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Abstract

Two parallel inference machine architectures are being investi-
gated at ICOT. Ope is the Multi PSI7] and the other is the
FiM[4). The target language for both is the parallel logic pro-
gramming language, KL1, which is based on GHC[8]. Pre-
grams in KL1 are compiled 1o the KL instruction set, called
ELi-B, and execoted on the target machine.

Ta build an efficient multi-processor system, execution on
vach processing element must be as efficient as possible. There-
fore, we have designed an abstract KL machine and its instrue-
tion set which can execute KL1 efficiently on a single processor.
This paper describes the abstraet KL1 machine and its instruc-
tion set with a compilation scheme to generate efficient codes,
concentrating on the sequential execution of KL1, which gives
& basis for implementations of multi processor systems such as
the PIM or Multi-FSI. The abstract machioe is what we call
a reyister machine, which treats fogged-data. The instructicn
set consists of unification, goal manipulation and suspension
instruetions. This instruction set cap alto easily be mapped
onto general purpose machines as well as onto the PIM and
the Multi-PSI.

Finally, this abstract machine i5 compared with Levy's ma-
chine and WARM.

1 Introduction

Two parallel inference machine architestures are being
investigated at ICOT. One is the Multi-PSI[7] and the
other is the PIM[3]41.

Tl Multi-PSI system consists of 16 1o 64 PSI-IIs [8]
as its processing elementes (FEs). They are connected with
a two-dimensional mesh type network. Each node of this
network has five input/output channels, one of which is
connected to the PSI-ITs internal bus. Its basic data
transfer mechanism is packet switching, and is controlled
by the PSL-II's microprogram. This svstem is the work-
bench for studying perallel suftware systems,

The PIM has a hierarchical structure with a cluster
concepl. Each eluster consists of eight or more PEs which
communicate through a shared memeory (SM) with u par-
allel cache system. Each PIM's PE is intended to design
using the VLSI technology. For the connection among the
clusters. a packet switching network has been adopted al-
though its details have not vet been decided. More than
ten clusters are connected with this network as a PIML

The target language of these systems is the paral-
lel Ingie programming language, KL1, which is based on
GHC [8] and has various fentures to support the FIM
Operating Syvetem (PTMOS). The instevction set is called
KIL1-B', and corresponds to the machine inatruciion sel
of conventional machines. Programs in KL1 are compiled
to KL1-B code and then exceuted on the target machine.

To build an eSBcient multi-processor system, execution
on each processing element must be as efficient as possible
in the first place. Therefore, 2s the basis of the parallel
architecture research, we have designed an abetract KL1
machine and its mstruction set which can execute KL1
efficiently on & single processor,

This paper deseribes the abstract KL1 machine and
itz instruction set with a compilation scheme to generate
sfficient KL1-B codes, concentrating on the sequential ex-
ecutien of KL1 within one processing element. Instruc-
tions and functions for inter-processor cOMMuUnication are
not deseribed, Therefore, the abstract machine and its
instruction set described in this paper give a sequential
subset for mulii-processor systems such as the PIM or
Multi-P3I, '

Section ? gives a brief overview of KL1. Section 3
deseribes an abstract KL1 machine Section 4 presents
an mhateact KLY instruction sef. Section § describes the
difference between fal! GHC and £n¢ GHC from the im-
plementation point of view. Finally, section € compares
KL1, the ehstraet KL1 machine and the abstract KLL
instruetion zet, with WAM [9].

2 Qverview of KL1

2.1 Language features of KL1

L1, the parallel logic programming lavguage based on
GHC[8). 15 one al the vommitted choice languages.
4 GHC program is a finite set of guerded Horn clauses
inn the following form:
H:=Gyeen, Gm|Dy,oooy Badm 2 in 2 0)

R is an abbreviabivn for "base"



where H, G.'s, B,'s are called the head, the guord goals
and the body goals respectively, and 715 called the com-
mitment operator. The part of 2 clause preceding *|" is
cniled the passive part and that following it s called the
active part.

When input goal Jf is given, reduction of H is tried in
perallel, and a clause whose lLiead unification and guard
zoal execution succeeded frst s selected.  After that,
body goals B,'s are executed. This means that goal H is
reduced to B;'s. If unification requires the instantiation of
a variable during passive part execution, this unification
is suspended.

Taking the efficient implementation into considera-
tion, flat GHC was adopted as KL1. Flat GHC is a
subset of GHC which allows only built-in predicates as
guard goals. This restriction enables more efficient imple-
mentation because a single environment suffires for this
specification, and almost all the GHC programs can be
translated into fAat GHC without essential changes.

The implementation of full GHC is discussed in i5.

(8} gives a more detailed description of the specifica-
tion of the language GHC.

29 Execution mechanism of KL1

To show the execution mechanism of KL1, consider the
next example:

7= plX), aq(x}. (1)
pi) :- true { x=[aly]l, pi¥). (2)
q(x) := X=[al¥] | q{¥). (3)
a(x) :- X=[p|y]l | q(¥). {4)

Assuming that two goals p(X) and g(X) are given,
they are stored in a goal peol. The goal pool is used for
maintaining the goals. Then, reductions of plX) and q{X)
etart in parallel That is, the reduction of goal p{X) with
clanse (2] is tried and that of goal g(X} with clauses (3}
and (4] is also tried. Clause (2} is selected immediately
and the now goal, pY), is geuerated after instantiating
X to fal¥]. Tn other words, goal p{X} is reduced to goal
pi ). and this new goal is put in the goal pool in place
o the D'riginﬂ] p-,}l].

When the reduction of g/ ™) is tried, the unification
petween X and a list([a|Y) or [B]V]) is tned. If X is un-
bound. the unification does not succced and the execution
of goal gl X) is suspended, weiting for X to be mnstonti-
ated. A goal such as g(X) is ealled o suspended goal.
Suspended goals can resume execution when the variable
is insiantiated by some eoncrete value. In the above ex
ample, the other goal p(X) binds X to [a[Y]. Therefore,
the reduction af (X} is eventunlly resurped. Then bl
goal gf Y} ie put in the gonl pool in place of g{X).

The execution of L1 programs procesls by repeating
these operations.

2.3 Sequential implementation of KL1

To build an effcient multi- processor system, execution on
cach processing element must be as efficient as possible,
Therefore, an absteact KL1 machine and its instruction
cet based on a sequential execution is considered in the
first place. To extend the sequential system to a rulei-
processor system with a ghared memery, it is necessary to
treat goals and variables with exclusive memory access 2}

The following items should be considered when imple-
menting KL1 on a sequential processor.

s Manipulation of goals
Asin the above example, the possible states of goals
ran be classified 23 follows:

1. Ready gosk Goal ready for execution in the
goal pook,

-

. Suspended goal Goal which is suspended, wait-
ing for some variable to be instantiated.

3. Current goal Goal currently being executed.

The set of ready goals in the goal pool are repre-
cented as the ready gueuve. The ready queue can be
realized by linking the records that represent the
goals with ene-directional puinters. Getting goals
from or returning goels to the gosl pool corresponds
to manipulating the ready queue.

s Execution of the passive part

Each candidate clause is tested sequentially by head
unification and guard execution in order to choose
one clause whose body goals will be executed. If
instantiation of a variable is required during the ex-
ecution of the passive part, the test for this clause is
abandoned and execution proceeds to the next can-
didate clause. The clause whose head unification
and puard goal execution succeeded first 1= selected.
If no clause is selected, execution of that gozl is sus
pended. This is called suspensiim and the manipu-
lation of suspension is called suspenston processing.

¢ Execution of the bady part

I » clause is selected, the body part of that clause
is executed. Execution of the body part consists of
two operations, unification [ective unification) nnd
body gool fork. Active unification is evecuted on
the spot, and suspended goals may be resurned by
active unification. This is called resumption and
the manipulation of resumption is called resumpiion
proceasing. The body goal fork ix realized by Ginking
goal records to the ready queue,

e« Suspension and resumption of goals.

When execution of a goal is suspended, ite goal
corard is linked from the variable which coused Lhe



suspension, possibly with other goals which have
atso been suspended on the same variable, Here,
the non-busy waiting method has been adopted for
SRAPERIIOT Procedding.

When o suspended goal is resumed, its goal record is
linked ngnir to the resdy quese, Note that resump-
tion of & gonl does not necessarily mean immediate
execution of that goal.

3 Abstract KL1 machine

This section describes the abetract IKL1 machine n
detail.

3.1 Data representation

Dhata objects treated by the abstract kL1 machine consist
of tags and values. General structures other than lists are
not described in this paper, but it is easy to extend the
list manipulation treatments to general structures.

The tag can have one of the following values:

UNDF: Uninstantiated veriable. The value has no mean-
ing.

HODE: Uninstantiated variable, some goals are waiting
for instantiation of this varigble. The value is che

pointer to these poals. These goals are said to be
hooked to the variable,

REF : Reference pointer to a variable cell either unin-
stantiated or heoked.

INT : [ateger. The value is the integer value itsell.
ATOM: Symbolic atom. The value 13 on atom identifier.

L1st: List eell. The value is the pointer to the consec
utive two words rnprmnﬁng the car and edr parts
of the list cell,

3.2 Structures

A data structure called & goel record s used for represent-
mg a goal in the abstract machine. The ready queue iz
realized by linking sueh gosl records.

o Goal record

A pgonl record consists of the arpuments of the goal
and ita oxeeution enviropment. Individual felds of
the record are:

Narg: number of arguments of this goal;
argumenty: firet argument:

argurtent o1t Narg-th argument;

eode: address of the predicate code;

nezt goal record: pointer to the next goal record in
the ready queue.

s Heady queue

The renedy guens is implemented by linking the ready
goal records with their nest goal record fields. In the
current implementation, the ready queue is main-
tained as & sfack rather than & gqueue.

To implement the suspension and resumption, the fol-
lerering struetures are used.

o Suspension record

A suspension record records the goal records sus-
pended on g variable, and consists of two fields,

neTi .tu.,gper..u'nn record: ]:rm'nlcr to the next suspen-
sion record. 17 mers than one goal record is
suspended on the same variable, the suspen-
sion records for them are linked by this field.

suspension flag record: pointer to the suspension
fag record.

Ll SUEPEHE-'IIUI! HJ'I.E !"".‘{'“I-'lq

This is required to allow multiple walting, 1.e., cae
goal waiting for instantiation of one of several varn-
ables, and consists of two felds,

goal records pointer to the suspended goal recozd,

suspenaion count: number of variables the gonl is
suspending.

® Suspension stack
This stack is a working stack thas preserves the vasi
able which may cause the snspension of the goal
ternporarily while candidate clauses for o gonl are
Being tried. This stack is cleared when some claurse
is selected or suspension processing is completed

The latter part of this sub-section shows how multiple
waiting s manipulated. Consider the following example.

T= p(X, Y2, ql¥),...

pilalXil, ¥) :- true | piXi, ¥).

pi¥, [2lvi]) == true | piX, ¥i).

q{[a“{l}} r= true | cl_{xl:'.
Figure 1 shows wu example of muitiple waiting. The
goal, p, s hooked on variables X and Y, and the other
goal, q, &5 hooked only on variable X, The suspension
veaene Sield of :msp-r_'nsinn Eaﬁ for pis g and that far q is
I. Aseume thar goal p 12 resumed by the instantiation of
variable Y . The goal record Held of the suspension Hag



Suspension
X record

v - L J
—T* p(X.Y)} 1" q(X)
2 1
Suspension
flag record
Y
Figure 1: Defore

1 qlX)

Figure 2: After

record for p is replaced with some special value showing
that the goal has alrendy been resumed, and the suspen-
sion count is decremented by one, &s shown in Figure 2.

3.3 Registers

Several registers are used for maintaining the current goal
and for managing the memory resource,

[t iz assumed that the contents of the current goal
record ore loaded to these registers before its reduction
Liegins.

Structures such as goal records, suspension records
and suspension flag records are allocated in the mem-
ary area, and are maintained by corresponding free liats.
Variable cells are allocated in the garbage collected heap.
The suspension stack is nllocated at a fixed memory area

with a fixed size.

P program counter;
Carg: number of arguments of the current goal;

argreg: first argument;

argregoarg-11 CRrg-th argument;

SR: structure pointer used for the structure unification;
HP: heap top pointer;

55P: suspension stack top pointer;

ROHP: pointer to the ready quene head;

GRFP: pointer to the free goal record list;

SRFP: pointer to the free suspension record list;

SFFP; pointer to the free suspension flag record list:

write_mode: mode flag used for structure unification.

4 Abstract Instruction Set

The instruction set and its compiler are designed ac-
cording to the following principles.

» Most pessive part instructions have branch labels,
each of which indicates the code address to be tested
next when they are suspended.

o After dereferencing the value of an instantiated vari-
able, the dereferenced result is put back where the
reference pointer originally was,

» The argument registers are never destroyed before
some clause is selected, except for being replaced by
the dereferenced value.

 Suspension never occurs during execution of buiit-in
predicates in the guasd.

s One of the body goals in the selected clause is ex-
ecuted tail recursively. and others are linked to the
reedy queue,

s The instruction for the suspension processing is ex-
plicitly gencrated.

The KL1 instruction set is roughly classified into six
groups, Note that the instructions for general structures
are amitted in the later section, because they are similar
to that of list.

1. Passive unification instructions



2, Guard part built-in predicates
3. Active unification instructions
4. Goal manipulation instructions

Argument preparation instructions

i

£. Suspension instruction

4.1 Passive unification instructions

Passive unification instructions, shown below, are used in
the passive part unification.

walt_variable Xj, Af
wait_wvalue Xj, Ai, Label
wait_constant C, Al, Label
wait_list Ai, Label
read_varieble Kj, Label
read_value Xj, Label
read_constant C, Label

In these instructions, Al is an argument register and
Xj is a temporary register used as the work register.

Passive unification may require instantiation of vari-
ables to accomplish the unification, in which case the uni-
fication should be suspended. Additionally, they may fail,
Therefore, the branch address, Label, is provided in each
instruction which may fail or suspend to jump to the next
alternative clause code or 2 suspend instruction.

In these instructions, the dereferencing? of the argu-
tienl register is performed first and the result 1s put back
in the register where the reference pointer originally was.
This is effective in aveiding duplicated redundant deref-
erencing of the same variable in the passive part.

For example, wait constunt ©, A4, Lebelcan be defined
and used as follows:

o Drefinition

Wait constant{C, AL, Label):
pat tie dereference result of Al to Al
clieck the sguality between Al and ©
if :hr.:.' are p.ql.m_" then prncl:l:d to the next code
elself Al iz uninstantiated
then push Al to the suspension stack and
juinp o Ealbel
else jump to Label

e kil sample program

plfon, ¥)
plbar, 1)

= true |
= true |

trua,
tIua.

“The dereferencing Ai returns the value itg=lf il Ai is instanti-
ated, otherwise Llie reference pomter 1o le umnstaobialed variable
s trturned.

=

» Compiled code

o2 wait_constant ‘feo’, Al, p/f2/f1
procead

pf2f1:  wait_constant ‘bar®, A1, p/2/f2
procaeed

p/2/2:  suspend pf2

An optimizing compiler can generate code which re-
duces the number of guard tests. For example,

{1}
(z3

:= true [ true.
:- true | true.

p{[_1.], fou)
FLET, bar)

are compiled to
B2 wait list A1, p/f2f1
wait_constant ‘foo', A2, pfIS2
procead

wait_constant [], A1, pf2/2
walt.constant ‘'bar®, A2, pfz..-"z

procead

pf2fi:

p/2/2:  suspend p/f2

[f the frst argument of p/? is & list, elanse (2] is never
geleeted. Therefore, the label of weail consiont foe A2 dis
rectly points the suspension instruction. This is why each
pasgive unification instruction has Label

4.2 Built-in predicates

The passive part of a clause may contain calls of built-in
predicates, Some of the instructions for Luilt-in predi-
cates are:

watt A1, Label
Ai, A7, Label

pultiply Ad, Aj, &k

integer AL, Label
equal Ai, Aj, Label
add AL, A7, Ak
module Al Aj

areater
Ax

When the built-in predicates are called, their inpur
variables must be instantisted to the legal valucs to evoid
the suspension within its body routine. Te accomplish
this, the instantiation and data tvpe of the lnput vartable
of predicates are checked out by inteper and wait instrue-
tions.

Integer Ar, Label dereferences Al and purts the value
in Ai, then checks whether the resull i= an integer, If the
resull jg an integer. the execotion proceeds to the next
instruction; otherwise, it jumps to the address indicoted
by Label Consider the example:

¢ L1 source program

p(X, ¥) - X » ¥ | true.



+ Compiled code

p/2: integer A1, p/2/1
integer AZ, pf?fi
greater Al, A2, p/2/1
procead

p/2/1:

4.3 Active unification instructions

Artive unification instructions, shown below, are used for
active part unification.

get_veriable Xj, Al
get_constant €, Al
unify_variable Xj
unify_constant ©

get_value Xj, Ad
get_list Ai
unify_value Xj

Aetive unification instructions are never suspended.
Therefore, if instantiation of the hooked variable is re-
quired, the goals hooked on that variable are resumed.
This processing is done on the spot within each instruc-
tion. The mede is used for the etructure unification. The
operations taken by unify instruetions depend on this
mode as in [9].

For example, gei_list Aiis defined and used as follows:

¢ Definition®

Get list(Ai):
put the dereference result of Al to Al
if Al is uninstantinbed
then Al:= list | BEP and writesmode := ON
procsed to the next code
elseif Al is list
then SR := ref! Al and write_mode ;= OFF
]rrm’mﬂ! to the next code
else jump be Fadl

o KL1 soures progradn

pllal®l, ¥) = true | ¥ = [al¥i], p{X, ¥1).

s Compiled cadet

Fxir=list THP means to put W value of [TF with its tag list o Al
Yinstructions marked with *1, *2 and *3 are disetiesed n sechion
4.7

—

p/e:
wait list A:, p/2/1 % opll
read _variable X3 %A
read variable Al % XL Y): true)
get.list A2 1% Y=]
unify. value X2 *2% A
unify_variable A2 e 4 ¥1],
exacute p/f2 % opiX, Y1)

p/2f 1
suspand B2

4.4 Goal manipulation instructions

create_goal  Code, ATity
enquene_goal Goal/lArity
execute Code
proceed

The creaie_goa! Code, Armiy instruction allocates a
new goal record whose code address and arity are Code
and Aridy from the free goal record list and enqueue_goal
(Foal/drity links the new goal record to the ready quene.
(The operand, Goal/Arity, is only for readability of the
code .} These two instructions are always used as & pair,
and the argument set instructions are sandwiched be-
tween them. Thiz may seem redundant but is advan-
tageous for simplicity, This is how a goal farks,

The erecute Code instruction moves the execution con-
trol to the code address indicated by Code. This is used
for tuil recuraive execution®.

The proceed instruction is used, when one goal is re-
dueed completely, for getting o new goal record from the
ready quene. Then it loads the arguments in the record
to the argument registers, restores the cxecution envi-
ronment, and jumps to the code address. For example,
create_goal Code, Arity is defined as follows:

Create_Goal{Code, ATity):
get & new goal record New_record
from the free goal record list
put Arity to the Narg field of New_record
put Code to the code field of New_record
proceed to the next code

4.5 Argument preparation instructions

Argument preparation instructions, shown below, are used
for preparing the arguments of & goal record 1o be forked.

put_variable X3, Al
put_value Xj, ai

set_variable Xj, Gi
set_value Xj, Gi

SCurrent implementation exceutes the lefumost goal of the body
taal vec n.r.u'l.t!g'.



set_constant O, Gi
set_list Gi

put_constant G, Al
put_lists Al
write_variable Al
write_valus Al
write_corstant O

They are classified into three categories according to
the destipation to which the arguments are saved,

§et_XXX instructions save the argument value or van
able in the argument save area of a goal record. Gj of
the set XXX instructions denotes the j-th slot of the goal
record. Pul XXX instructions are used for re-arranging
the contents of registers prior to the tail recursive exe-
cution of a goal. Write XXX instructions are used for
putting a structure element. Note that they are always
executed in write mode.

For example, Put_list Aiand write_value Ai are defined
and used as follows:

s Definition

Put Llist(hid:
Ai = list! HP
proceed to the next code

Write_value(Ai}:
(EP) = Al
increment HP by the word length
of the variable ceil
procecd to the next code

s IKL1 source program

pi¥, ¥, 2) :- true | g{¥, 2},

r{{X14)), atA, Z).

e Compiled code

pi3
create goal s, 2 T sl
sat_variable X4, G1 W A,
set_value A3, G2 o Z)
enguene_goal s/2
create.geal *, 1 % o
set_list a1 %
®rite-value Al ot X
weita_walue X4 T Al
enquene_goal rfi
put_walue AZ, Al % ay,
put_value A3, AZ . Z)

execite q.l"E

4.6 Suspension instruction

suspand GoalfArity

The suapend (Goal/Arity instruction is used for sus-
pension processiong.
Suspend Goal/Arity is roughly defined as follows:

Suspend (Geal/Arity):
if the suspension stack is empty
then goto Fail
while the suspension stack is not empty
Var ;= (55P} and decrement S5F by one word.
if Goal it already hooked on Var
then do nothing
clse get a new suspension record Susprecord
from free suspension record list
link Var to Susprecord
if the suspension fag record for Geal
is already allocated
then increment the suspension count of
the suspension fag by one
else
get a new suspension flag record Susp flag
from free suspension Hag record list
put Goal to the goal record field
of Susp_flag and
set I toits suspension cound

4.7 Optimization
4.7.1 Register allocation

In KL1, the guard goals are all built-in predicates and
their arguments ase loaded to the argument registers be-
fnrc reduction in this i[np]n_—:nmnt.atian. This means that
the execution of guard built-in predicates procesds by
calling its body routine after arranging the arguments in
the registers in turn, During execution, although the ar-
guments passed from the calling goal must be preservid
before commitment, the arguments can be moved and the
registers can also be reused from the peint in the guera
where the compiler recognizes the clause is committed.
Consider the fullowing example:

o KL1 source program

plX, ¥) :- X » ¥, Z =X+ Y | glll.

» Compiled code without optimization

/i
integer A1, pf2S1 %t X is integer T
integer A2, p/2/1 %Y is integer ?
greater Al, AZ, pf2/1 TR
add Al, AZ, X3 G T=X+Y|
put_value X3, Al
execute 9/l % oqlZ)
W3/ 1: 7 Nexi Cluuse



s Compiled code with optimization

P/

integer Al, pf2/1 % X is integer ?
integer AZ, p/2/1 W Y s integer 7
greater Al, A2, p/2/1 BoX>Y|
add A1, A2, Al % Z=X 4+ Y]
execute g/l % qZ)

p/2/1: % Next Clause

Without register allocation optimization, the result of
adding X and Y is put in the X3 register. However, this
built-in predicate,add, never causes suspension and is the
last predicate of this guard part. Therefore, register Al
can be used as hoth the output register of 'add” and the
register for the first argument of q/1, because the contents
of Al and A2 are never accessed after being passed to the
body routine of "add’.

4.7.2 Active unification of a variable and a struc-
ture

As deseribed in 4.3, the instructions using mede are gener-
ated for unifving & variable with & structure in the active
part. From the multi-processor implementation point of
view, such structure unification causes memory locks for
a long period. In the compiled example shown in section
4.3, variables A and Y1 must be accessed exclusively after
locking the verizble ¥ between *2 and *3. This is because
some other processor may attempt to access the head or
tail of ¥ before they are created in "2 and *3. Taking
a hardware memory lock mechanism into consideration,
memory locks of such a long period will be inconvenient.

Therefare, to shorten the lock peried of vaciables, an-
other compiling scheme s introduced. The previous ex-
ample in section 4.3 is compiled as follows:

PrE:

wait.list k1, p/2/1 ®opll
read_variable X3 oA
read_variable Al W X] Y) - true |
put.list X4 191
vrite.value X3 2% A

write_variable X5 % Y1)
get_wvalue X4, A2 1% [AlYl] =Y,
put.value X5, AZ A% oplX, Y1)
execute pfE

/21
suspend p/2

Instructions*1 Lo *3 ereate a new list structure, 11‘”1{1]-

Then the instruction, get_value X, AL, unifies Y in the
second argument, A2, with the newly ereated list, X4.
Therefore, exclusive memery access is required only while
"% iz boing cxecuted.

With this eompiling scheme, mode is no longer re-
guired nor are structure unification instructions such as
unify_ XXX required, because & variable and a structure
are always unified after constructing the structure,

On the other hand, if the variable ¥ in ¥ = [A|Y1]
should already be bound to some list®, it is obvious that
there are disadvaniages in time and space efficiency. This
is because, in read mode unification, there is no need to
construct a new list {[A|Y1]) and the new list cell becomes
gerbage after the unifieation of Y and the newly created
List. However, according to preliminary experiments, ac-
tive unification is nearly always executed in wrile mode
in WaM terminoclogy; that is, the variable 1= uninstanti-
ated in most cases. In fact, we have never seen a program
which has the read mode unification except when written
deliberately.

Additionally, XJ in getvelue is always bound to the
newly created list in *4. Therefore, by mtroducing follow-
ing specialized instruction get list wvalue Xj, Ai, execution
time can be raduced further.

Get 1ist_value(Xj, Ai):
put the dereference result of Al to Al
if Al is uninstantiated
then Ai:= Xj and goto the next code
elseil Al s st
then do general unification between Xj and Al
else jump te Fail

As a result, optimized active unification instructions
are as followa:

get_variable Xj, Ai
get_constant O, Al

get_value Xj, Al
get_list_value Xj, Al

4.7.3 Indexing

To execute the KL1 program at & high speed, it is very
important to detect the suspension. One method is to find
what kind of value each clause expects in the compiling
time. Therefore, the following simple indexing instruction
is introduced,

switch_en_term Ai, Le, L1, Lv

where Al is the argument register to be checked, Le is
the branch sddress to which control s moved when the
contents of Al are a constant value {iuteger or atom). Ll
is the case where Al is a list, and Lv is the ease where Ai
i3 & variable.

In KL1, the arder of the tests for selecting & clause is
not defined. Therefore, the compiler can rearrange the or-
der of clauses to generate the indezing instructions easily.
The compiler collects the clauses whose Ai's are of the
same dara type, and compiles thein in hulk, The general

EThis corresponds to the reod mede unification in WAM



#ow of clause selection using Switch on_term Ag, Le, Ll
and Lv is as follows:

put the dereference result of Al to Al
switch (type of Al)
Constant: try clauses which begin from Le
if no clause is selected
then try clauses which begin from Lv
if no clause is selected again
then goto Fail
List: try clauses which begin from LI
if no clanse is selected
then try clauses which begin from Lv
if no clause is selected again
then goto Fail
Undf; try clauses which begin from Lv
if no clause is selected
then push Al to the suspension stack and
jump te the suspension instruetion

Since KL1 does not have backtracking mechanism, clause
indexing may not be as effective as in Prolog. However,
it is clear that redundant checks in the guard part cao
be avoided, and the frequency of the break of the insiruc-
tion stream can be reduced. This property is desirable for
pipelined processing elements.

5 Related work

Jacab Levy of Weizmann Institute of Science proposed
another implementation scheme of GEC in [3]. A notable
diference between his work and this paper is that his
work tries to implement full GHC very efficiently, while
this paper discusses that of flat GHC.

Full GHC permits the programmer to write user de-
Ened poals in its guard past while fat GHC does not,
Comparing these two implementations focusing on this
point, the following is clear.

e [t is necessary to manage the separate OR-parallel
environments during guard execution in full GHC.
To do this, Levy introdueed many runtime struc
tures such as envirenment veetor (EV), status word
vector (SW) and mutual exclusion ring {ME].

EV and SW are not required in KL1. ME corre-
sponds to the suspension record amdd the suspen-
sion flag record in this implementation, and both
are used to aveid a case where the suspended goal
is 1osumed many times.

v In full GHC, when the variables are unified, a new
data type called cross environment reference [CER)
is used to avoid the instantiation of variables which
are not in the committing goals, When the guard
execution reaches commitment, all environments be-
lenging to this guard part user goals sheuld be checked
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to see whether CER's can be modified to nermal rel-
erences or not. This appears to require a great deal
of work.

In KL1, this dvnamic check is not required because
KL1 does not need any multiple environments in
guard part execution.

o Suspension may occur in the following two cases in
Levy's implementation. One is when an attempt is
made to instantiate the goa! variables in the guard
part, the other is when the goal waits for some guard
to complete its computation and to be ready for
commitment. Only the former case is applicable to
KL1. It implies that suspension occurs more fre-
quently in full GHC than in flat GHC.

From these peints, implementation of full GHC is
rather complicated compared with KL1 (flat GHC). Ex-
ecution speed seems to be considernbly slower than KL1.
On the other hand, it is true that programming in full
GHC is caster than in KL1 because user defined goals can
be written in the guard part. To compensale for it, we
have been designing a user language called KLI-Uiser)
with & conespt of object oriented or medular program-
ming. KL1.U is transformed to KL1 and compiled to
KL1-B rode. Thus, the user or system PIOSrAimmiers can
write programs easily with KL1-T and the tnrget machine
eepcutes KL1-B eode very efficiently

6 Comparison with WAM

We have designed a L1 abstract instruction set, KLI1-
B. Tt seems that there are many similarities beiween ELi-
B and WAM [8], which was desigrned by D.H.D. Warren
for Prolog implementation, This section discusses their
similarities and differences.

The similarities are:

« Both machines are regisier machines, and unifica-
tion is performed on the data in these registers.

s Optimization by the compiler, guch as register allos
cation, is expected.

e To maintain ready guals, the ready queue is used.
In the implementation described in Lhis paper, the
ready queue is manipulated as & steck. That 5. =
aew goal record to be forked 13 finked to the head
of the remly queue and a goal record is dequened
from it. This method is similar to that of the goul-
stacking model which is Warren's previous imple-
mentation of the abstract machine’.

The differences arc:
TThis can be found io [5].




s In this implementation or goal-stacking model, all
goal arguments are temporal and can correspond di-
rectly to hardware registers, while in WAM, wasi-
ables are classified as iemporel or permanent.

» Prolog’s unification is fwo-way, but KL1's is close
to a one.way unification. In KL1, passive unifies-
tion iz one-way, and even active unification is nearly
always executed in write mode, in the sense of Pro-
log. Therefore, the write mode oriented active uni-
fieation instructions were designed as described in
4.7.2,

# Prolog's execution proceeds using the the various
stacks such as local, global and trad steck. There-
fore, the memory space is reclaimed implicitly by
shrinking the stack by backtracking or determinis-
tic tall recursion.

On the other hand, KL1's execution proceeds us-
ing the heap, There iz possibility that the memory
consumption is much higher than that of Prolog.

Therefore, it is necessary to maintain the KL1 mem-
ory space efficiently. In KL1, goal records and sus-
pension records can be easily managed by free lists
becauze their life time cau be definitely found in the
KLI-B code. However, it is difficult to detect the
life time of the variable cells from the KL1-B code.
Considering this insight, we have already proposed
& new memory mansgement mechanism called the
MEB method[1].

It is stated in [9] that in the goal etacking model, the
treatrnent of the unsafe variable is a severe problem. In
this model, hawever, this problem does not occur because
vninatantiated variable cells are always allocated in the
variable cell area in the heap instead of arguments area
of goel records, Thercfore, variables which are shared
between goals are put in the independent aren from goal
recards, and references to urinstantiated variable cells are
put in the argument area of goal records. This is because
in multiple processor implementation, it 15 impossible to
detect unsafe variables in runtime since goals are executed
izt parallel and exeetion of some goals may be suspended.

It iz clear that this scheme requires extranecus mem-
ory space. However, most space ean probably be re-
claimved by the garbage collection using MIB,

7 Conclusion and future research

The KL1 abstract instruction set with some optimiza-
tion mnd its compiler were designed. The compiler is cur-
remtly weitten in Proleg, and &re going to be re-written
in L1 it=elf. The emulator which executes these instruc-
tions runs on the Balance 21000 system and its exeention
sperd iz over 1 KRPS (Redurtion Per Second) oo each
PE. Functions for inter-processnr communication are now
being investigated.
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