) in LMLPy iff D(M)(s)=1. Hence P(s)e nM({LMLP) if D(M)(s)
=1.

Next suppose that the result holds for all e in E where the depth of $ is at most h.

-11-



Let e be an element of E where the depth of $is h+ 1. Since E 15 $-prefix-closed with
respect to 5, e =e"f(sy,....5i — 1,$,54,+.,5n — 1) for some feTn, S1penSn—1€5, i (1=i=n) and
some ¢ in E where the depth of § is h. For any element s of (SUX(S)), since (S, E, M)
is closed, there is an element s’ in S such that row(s) =rowl(s’). By lemma 4.1, Rrowis)
(s)¢ TM(LMLPy1) and Rrowis)(s 1€ TM(LMLP ). Then by replacement lemma 4.3,
Ple-s)e NM(LMLPMm)
iff P(e-s"e MM{LMLPy)
T Ple (81400s5i — 1+9,5iy-»50— 1)°8 )€ NM(LMLFPMm)
HTPleflg],....8 — 1,5",5i,--s5n — 1)) € MM(LMLEP ).
By the induction hypothesis,
Ple [(51,....5 - 1,5 SiyeensSn = 1))€ TM(LMLPm) PFE DM (1 ,0ersSim 1,8 51080 = 1)) = 1.
Since rowls) =row(s) and (S, E, M) is consistent,
row(f(51,....5i — 1,8 8iyeeesSn — 1)) = TOW([(S1,...,51 = 1,5, 8n - 1D
and hence DIM)ef(81,....8; — 1,5 81,80 — 1)) = DIMMe f(s1,....51 — 1,85 yeresSn =10,
and since e"“fs1,...5i—1,% Si,..Sn—1)=e is in E, D(M)(e" {81,008 — 1:5,S1se-s5n — 17)

= D(M){e-s). Therefore Ple-s)e "M(LMLPyg) iff D(M)(e-s)= L.
O

For the following result, for a tree automaton Ta=(Q, I, §, F) we extend 5 to
(PUQ)T by letting : 8(g) =q for q€Q, where Q is con sidered as a set of 0-ary constant
symbols. In this definition, if @ =8(s) for q¢Q and 56 1T, then &(t(x«g))=6(t(x«s)) for

te'T and x€DomiL).

Theorem 4.5 Suppose that (S, E, M) is a closed, consistent predicate
characterization matrix such that S is subtree-closed and E is $-prefix-closed with
respect to S, Suppose that the constructed linear monadie logic program LMLPy
from (S, £, M) has n predicates. If Ta=(Q, ', §, F) is any tree automaton which
agrees with the data in M that hasn or fewer states and LMLPT, is a corresponding
linear monadic logic program in the sense of definition (A), then LMLPy is

isomorphic to LMLP,.

12-



(Proofy We prove it by exhibiting an isomorphism ¢. First deline, for each g in Q,
row(q) to be the finite function [ from E to {0, 1} such that fle)=1 iff &(e-q) is in F.
Since Ta agrees with the data in M, for each s in (SUX(S)) and each e in E, 8(e-s) is in
F il DIM)e-s) =1, so row(d(s)) is equal to row(s) in (3, B, M), Hence as s ranges over
all of S, row(B(s)) ranges over all the elements of Q, so T4 must have at leasl n states,
i.e., it must have exactly n states. Thus, for each s in S there is a unique q in @ such
that row(s)=row(q), namely, 8(s). Next define for each s in 8, Pl(row(s)) to be &(s).
"This mapping is one-to-one and onto, We must verily that it preserves the clauses.
For each §1,..,5n in 3 and fely, let s be an element of S such that row(fisy,....Sn)}
=rowl(s). Then
Repirow(fisy, ... 5o} (X) = Reptrow(s)(x)
=Ras)(x)
Mlso,
Ristt 5, ),...5(s)(X) = Roltsy,...s11(%)

Since §(s) and &(f(sy,....8p)) have identical row values, namely row(s) and
row(f(g,...,.5n)), they must be the same state of T4, Hence the mapping ¢ carries the
clause me{r{ﬁhn_Enn{l'llx1,1,.,xn}]<—Rmmsl]{x|},...,er.,-mn]l{xn} in LMLP;; to the clause
Rt ats 1,...,ﬁtsnn{ﬂx1.-u.xn]J*—Hatﬁ.nlxl}_..”,Ra{gnﬂxn} in LMLPr,. Since if P(x}<Rrowis)
(x) for sume s in S, then D(M}(s)=1, so since dirow(s)) is mapped to a state q with
row{g) = row(s), it must be thatq isin I and hence Px)j«Hglx) Conversely, if row(s)
is mapped to a state q such that P(x)«-Rq(x} is in LMLPy,, then since q is in F and
rowlg) =row(s), D(M)s)=1, 50 P(x)«Rrowis)(x) is in LMLPy1. Sowe conclude that the

mapping § preserves the clauses.

5. Inductive inference algorithm for linear monadie logic program

First we confirm the inductive inference schema of linear monadic logic program.

The problem is to identify the denotation of the predicate P in the unknown model.
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That is, in our setting the problem is to infer a linear monadic logic program LMLP
such that the denotation of P in NM(LMLP) is equal to the one in the unknown

model.

(Algorithm of inductive inference for linear monadic logic program)
Input : An oracle EX() for a sufficient set of examples (or facts of ground atoms) of the
predicate P in the unknown linear monadic logic program LMLP,
An oracle MEMBER(P(t)) on a ground atom P(t) as input for a membership query
to output 1 or 0 according to whether P'(t) is true in NM(LMLTF),
Output : A sequence of conjectures of linear monadic logic program,
Procedure :
§:= @: E:={$}; LMLP := @; Examples:= &;
do forever
add an example EX() to Examples;
while there is an negative example —P(t}¢Examples such that LMLP - P(t)
or there is an positive example +P(t)¢ Examples such that LMLF # P(t);
add t and all its subtrees to S;
extend (S, E, M) to E-(SUX(S)) using MEMBER;
repeat
if (S, E, M) is not consistent
then find sj and sg in S, [€I'p, u1,...,10 - 1€5, e<E, andi{li=n)such
that row(s;) is equal to row(sz) and
Die-fluyg, . i — 1,51,,--,Un — 1)}7 Dle-fluy,...,0i - 1,52,Wiy.sUn= 1k
add e-f{uy,...,ui_ 1,$,Wi,.c.Un—1) L0 E;
extend (S, E, M) to E{SUX(S)) using MEMBER;
if (3, E, M} is not closed;
then find fli)eX(S) for 1¢S5 and f¢T', such that row(f{i1)) is different
from row(s) for all s€S;

add fla) to 3;
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extend (S. E. M) to E<(SUX(S)) using MEMBER,;
until (S, E, M} is closed and consistent;
LMLP := LMLPwm;
end;
putput LMLP;

end.

In the above algorithm, the operation of “extend (S, E, M) to E{SUX(S)} using
MEMBER” is the operation to extend D(M) by asking membership queries for
missing elements. We call an example t presented by the oracle EX a counter-

example when the last conjecture LMLPy does not agree with t.

8. Correctness and complexity

To see that the algorithm is correct, i.e. the algorithm identifies a linear monadic
logic program LMLP in the limit such that {t : P(t)e "M(LMLP)} is the denotation of
P by the unknown model, it is enough for us to show that the constructed predicate
characterization matrix (S, E, M) during the running of the algorithm is a closed,
consistent une such that S is subtree-closed and E iz $-prefix-closed with respect to s,
and that the while loop of the algorithm is executed at most in a finite time during

the running of the algorithm.

Lemma 6.1 Let (S, E, M) be a predicate characterization matrix such that S is
subtree-closed and E is $-prefix-closed with respect to S. Let n be the number of
different values of row(s) for s in S. Any deterministic tree automaton which agrees

with the data in M must have at least n states.

(Proof) LetTa=(Q, 1,8, F) he a deterministic ree automaton which agrees with the
data in M. Suppose thats; and sg are elements of S such that row(s1) and row(sz) are
distinet, Then there exists e in E such that D(MMe-s;)= D(Mi(e-s2). Since Ty agrees

with the data in M, exactly one of &(e-s1} and 8(c-s2) is in F. Thus 8(s1) and &(sg) must
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be distinet states because T4 is deterministic. Since 8(s) takes on at least n different

values as s ranges over 3, T must have at least n states.

Lemma 6.2 The while loop of the algorithm is executed at most in a finite time

during the running of the algorithm.

(Proof) Let n be the number of states in the minimum state deterministic tree
automaton for the denotation of the predicate P in the unknown model. Firstly we
will show that whenever a predicate characterization matrix (5, E, M) is not
consistent or not closed, the number of distinet values row(s) for sin 5 must increase,
If (S, E, M) is not consistent, then since two previously equal row values, row(s;) and
row(sz), are no longer equal after E is augmented, Lhe number of distinct values
row(s) for s in S must inerease by at least one. If (S, E, M) is not closed and a tree flin)
is added to S, then since row(f(Q1)) is different from row(s) for all s in 3 before S is
augmented, the number of distinet values row(s) must increase by at least one.

Next we will show that whenever a tree t and all its subtree are added to S and (S,
E, M) is extended because LMLPy does not agree with t, the extended predicale
characterization matrix (S', E', M) is always not consistent or not closed. I a
conjecture LMLF) is found to be incorrect by the example t, then since the minimum
state tree automaton Ty is correct for the data in M and LMLPt, is inequivalenl to
LMLPy (since they disagree on t), by theorem 4.5, T4 must have at least one more
state. DBy lemma 6.1, the number of distinct row values in a predicate
characterization matrix which is correct for the data in M and t must be same as the
number of states in Ta. Thus (S, F', M") must be not consistent or not closed to
increase the number of distinct row values,

‘Then hy these and lemma 6.1, a counter-example is added to S at most n times

during the running of the algorithm. Thus, the while loop is executed at most in a

finite time.
[
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By the above result, it follows that the algorithm makes at most a finite number

of conjectures.

LLemma 6.3 The conjectures which the algurithm makes are correct for the facts

known by the oracles EX and MEMBEIR.

(Proof) We will show that each predicate characterization matrix (S, E, M) during
the running of the algorithm is a closed, consistent one such that S is subtree-closed
and E is $-prefix-closed with respect to S. In the algorithm, there are three
operations which extend the row or the column of (S, E, M), When t and all its
subtrees are added to S, S cbviously remains subtree-closed. If (S, E, M) 1s not
consistent, then [for some feél'y, uj,..un- €5, ec¢E, and 1 (l=izn), e
(U] ey 0j — 1,5, 05yeslln — 1) 15 added to E. In this case, E remains $-prefix-closed with
respect to 8. If (S, E, M) is not closed, then for some G€S" and f€Ty, () is added to 3.
In this case, S remains subtree-closed. Since the repeat loop is repeated as long as (S,
E, M) is not closed and consistent, by lemma 6.2. each constructed (3, E, M) must
eventually be closed and consistent. Thus each constructed (5, E, M) during the
running of the algorithm is a closed, consistent one such that S is subtree-closed and
E is $-prefix-closed with respect to 8. Then by theorem 4.4, the conjectures of linear
monadic logic program which the algorithm makes are correct for the facts known by

the oracles EX and MEMBER.

Now we conclude the following theoremn.

Theorem 6.4 The algorithm identifies in the limit a linear monadic logic program
LMLP such that {t : P(t)¢ "M(LMLI)} is equal to the denotation of P by the unknown

model.

Next we will analyse the time complexity of the algorithm. By lemma 6.2, the
while loop of the algorithm is executed at most in a finite time. Then how much time

does the while loop consume during the running of the algorithm. That depends
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partly on the size of the examples t presented by the oracle EX. We will analyze the
running time of the while loop as a function of n, the number of states in the
minimum tree automaton for the denotation of the predicate P in the unknown
model, and m, the maximum size of any counter-examples presented by EX during
the running of the algorithm, where the size of an example is the number of symbols
in its textual representation. We will show that its running time is bounded by a
polynomial in m and n. Let k be the cardinality of the alphabet I' and d be the
maximum arity of the function symbols in I'. We may assume d=1.

Whenever (S, E, M) is discovered to be not closed, one element is added to S.
Whenever (S, E, M) is discovered to be not consistent, one element is added to E. For
each counter-example L of size at most m presented by the oracle EX, at most m
subtrees are added to 3. Since the predicate characterization matrix is discovered to
be not consistent at most n —1 times, the total number of trees in E cannot exceed n.
Since the predicate characlerization matrix is discovered to be not closed at most
n—1 times, and there can be at most n counter-examples, the total number of strings
in 8 cannot exceed n + mn. Thus, the maximum cardinality of E«(SUX(S)) is at most

a((n +mn) + k(n+mn)") = O(mInd+1). '

Now we consider the operations in the while loop executed by the algorithm.
Checking the predicate characterization matrix to be closed and consistent can be
done in time polynomial in the size of the matrix and must be done at most n times.
Adding a tree to S or E requires at most O(mén?) membership queries to extend the
matrix. When the predicate characterization matrix is closed and consistent,
LMLPy may be constructed in time polynomial in the size of the matrix, and this
must be done at most n times. A counter-example requires the addition of at most m
subtrees to S, and this can be also happen at most n times.

Therefore, the total time which the while loop consumes during the running of the

algorithm can be bounded by a polynomial funetion of m and n.
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7. Concluding remarks

We remark on related work. Shapiro’s Model Inference System (MIS for short)
[8,9] is the excellent and only existing system to infer logic programs or Herbrand
models in first order logic using the concept of idenlification in the limit defined by
Gold [4). MIS can infer a whole class of logic programs, but ours only for a restricted
elass of logic programs. However our algorithm has several unique [eatures
compared with MIS. (1) As we mentioned in the intruduction, our algerithm is based
on algebraic semantics and the target of the inference is a tree language computed by
a logic program, and hence it is different from Shapiro's approach and is not muodel
inference. (2) In general, it is not easy to analyse the time complexity of inductive
inference algorithm, and neither in MIS. We have shown in the last section the time
complexity of our algorithm in the very clear manner. (3) Our algorithm is based on
the constructive method, while MIS is based on the enumerative method, where the
constructive method systematically use examples to construct the conjecture and the
enumerative method use them to select a conjecture in enumeration. It is said that
the ronstructive method is in general more efficient than the enumerative method.
(4) In our algorithm, the predicate symbol P and its interp::etatinn are only given as
the observational language and the oracle, and any information about the hypothesis
language is not given. The algorithm automatically generates other predicates
whenever they are needed. However in MIS, all predicates used to construct the
conjectures and those intended interpretations must aiso be given as the hypothesis
language and the oracle, and this is often referred to as the problem about theoreiical

terms of MIS, as pointed out in [B].

Finally we will briefly mention some application of our algorithm. It is known
that the {rontier set of a rational set of trees is a context free language and vice versa.
Based on this fact, our algorithm can be applied to inferring parsers of context free

languages from the shapes of their structural descriptions. In the case of context {ree
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grammars, the shapes of their structural descriptions mean the shapes of the
derivation trees. Such structural descriptions are called skeletons. Thus a skeleton
is a kind of tree whose interior nodes have no label. A tree automaton which
recognizes a set of skeletons is called a skeletal automator. According to [6], given a
context free language L over the alphabet I, there is a skeletal aulomaton Sa such
that the frontier set of the skeletal set accepted by Sa is exactly L, and conversely the
frontier set of the skeletal set accepted by any skeletal automaton is a context free
langnage. Then we will use our algorithm to infer the unknown skeletal automaton
from their skeletal examples and construct a parser corresponding to the unknown
context free grammar. In this case, the construction of a conjecture from the matrix
(S, E, M) is only changed into the construction of a parser. For example, the
constructed parsing prolog program over L using difference-lists [rom (S, E, M) is
defined with predicate set Pre, calling predicate Sentence, and the set of clauses
PARSER) as follows.
Pre ={R owis)(x,x") : s€S},
PARSERy = {Senlence(xy,x1)Reow(s)(x0,%1): s¢5 and D(M)(s) = 1}
U{Rrow((s; ... ) X0:%n) < Rrowls,)1050,%1)surr Rrowis,)(¥n - 1,%n) 10 > 0}
(H{Rrowiaf[ajx],x)«—:a€l}.

The detail discussions about this work will appear elsewhere.

This is part of the work in the major R&D of the Fifth Generalion Computer

Project, conducted under program set up by MITI.
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