ICOT Technical Report: TR-244

TR-244

Writing Program as QJ Proof
and Compiling into PROLOG Program
by

Y. Takayama

March, 1987

©1987, ICOT

Slitg Bookusar Bldg, 2117 i 456-1191 -5

IG DT -2 Alite I-Chome Teles [OOT J32964

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Writing Program as QJ Proof
and Compiling into PROLOG Program

Yukihide Takayama

Institute for New Generation Computer Technology

Mita Kokusai Building, 21F,
1-4-28 Mita, Minato-ku, Tokyo 108 Japan
takayama%icot.uucp@eddie.mit.edu

Abstract

This paper presents a method for writing a constructive proof of a formal specifi-
cation of a program in the typed logical system QJ. Compilation into executable code,
such as PROLOG on the PSI machine is also described. We use the provizsional proof
description language PDL/QJ, a modified version of PDL for the CAP system which we
have developed as a proof checker system for linear algebra. We assume here a proof
checker system like CAP with QJ as its underlying logic.

1 Iotroduetion

The idea of realizability interpretation which extracts executable code from a construc-
tive proof is rather old ([Kleene 45],[McCarty 84]). From the point of view of buiiding an
intelligent programming system based on the programming paradigm writing programs as
constructive proofs ([Beeson 83), [Martiu-Lof 82], [de Brujin 80]), this idea can be applied
to a proof compiler that generates the executable code on a computer. Several systems
which implement the proof compiling facility have been developed ([Hayashi B6],[Constable 86])
and they generate code of functional style programs, such as LISP, because the code ex-
tracted using the realizability interpretation is a combination of terms expressing func-
tions. We use a provisional proof deseription language similar to PDL{{Sakai 86]) allowing
us to write in a style almost as natural as that found in ordinary mathematics textbooks.

We have studied the proof compilation technigue based on QJ - typed logical calenlus —
{{5ato 85],[Sato 86]) that generates PROLOG programs. The theoretical aspects of the re-
alizability interpretation are covered in that theory and mare generally in [Beeson 85] and
[McCarty 84]. A proof compilation algorithm is implicitly given in the proof of ”sound-
ness of the realizability interpretation”, in that the object code is contained in a suhbset
of the typed functional and logical language Quty , the typed version of Qute{[Sato 84]).

Several examples are presented in this paper to show how a program can be written as
a constructive proof of a formal specification like that found in a mathematics textbook
and how it can be compiled into a PROLOG program . We chose PROLOG as the

language in which target programs are written because we are going to implement our
experimental environment on the PSI machine ([Uchida 83]).

2 Program Development in QJ

The three examples below how are used to demonstrate how we can develop programs
within the concept of QJ.

1. A program which take a natural number list as input and returns the list whose
elements are the elements of the original list multiplied by two

2. Bubble sort algorithm
3. Quck sort alporithm

Proofs are written, for human readability, mainly in natural langnage, but they can
be easily rewritten into a machine readable proof description language, called PDL/QJ, a
slightly modified version of PDL of the CAP system([Hirose 86],(Sakai 86]). Notice that
in our programming paradigm, a proof checker like the CAP system is essential to fill the
gaps in proofs written in a rather natural style for the human mathematician. Tedious
inference steps like arithmetic operations and term manipulations are often skipped in
ordinary proofs wntten by mathematicians. Examples of such proofs are given below.

2.1 A Simple Example

Here is a simple example illustrating how we can write formal specifications and proofs.
We don't use the ‘refinement logic’ style, which allows a highly interactive programming
support system like the Nuprl system (|Constable 86]), because we want to write proofs
in a style that is natural for ordinary mathematicians, and we want the proof to be the
documentation of the program. For the same reason we do not adopt the formulae as
type' notion of mathematical deseriptions. We want to distinguish type and logic.

(1) Informal Specification

A program which doubles each element of a natural number list X

{2) Formal Specification

We write a formal specification of a program as a logical sentence, i.e., a theorem, in
first order logic with (in)equality which has the rich term structure defined in QJ. The
logical sentence must have the following structure:

Y¥X:TypedY :Type F{X,Y)

where "X : Type’ and 'Y : Type' specify input and output parameters and their types re-
spectively, F{X,Y) defines the logical relation between input and output. In this paper nat
and L{nat) mean the type of non-negative integers and the type of lists with nat-type ele-
ments respectively, We use # and -> as Cartesian product and function type constructors.

Theorem 1 For any natural number list X there exists a natural number st ¥ auch that
a/ length of X is equal to length of ¥
b} for any natural number I, if 1 < I < length(X) then the I-th element of Y ir equal to
the I-th element of X multiplied by 2

We write this formal specification as follows in PDL/QJ. The proof part is given later.

theorem SIMPLE_EXAMPLE
all X : L{nat), exist Y : L{nat).

{

length(X) = length(Y))
k

all I : nat. *

(1 =¢1I =< length(X)
-» 2=glen{I,X) = elea(l,Y)

end_proof
end_theorem

where length and slem are QJ-definable functions which we can define in PDL/QJ
as follow)

function length : L({nat) -> nat
attain . _
length = fun [X]. if X = nil then O
celee length(t1(X)) + 1

existence

..............

end_fTunctien

function elem : nat#l{nat) -> nat _
attain -
elem = fun [I,X]. if T = 0 then $abort}
else if I = 1 then hd(X)

elge elem(I-1,81(X))
existence

..............

...............

end_function

fun means lambda abstraction. hd, £l refer to the head and tail of a list respectively,
and those are also QJ-definable function, but we skip the definition. Proofs of existence
and uniqueness of the function can also be written in QJ, but we skip them toa.

(3) Proof of Specification

The proof proceeds by induction on the structure of list X
1) Base Step

Assume X = nil. We can take ¥ = nil 23 the list satisfying conditions a) and b)

3

2} Induction Step

Suppose for list X we have obtained the list Y satisfying condition a) and b). Then
we have to construct a list Ls from ¥ satisfying the following conditions. For an arbitrary
natural number o

a’) length of list 6.X is equal to that of Ls

b’} the N-th element of Ls is equal to the N-th element of a. X multiplied by 2 where
1< N <length{aX)

We can take Ls = 2a.Y. We now check the conditions a’) and b').

a’) length{a.X) = length(X) + 1, [ength(2a.¥) = length{Y) + 1 and because of con-
dition a) for X and ¥, we get our conclusion.

b') We denote here elem(I, X) as I-th element of list X. Now elem(N + 1,Ls) =
elem(N +1,20.Y) = elem{N,Y) and because of condition b} for X and V', elem(N,Y) =
2 - elem(N, X) so that we get elem({N + 1,Ls) = 2 elem(N,X). Now let M = N +1
then 2 € M < length{X) + 1 = length(a.X). And elem(M,Ls) = 2 - elem(M, a.X)
because elem(M, a.X) = elem(N, X). In addition, elem(l, Ls) = 2 - a and elem(1, La) =
2 - elem(l,u.X) because elem(1,a.X). So that we get elem(N,Ls) = 2 - elem(N,e.X)
where 1 < N < length(a.X)

q.e.d.

We give this proof below to demonstrate the flavor of programming in PDL/QJ.

gince induction of X : L{nat)
base f+ T = nil #/
length(X) = length{nil)
all I : nat.
{1=<I=<length(X) -> 2+elex(I,X) = elem(I,nil)
gince
let I : N be such that
1=¢I=<length(X)
contradiction
bence 2*elem(I,X) = elem{I,nil)
end_since
hence concluded
atep [+ not (X = nil) +/
let a : nat, X : L(nat) be arbitrary
ind_hyp_is
some & : L{nat).
(EYP_1: length({X) = length(t)
&
EYP_2: =all I : mat.
(1=<I=<length(X)
=» 2+elem(I . X) = elem(I,t))
length(a.X) = length(X) + 1
length(2+a.X) = length(X) + 1
hence length(a.X) = length(2=a.t) by HYP_1
mll I : N
{1=¢I=<length{a_X)
-3 Zielem(I,=.X) = elem(I, 24a.t)})

gince
let I : nat be such that
i=<I=<length(a.X)
then 2=elem(I,a.X) = alem(I, J2a.t)
since divide and conguer
I=1 | 2=<I=<length(a.X)
cape [=] :
2éelen(I, = .X)
== 2s[if I=0 then $abertd
elge if I=1 then hd(a.X)
elae 2lem(I-1,51(a.X))]
= 2+hd{n.X) = 2*a
elem(I,2+a.t)
== if I=0 then $abort}
else if I=1 then hd(2*a.t)
else elen(I-1,t1(Z*2.t))
= hd(2*a.t) = 2ea
kence 2*elem(I,a.X) = elen(I,2+s.t)
cage 2=<I=<length(a.X)
Label_1: J+elem(I a.X)
== 2+[if I=0 thez $mbort}
elae if I=1 then hd(a.X)
elae elem{I-1,t1(a.X))]
2relem(I-1,t1(a.X))
2relem(I-1,X)
on_the_other_hand
2=<I=<length(a.X) by assumption
length(a.X) = leagth(X}+1
hence i=<I-1=<length{X}
hence LABEL_2: 2+*elem{I-1,X)
= elem(I-1,t) by HYP_2
hence Z+elem(I,a.X) = elem{I-1,t)
by LABEL_1,LABEL_2

H

elem(],2+n_t}
== if I=0 then $abort$
elge if I-1 then hd(2+«a . X)
eloe elem(I-1,61(2*a.%))
= elem{I-1,t1(2+a.t)) by assumption
= elem({I-1,t)
hence J+elem(I,a.X) = elem(I,2+n.t)
end_gince
end_pince
hence concluded
end_since

If you do not waunt to write a long proof of such an easy program as this, you can
directly define it as a function and refer to it from within other proofs.

2.2 Sorting Algorithm

Two extreme examples are used to demonstrate how algorithmic features are reflected
in the proof strategy of formal specification. We take the bubbie sort and guick sort
algorithms([Aho 74]), which exibit a remarkable contrast in execution efficiency.

Z.2.1 Bubble Sort Algorithm

(1) Formal Specification

Theorem 2 For any natured number list X, there exists a natural number list ¥ such
that

af Length of ¥ ¢ equal to length of X

b} Every element oceuring in X s also oceurs in ¥

e] ¥ 12 sorted

Before proceeding to proof, we must define the notion ’sorted’. This can be done
generally in QJ. But to avoid the tedious definition of ordering in the underlying type
structure of lists we just refer to "list’ as a list whose element is a natural number in the
following description. :

Definitionl:: Let X be a list of length N,
X ia SORTED
——
for any natural number I.J
f1<I<J <N then (I-th element of X) £ (J-th element of J)

We can write the Theorem and Definition above formally in PDL/QJ as follows.

predicate sorted(X:L(nat)) is
all I, J : nat.
{ 1 =< I=<J=<length(X)
-> ealem(I, X) =< elem(J, X))
end_predicate.

function occur_ne : nat#l{nat) -> nat
attain
pceur_mo = fun [N,X].
if X = nil then O
else if ¥ = hd(X)
then l+occur_nolN,61(X))
elee occur_nolN,tl1(X))
existence

unigquenesa

end_function

thesrem LIST_SORT :

nll X : L{nat}, exist Y : L{nat}.
{all ¥ : nat.(occur_ne(N,X) = occur_no(N,¥))
&
sorted(Y))
proot
end_procd
end_theorem

(2] Proof Stratezy

The outline of the proof of Theorem 2 considered here corresponds to the bubble sort
program. The statement of the theorems and definition below are given both informally
and formally, i.e., in PDL/QJ. But only an informal mathematical style description of the
proof will be given here {or brevity.

Lemuna 1 Let X be an arbitrary list of length N, and J be an arbitrary natural number
such that J < N. Then exista the list ¥ satsafiing the following conditions;

a) Length of Y is equal to length of X, and every element occuring in X ¢2 also occurs in
Y [PERMUTATION CONDITION |

b} if J # 0, for every notural number I such that J << N

(J-th clement of ¥) < (I-th element of Y}

This is written in PDL/QJ thus;

thecraan LEMMA 1
all X : L{a=at), all J : nat.
{
J=tlength(X)
-» exist ¥ : L{mat).
{211 £ : nat.
eceur_na{Ek, Xl=eccur_nol(K,Y)
k
2ll I : mat.
(1 =<J=<I=<length(X)
-» elem(J,Y) =< elem(I,Y))

end_prooi
=nd_theorem

< Informal Proof of lammal=
The prooef proceeda by the divide and conquer strategy; X =nilor X 2t nil, T X = nil,
it is suffictent that ¥ ia mil. If X # nil, let M = N = J, and we use mathematical
mduction on M. (note : 0 € M < N) M = 0(ie,J = N}, it is sufficient that ¥
is just X itself. Now assume that if 1 < M < Nlie 0 < J € N = 1) there is a list
Yy such that a) ¥j is a permuntation of X, and b) for any natural nanmber T such that
I <1 = length(X), elem(J,Yy) € elem(I,Yy). Assume also that M + 1 < N, otherwise

7

we have nothing to prove. Now consider the case when M + 1(= N — (J — 1)} and define
a list ¥ as follows: When elem(J — 1,Yy) < elem{J, Yp) , we define ¥ = ¥Y,. When
elerm(J, ¥y) < elemiJ = 1,Yy), we define ¥ as

elem(J = 1,Y) = elem(J, Yg)

elem(J Y) = elem(J = 1, Y3)
elem (K, Y) = elem(K. Yy) [if K#J=-1,7}.

From the above definition and the induction h}rpﬂthesls we can check easily that this Y
satisfies the following;

a') ¥ is a permutation of X

b’) for all natural oumber I such that J —1 < J < N

elem(J = 1.Y) < eitmff,.}’}
g.e.d.

Definition2:: Let X = X,..... Xar.nil be 3 list of length N and J be a patural number.
Then X is PARTIALLY SORTED WITH REGARD TO J

=

If J < N then list X|..... X .nil is sorted

We write this definition in PDL/QJ as follows;

prtdicntn partially_sorted(J:nat, X:L(nat)) is
=< length(X)
-} all E.L : nat.
(1 =¢K=¢L =¢]
=» eleaflE X) =< elea(L,X) }
end_predicate

Lemma 2 Let X be an arbitrary list. If X 12 partially sorted with regard to length{X),
then X ¢ sorted,

thecorem LEMMAZ
all T : L{zat)
{(partially_sorted(length(X).X)
-» mporzed{X) }
proof
let X : L{nat) be arbitrary
asgume
partially_sorted(length(X}, X)
== length{X) =< length(X)
=» all K,L:nat.
{1=<K=<L=<length(X)
-» elem(EK, X}
=¢ glem(E.X))

length(X) =< length(X)
hence
all E, L:oat.
{1=¢<E=<L=<length(X)
=» alem(E.X) =< elen(E.X))
== garted(X)
end_praod
end_theorem

Theorem 2 follows from Lemma 2 and the following proposition:

Proposition:: Let X be an arbitrary list and J be an arbitrary natural pumber such that
J < length{X). Then there exists a list ¥ which satisfies the following condition;
a) ¥ is partially sorted with regard to J
b} for all natural oumbers I, K such that 1 € I £ J and J € K < length(X) ,
elem([,Y) < elem(K,Y)

theorem PROPOSITION :
8ll X : L{zat), 211 J : nat.
(
J =¢ length(X)
=» exist Y : L{nat).

{
perzially_sorted(J,¥Y)
-3
all T : nat, all K : nat.
(
1 =<1=¢]
E J =< K =< length(X)
-» elem(I,¥Y) =¢ elemn(K,Y)
)
)
)
preot
end_proof

end_theorem

« Informal Proof of proposition >

We prove this proposition by mathematical induction on J. If J = 0, it is sufficient
that ¥ is X itzelf. Now assume that 1 < J and there exists lst ¥y which satisfies conditions
a) and b). We will show the existence of ¥ which satisfies the following conditions;
a'}) ¥ is partially sorted with regard to J +1
b’) for any natural pumbers I, K sach that 1 £ I £ J+1 € K < length(X}, elem(I,Y) <
elern (K, Y)
Applying Lemma 1 to Yy with J + 1, we cau get a list ¥, such that

elem(J + 1,Y]) = elem{I,Y;)

9

for any natural number Ist, J + 1 € I < length(X) and by the definition of ¥ in the
proof of Lemma 1 we also get

clem(K, Y1) = elem(K, Y3)

for any patural pumber Ks.t.,1 < K < J. Now from the induction hypothesis we can
easily show that Y satisfies a') and b").

q.e.d.

2.2.2 Quick Sort Algorithm

(1) Formal Specification

This is the same as 2.2.1 (1) Definitionl and Theorem 2.

(2) Proof Strategy

The same example is also demonstrated in [Sato 85] where the specification is proved
by transfinite induction. We sketch here the proof by ordinary mathematical induction
in PDL/QJ style description. The reason we use mathematical induction here is that in
'86 version of QJ([Sato 86]), the transfinite induction schema has been omitted because
it can be simulated by induction on recursive type structures, We use the strategy which
is essentially the same as that in [Smith 82) where the proof is written in the Martin-Laf
type theoretic style.

< Informal Proof of Theorem 2

We prove the following proposition that is the slightly modified version of Theorem 2.

Let X and X be any natural number lists, If length(X,) € length(X), then there exists
Yy, a permutation of X, that iz sorted.

We prove this by mathematical induction on length(X)

[Base Case : length(X) = 0]
In this case X, must be nil and as a required list Y3, ¥1 = nsl will suffice.

[Induction Step]
Let X be an arbitrary list with length N, and this satisfies the proposition. Now consider
any list ¥ with length N + 1. By Lemma 3 we cau get two lists ¥}, and ¥; such that :

1. for any patural sumber I, if 1 £ I < length(Y1) then elem(I,Y;) < hd{Y)
2. for auy natural number J, if 1 € I < length(Y;) then hd(Y) < elem(J, Ya)
3. append(Y1,¥7) is a permutation of tl(¥)

The lengths of ¥; and ¥; are both equal to or less than length(X) so that by the induction
hypothesis, there are sorted versions of ¥, and Yy, say W, and Wy . Now let Z be
append(Wy, hd(Y).W2) |, then Z is a sorted version of ¥ whose length is length(X) + 1.
Thus the proposition is proved for the case length(X) + 1.

q.e.d.

Notes::

If we write the above proof in PDL/QJ, the most crucial or tedious part resides in
the proof that append(W,, hd(Y).W;) s a sorted version of Z. We prove this by the case
splitting strategy of
Casel:: 1 =T < J < length{W,)

10

Case?: length(W)+1<sT<J

and J < length(append(W,, hd(Y).W3))

Cased: 1 < I < length(W))

and length(W,) + 1 < J < length(append(W,, hd(Y).W;)) where function append is
defined as follows;

function mppend : L{nat)#L{nat} =-> nat
attain
append = fun [X,Y].
if X is nil then ¥
else hd(X).wppend(t1{X),Y)
existence

unigueness

end_function

Now we must prove the following ;

1. 1< 7I<length(W,) then
elem(I, append(W,, hd(Y).W3)) = elem(I, W)

2. Mlength(Wy) + 2 £ I < length{append(Wy, hd(Y).Wy))
then
elem(I, append(W,, hd(Y). W3]} =
elem(I — length(W, + 1), W)

3. elem(length(W)) + 1, append (W, hd(Y). W2)) = hd(Y)

These are quite clear for the human mathematician but we must prove them using
induction and inference rules on if-then-else terms with which the sppend function is
defined.

Lemma 3 [Divide Lemma] Let X be any list of natural number elerments, and let a be on
arbitrary natural number, There ia a permutation of elements of X; o such that

7l X) = append(5(a), L{a))

where every element of S(a) 1 less than a and every element of L(a) is equal to or greater
than a

<= Informal Proof of Lemma 3>
This can be proved by induction on the recursive structure of the list. { See [Sato 85]

)
g.e.d.

3 Compilation

The following is an cutline of proof compilation. First the proof described in PDL/QJ
will be parsed into an {incomplete) proof tree. Secandly, the prool checker will check

11

the proof tree filling in the skipped inference steps automatically or through interaction
with the human proprammer. Up to this step everything is essentially the same as CAP
system(|Sakai 86]). In the last step, a complete proof tree will be analyzed generating the
executable code. In this paper, only this step is refered to as proof compilation.

The proof compilation algorithm is given below and as an example the proof compila-
tion of the proof in 2.1 is traced roughly.

2.1 Compilation Algorithm

The proof compilation algorithm is given as a PROLOG style program.

3.1.1 Data Structure

Here are the BNF style definitions.
TYPE = nat | L(nat) | Others
TERM := Variable (Typed Variable) | L {abort) | fun Argument list | TERM |
A-expression) | TERM{TERM| | application | | if FORMULA then TERM else
TERM | Othere
FORMULA == FORMULA A FORMULA | FORMULA v FORMULA | FORMULA
D FORMULA | YVariable(: TYPE) FORMULA | 3Variable(: TYPE) .FORMULA |
TERM < TERM | TERM = TERM (equality) | TERM | Others
FROUOF_TREE = ptree(RULE, UPPER SEQUENCE, CONCLUSION)
UPPER_SEQUENCE :=[] |l PROOF_TREE | UPFER_SEQUENCE]
RULE = FORMULA RULE | TERM_RULE | Others

FORMULA RULE u= W-elm | ¥V-int | J-elm | 3-snt | A-elm | A-int | V-elm | V-int
| >-¢lm | S-int | L-elm | nat-induction | L(1ist) -induction | Others

TERM_RULE 5= i2-clim | if-=, | if-=, | Others
CONCLUSION = FORMULA | TERM
Pil, .. . Pn . uppar seguience
c ... conclusion
3.1.2 Realizer and Realizing variable of expression

In the following XY ,.. denote sequences of variables and x,7,.. denote variables,

Definition::(length and realizing variable)
1: Length of TERM, TERM=TERM and TERM <TERM is 0
2: Length of F A7, where F is of length m and G is of length n, iam +n

12

3: Length of FV G, where F iz of length m and G is of lengthn,ism+n+ 1
4: Length of F 2 7, where F is of length m and G is of length n, s n

5: Length of Vz.F(z), where F i3 of length n, ia n

6: Length of 3z F(z), where F 13 of length n,isn + 1

Length means the length of the realizer sequence of the expression. Let F be a formula
and X be a sequence of variables, then we define the special abstraction (gF)[X], read X
replizes For X 1a a constructive meaning of F. X is called a realizing vardable into which
realizer code will be bound.

Definition::(g-realizer)

1: If Fisa TERM, TERM=TERM or TERM<TERM , then (gF)[|= F

2: I F, @ are formulas, then (gF A G)[X, Y] = (¢F}[X A (¢G)[Y]

3: If F, G are formulas, then (¢F VvV Gz, X, Y| = {outl(2) A F A (qF)[X]AY) V{outr{z) A
X AG A (gG)[Y))

4: I F, G are formulas, then (gF 2 G)[Y] = ¥ A mono(Y) AVX(F A (gF}[X] 2
(g@)Y (X)])

5: If F, @ are formulas, then (q¥=.F)|Y] =¥z ((¢F)[Y (=)])

6: If F, & are formulas, then (¢3z.F})[z,Y| =z A F{z — z} A (gF{z — z}][Y]

mone() means monotonic function and cutlfs) and outr{a] are the canonical elements
of disjoint sum type data structures. [See [Sato 85]) F{z + 2} means substitution.

3.1.3 Basgic procedure

The following procedures will be uzed in 3.1.4.

recliming_vors{Formule, Varsoble_list)
Calculate the length of Formula and create a list of new variables [realizing variahles)
with the same length as Formula.

and_elm_substr{And form_1, And_form_2, Substr)
And form_1 is a conjunction of formulas and And form 2 i3 also a conjunction each
of component formulas oecurs in And form. 1. This procedure returns a natural num-
ber list which indicates the substructure of And form 2 indnd form_ 1. If, for example,
And form_ 1is PAQ AR and And_form_2is P A R, structure ofAnd_form_1/2 is [1,2,3]

and {1.3], respectively, and this procedure returns [1,3).

orantr substr{Or form, Formula, Subsir)
iius procedure iz almost the same as and_elm_subst . But imput formula Or_form is a dis-
nnetion of formulas and Substr b2 pot a list, but the index intecer of Formulo in Or_form.

and elm_filterCode_liat_ 1, Substrueture, Code_liat 2}
Code_ list £ corresponds to Substructure under the assumption that the structure of
Code list 1 is [1,2,..n]. I, for example, Code_list_ 1 is [Code,, Codes, Codey] and Sub-
atructure is [1,3], then this procedure returns as a value of Code list 2 [Codey, Code;).

13

par_eztraction{Upper_sequence, Var_table, Code_list)
This procedure extracts intermediate code of each proof tree in Upper_sequence | and com-
bine them into a PROLOG-list Code_list . Var_table i3 is the form of [| or [Var,, Formula,],
.. |Vary, Formulay]]. When code has to be extracted from particular formulas listed in
Var_table | the corresponding variables will be attached instead of the required code .

discharged{Rule, Upper_sequence, Dach_ form list)
This procedure extracts the discharged formulas with regard to Rule in Upper_sequence.

trch key(Ttem, Table, Key)
Table is in the form of [[Keyy Jtemy|,.., [Keyy, ftemy]]. This procedure searches a Key in
Table whose corresponding item is Jtem. If there is no such key, it fails.

ottach_varsf Itemas_list, Varltem_table)
This procedure attaches a newly generated variable for ¢ach item in [tems.list, and returns
the correspondence table of the form [[Vary, Item;], .. [Vary, Itemy|] as Varltem_tabie.

change_itema(Varltem table, Newltema list, New_table) _
Itemz in Varltem._table will be exchanged for those in Newlterma list. W, for example,
YarTem table is [[X,a],]¥,b],[Z c]| and Newltems_list is [1,2,3] then New_table will be
(X1, [Y,2].(2.3]]. '

substitute({Code_listl, VarCode table, Code_list2)

Corresponding code will be substituted, into every variable in the formulas in Code_list]
listed in VarCode_table.

3.1.4 Algorithm

The idea is that the proof compiler will analyze a given proof tree from bottom to top
extracting code step by step for the inference rule attached to each node of the proof tree.
A similar algorithm which generates LISP code is given in [Hayashi 86].

Our compiler 1s a 2-pass compiler. In the first pass, intermediate code defined as

follow 1s generated, and in the second pass, that intermediate code will be translated into
PROLOG code.

INTERMEDIATE.CODE ::=

end(INTERMEDIATE CODE)

| $0r3(CONDITION, INTERMEDIATE CODELIST)

| $apply$({ TERM, TERM)

| fun(ARGUMENT_LIST,
INTERMEDIATE CODELIST)

| $cnae$(INDEX, INTERMEDIATE CODELIST)

| $dummy _code$

| $rec fun$([$zerc$, INTERMEDIATE CODELIST],
[nat , INTERMEDIATE.CODELIST,

VARIABLE])
| $rec fun$([$nils, INTERMEDIATE CODELIST 1,

14

[$laats, INTERMEDIATE CODELIST,
VARTABLE]}
| $nulls

< TopLevel ==

compile(PROOF_TREE, PROLOGC_CODE 3 o=
ist passa([], PROOF_TREE, INTERMEDIATE CODE).
2at pass(INTERMEDIATE CODE, PROLOC.CODE).

< digchargedformula =
1sti.pnnu{"l’anumulu_table.p-tru(_._.Fnrmnll.},
Variable)} :-
srch key(Formula, VarForumus table, Variable).

4V —elm =
tet_pass(A, ptree(V-elm ,[_,p tree(R,Us,Vz.A[z])],
AiTer=] },
$apply${Code, Term}) :-
1t _pass(A, p tree(R,Us, Vz. Alz]), Cedas).

< ¥ —int =
1at passa(A, p.tree(¥-int, [P.TREZ],),
$fund([Variablel, Code)) :-
discharged(¥-tnt, [P TREE],[Variable:TYPE] J},
1st _pase(A, P_.TREE, Code).

& 4~ elm
lat puss(A, p tree(3-elm, [p.tree(R1,U1,3xz.Alz]),
F TREE],
CONCLUSION),
Code3) :-
18t _pass(A, p.tree{R1,U1,3z.Alz]),
$exigt3{Codel, CodeZ)),
realizing vara(3z A[z],
List_of realizing vars),
diecharged(3-elm,
P.TREE,
[Term:TYPE, A[Term]},
!st pass([[List of realizing vars,
[Term:Type. AlTerm]l][A].
P_TREE, Ceded],
substitute(Coded,
[[List of realizing vars,
[Codel,Cade2] [A],
Code3}.

15

< 3 —int >
lat_pass(A,p tree(3-int
. [p-tree(_, ,TERM), P_TREE],3z.A[z]),
Sexigt$(TERM ,Cade) J :-
‘].ﬂt-_Pa.Es (A,P_.TREE, Code).

o+ A — elm >
let pass({A, p tree{h-elm , UPPER_SEQUENCE,
CONCLUSIONY,
Code) :-
1t pras(A, UPPER_SEQUENCE, $and%{Code_limt)),
and elm substr(UPPER_SEGUENCE, CONCLUSION,
Subetr),
and elm filer{Code_ligt, Substr, Code listl),
(Code list! = [X|Y], Code = and(Code_limtl)
; Code_lietl = [X] , Code = X
; Code listl = [], Code = %$null$).

@ A —int
let pasa(A, p_tree{¥-int , UFPPER_SEQUENCE,.),
$and3(Code_list)) ;-
par_extracticen(UPPER_SEQUENCE, 4,
and(Code list)).

% Y = elm 2
let _puss(A, p.tres(v-elm , [OR _PART |UPPER _SEQUENCE],
CONCLUSION),
$camed(0r_index, Code_ligt3) :-
diacharged(V-elm , UPPER SEQUENCE,
Discharged formula list),
lst pass(A, OR_PART, Ser$(0r_index, Code_listl)),
attach vara{ Discharged formula list,
Verformula_table J,
change items(VerFormula table, Code. list!,
VarCode table),
append (VarFormuls table, A, Table),
par_extraction{UPPER SEQUENCE, Table,
Code_Listd),
substitute (Code list2,VarCode table, Code _ligt3),

<V =1nt e
lot pasa(A, p tree(V-int
. [p.tree (RULE,UP_SEQ, CONC)],
CONCLUSIONY,
or(Index, Code liat) :-
or_intr substr{ CONGLUSION, CONC, Index },

16

1at_pasalA,.p_tree(RULE, UP_SEQ, CONG), Code_list).

<2 —elm >
1st_pess{A,p.trea(D-elm , [P.TREE, IMP P TREE],
CONCLUSION),
$apply$(Code.l, Code 2) :-
iet_pass(A,P_TREE, Code_ 1),
let.puss (A, IMP_P_TREE, Code_ 2).

LT =int
ist_pass(A,p tree(2-int , [P_.TREE], Izp formulnl,
$fun3(Varimble list, Code)):-
discherged(>-int,

[P.TREE], [Discharged formula] J,
realizing var(Discharged formula,Variable liat},
{Variable list =[], X = $nulll
X = Variable_list
1t pass([[Discharged formula X] |A],

P_TREE,Czde).

< 1l —¢elm >
lat_pese(., p.tree(i-elm , [P.TREE], COWCLUSION),
$dummy code$).

< nat-tnduction @
it pass(A,p tree nat-induction,
[P.TREE.1,P.TREE.2], Vz mat.A[z]),
$rec fun3{[3zero}, Codel],
[nat, Code2, New.wvar])) :-
1st pass(A, P_TREE 1, Codel),
discharged{ nat-induction,
[P_TREE_Z2].
{Induction hypethesis])
lst pasa{[[New ver, Induction hypothesis] |A],
P_TREE 2, Codel).

< Linet)-induction =
1st_pasa{4, p_tree(L(mat)-induction,
[F_TREE_1, P_TREE_2],
Wz :Llnat) . Alz]),
$roc Tun3([3nil3, Codel],
[$Lnat8, Code2, New.var])):-
l1st pass(A, P.TREE 1, Codel },
discharged(L{nat)-induction,
[P _TREE 21,
[Inductisn hypothesis]),

17

IS

[I:nat, 1 < I < length(nil)) length(nsl) = 0
1=I=0
T ()
2 - elem(I,nil) = elem(I, nil)) (L-elm)—
(1 <7< length(nil) (-int) —
32 elem{ T, nil) = elem(I nil})
YT not. (V-int} —
" () {1 1T < length(nsl)
length(nil) = length(nd) " 2 2. elem(I,nil) = elem(I nil)) .
(length(nil) = length(nil) (A-int} -
A
Y1 : nat.
1< I<liengthins)
= 2 - elem(I, nil) = elem(I, nil)) m:
3Y - L{nat) (3-imt)
(length(nil) = length(Y')
A,
VI nat.
1< 1< length(nd)
S 2-elem(I nil) = elem(IY Tree of Inductisn Ste) .
VX L{nut}.{al’ : I?.-[m:f.:l. ¥ { (1 -incuction)
(length{X) = length(Y')
A
W : nat.

1< 1< length{X)
2 2-elem({I, X) = elem(I,Y))

Figure 1: Example Procf Tree

let pass([[New var, Induction_ hypothesis] |A].
P.TREE 2, Codel).

2 QtherCoses >
ist.pasa(_,ptree(_, .,), $null%).

3.2 Example

{1) Proof Tree

Figure 1-4 show the proof tree corresponding to the proof in 2.1, As we have shown
in 4.1, the inference with term rule will be skipped in the proof compilation algorithm,
Thus we omit the subtrees of term rule inference abbreviating them with (*) and ** .

{2) Compilicg Procedure
1) The bottom of the example proof tree is an inference by L{nat)-induction rule. Sa that
the extracted intermediate code ja ;

18

[T :nat,1 < Hength{a . X)|

r=1v (v-int)
[t : Linat) , (2<IA
length{ X) = length(t) f < length(a.X)) {Treel} {Tree}
A W1 :nat.(l < I < length(X) 2 -elem(l,0.X)=elem(I,2-a.t) .
o 2-elem(I, X) = elem(],t})] (A-elm) 1 < I < length{a.X) {2-int)

length{ X) = lengthit)

o 2-elem(],6.X) = elem(1.2 - a.t)

length{X) + 1 = length(t) + 1 () WI:nat.(l < I < length{a.X) (V-int)
Tengthia.X) = length(2 - a.t) oy 52 elem(!,a.X) = elem(I,2a.8)) , .
T length{a.X) = length{2 - a.t) (A-int)
A VI :nat(l €I < length{a.X)
2-a.t: Linat) o 2-elem(l,a.X) = elem(I,2 -a.t))
[3Y; : L{nat). IV - Linat). ’ (3-in
{length(X) = length(Y7) (length{a. X) = length(Y,)
A I :not(l €T < length(X) A ¥T:nat{l €I < length(a X)
2 2-elem(], X) = elem(], Vil 5 2-clem(l,a.X) = elem(I,Y}))) _
IV L{nat). (3-¢lm)
(length(s.X) = length(Y)
A
Wi :nat

(1 €I < length(a.X)
o 2-elem|{l,0.X) = dcm{f. Y

[I—l

Figure 2: Tree of Induction Step

1= 1]

- elem(l, ﬂx}{‘a elem(I,2 a.X) (+)-

=2-a

=%-n

2 elem(l,a.X) = elem(I,2 - a.X) (4]

Figure 3: Treel

19

[t : L{nat},
length{ X) = length(t)
M
VI : nat
(1 <1IA
I < length(X)
2
2-elem(I, X)
= elem(l,t)}]
Y1 : nat.
(1<7A
I < length(X)
2
(2 <1] () 2-elem(1, X)
I-1:nat “* = elemi(I,t)
1< 7T -14a
I—1<length(X)
> (2= 1Iv
[2<1InA 2. elem(F-1,X) I < length{ X)]{A-elm)
I<length{oX) =elem(I-1,t) (5-elm) 2<T 2T A

(A-elm)

(¥-elm)

2 elem(I = 1, X) 2 elem(T,aX) ") I <length(a.X)]
= elem(I - 1,1) =2. ei':{m{f—}LX]er 3 < r{ i-eim)
2-elem(l,0.X) — Velem(1,2 - a.t) (+)
= elem(] - 1,¢) = glem(] - 1,i)
2-elem(l,a.X)=elem(I.2-a.t) (s)

Figure 4: Treel

20

$rec fund{[$nil}, Codel],
[$Lnat$,CodeZ, New_ var])

Codel and Code2 are the extracted intermedicate codes from the tree in Figure 1 of
the base case and the tree in Figure 2 of the induction case, respectively.

2) Codel can be extracted by analysing through (3 = int), (A = int), (}(Some infer-
ence rmle on term), (¥ —int), (2 —int), (L — elm) inferences from the bottom to the top
of the tree, and we actually get the following;

$exiat${ mil,
$and3${{3nnlly,
fun([I],5funs({[],$dunmy _codes)’]]})

3) Codel can be extracted by analysing through (3 — elm), (3 — int), (A — int], [#),
(¥=1nt), (O —int), [+). In this procedure, a variable sequence Rel var_aeq will be attached
instead of calenlating the realizer of the induction hypothsis. We actually get the following
intermediate code; :

$existd{ 2==.Hew var,
end([$nulls, $fund([I],
$funs$([],
$case$(0r_index,
[$null$, $nulls])))IN)

4) From the above procedure and some snitable rearrangement, we can get the foilow-

ing intermedicate code ;

$rec fun${[nil, nill,
[3Lnat$, 2=a.Mew var, New war])

and from this we can easily get the following PROLOG code;

new pred{ nil, nil).
new pred{ a.X, 2+a. New_wver) :-
new pred(X, Kev ver).

4 Subsequent research

4.1 Optimization

There are two kinds of optimization. One is the local optimization technology adopted
in most of the commercial compiler systems. The other is global or logic level optimization.
If we can write programs in very high-level programming languages or at the natural
language level, trivial parts of the algorithm will be ahstracted and we can concentrate
on the essential part of algorithm. That will help us produce efficient algorithms. We
bhave shown two extreme proof examples of list sort specification. This case study zhows
hew different proof stratesies correspond to different alporithms. But more case studies
are required to think about the problem of global level optimization.

As a systematic method for proof optimization, which will be categorized as the in-
termediate level optimization between local and global types, the proof normalization
method([Prawitz 65|) may be effective. This is a topic for subsequent research.

21

4.2 Proof Checker

As mentioned in Section 2, a programming paradigm based on QJ entails an intelligent
compiler which has both a code generating facility and a proof checking facility. As for
the proof checking technique see [Sakai 87).

Acknowledgments

The suthor thanks Mr.Sakai of ICOT 2nd Laboratory who was kind enough to cead early
drafts of this and to make necessary repairs to the example codings in PDL/QJ. Special
thanks to Dr.Sato of Tohoku University, Dr. Hayashi of Kyoto University and many other
memberz of CAP working sroup at [COT for many useful suzgestions,

Referencea

[Ahe T4)

[Beeson 83]

|Beeson 85]
[Censtable 86

[de Brujin 80|

[Hirose 4]

{Hayashi 86]

[Kleene 45]

[Martin-Laf 82]

[MeCarty 84]

[Prawitz 65]
[Sakai 86

Aho A V. Hoperaft J.E.
and Ullman J.D., " The Design and Anolysys of Computer Algorithms 7,
Addisen- Wesley, 1974,

Beeson M.," Proving programs and programming proofs”, In international
Congress on Logic, Methodalogy, and Philosophy of Science | Salehurg,
Austria, North-Helland, Amaterdam, 1983,

Beezon M.,” Foundation of Constructive Mathematica *, Springer, 1985,

Constable R.L.et tal., "Implementing Mathematics with the Nuprl Proof
Development System ", Prentice-Hall, 1986,

de Brujin, N.ID." A survey of the project AUTOMATH", in Essays in
Combinatory Logie, Lambda Caleulus and Formalism | pp.589-606, Aca-
demic Press, New York, 1980.

Hirose K.,” An approach to proof

checker™, Lecture Notes on Computer Science 259, Springer 1986,
Hayashi 5. "PX:a svstem extracting programs from proofs®, Srd Work-
ing Conference on the Formal Deseription of Programming Concepls |
Ebberup, Denmark, 1986,

Kleene 5.C.," On the interpretation of intuitionistic oumber theory™, Jour-
nal of Symbolic Logic. Volume 10 . pp.109-124, 1945,

Martin-Lif, P.," Constructive mathematies and computer programm- ing”,
in Logie, Methodology, and Philosophy of Seience VI | North-Holland,
pp.153-179, 1082

MeCarty,D.C,." Realizabuiity and Recursive Mathematics 7, CMU-C5-84
-131, Carnegie-Mellon University, 1984,

Prawitz, D.,” Matural Deduction™, Almgvist and Wiksell, 1965,

Sakni K.," Toward Mechacization of Mathematics ~ Proof Checker and
Term Rewriting System =", France-Japan Artificial Intelligence and Com-
puter Science Sympostum ‘86 | 1986.

22

[Sakai 87]
[Sato 84]

[Sato 85]
[Sato 86}

[Smith 82

[Uchida 83]

Sakai K.and Takayama.Y.,”QJ proof checker”,(to appear)

Sato M and T,Sakurai,” Qute: A functional Language based on Unifica-
tion”, Procceding of the International Conference on Fifth Generation
Computer System | pplaT7-165, 1984,

Sato M. " Typed logical caleulus”, TR-85-13, Department of Computer
Science, University of Tokyo, 1986.

Sato M."QJ: A constructive logical system with types”, France-Jopan
Artificial Intelligence and Computer Science Symposiurmn 86 | Tokyo, 1986.

Smith.J.,” The identification of propositions and types in Martin- Lof’s
type theory: a programming example”, Lecture Notes in Computer Sci-
ence 158 , Spriuger, 1982,

5.Uchida, M.Yokota, A Yamamoto, K.Taki and H.Nishikawa,” Outline of
the Peraonal Sequential Inference Machine: PSI7, New Generation Com-
puting Vol.1, No.l , Ohmsha and Springer-Verlag, 1983.

Appendix ; Inference rules of QJ

These are the inference rules of our logic, a slightly modified subset of original QJ{[Sate

85]).

23

«d-elm> 3IX:TypedlX] X :Type A(X)FCO

c
< J—int > Term:Type A(Term)
SXALX)
< A—int> F,, .. F,
Fia.onF,
= ph—elm= FRALAFR
Fia oo nFa
where n < m
=V =—elm>® FV.VF, F|.|—".:-r, v Fa B C
o
[We call Fyv.. v F, ORPART)

Y - int F;
: - RV ENLUVYE,
o —elm> A ADH

B
€D -int» ArB
AR
< L —¢elm 1
F
nat-induction Aloj A[X|F A[X + 1]
T VzonatAlz]
<L(nat)-induction > Alnil] AlX]F Ala. X]
W : Linat).Alz|
<if=elm>» ifAthen Belse A BFF =ACFF
nlillielsia : e
Eif—-=> A

il Athen Belse C ~ B

[== is Kleene equality)
L lf— =g B

if A then B else O ~C

Figure 5: Inference Rule

24

