ICOT Technical Report: TR-242

R-242
Proving Partial Correctness of
Guarded Horn Clauses Programs
by
M. Murakami

March, 1987

© 1987, 1COT

Mita hoku=ai Bidg, 21F (03] 406=3181 =5

“ :D ! 1-28 Mita 1-Chome Teiex 1COT 132964
Minato-ku Tekvo 108 Tapan

Institute for New Generation Computer Technology'

Proving Partial Correctness of
cuarded Hern Clauses Programs

Masaki Hurakam]

Institute for New Gereration Computer Tachnology .
Tokyo, Japan

ABSTRACT: Guarded Horn Clauses (GHC in short) [Ueda 85) is a

parallel programming language based on Horn logic. A verificalion
methed of partial correctness for GHC prograns is discussed here.

The author investigated a [loare-like axiomatlic system for proving
partial correctness of GHC programs. This article presents

frugments of the axiomatic system. Programs which generate

processes dynamically during the execution or which contain control

of nondeterminism by the guard mechanism are verified by Lhis systems.

1. Introduciion

During the last Tew years, several parallel programming languages based on
Horn logic, such as PARLOG [Clark 86], Concurrent Prolog [(Shapiro AG) and
Guarded Horn Clagses (GHC) [leda 85) have been investigated. These languages
are designed Lo represenl the notions of processes and Lo provide mechanisms
for communications and synchronization in lagic programming {ramewnrk. lu
these languages, Horn logic is extended in order to describe these nolions.
For exsmple, a GIC program consists of a finite set of Horn clauses with a
*guard' part. 1L 15 not enough in such languages to regard & program as a 581
of lorn clauses Lo give semanties to the program. For axanple, (Takeuchi 881
introduced two GHC programs which are equivalent in the deeclarative sense but
the results of executions are not identical.

fesults of the Tormal semantics of such languages have been reported in
several sources, partieularly the semantles of their synchronization mechanisms
(Ueda 8F, Takevchi 8B, Levi 85, 87, Saraswal #5]. However, since most of them
are hased on the operational or an extension of the declarative approach, It
is too difficult to apply these semantics to prove the properties of given
programs.

Several verification melhods have been reported for pure Horn logic
programming languages, for example, those method which are hased on extended
cxeeution [Kanamori B6) or atiribute grasmar [Deransart 87]. However, in most
of thom, programs which can be proved are ‘pure’ prograss which do not contain
any extra logical feature such as the cut | operator. In GHG, the
synchronization of processes is achieved by the guard part. Nondeterminisa of
a prograg is controlled by gnard mechanisms. Since the result of the execulion
of programs is alfected by guard mechanism control, it does not seem a good
way to extend the verification methods for Proleg pregrams to GIC programs.

This paper adopts the axiomatic approach to give a logical framework as a
verifieation method of GIC programs. A Hoare-like axiomatic systee for
proving the partial correclness of programs is medified and extended for GHC
programs.

Several verification systems have heen reported for traditicomal parallel
programming languages such as communicating sequential processes (CspP)
(Saundararajan B4, Yurakami 86), but not have been reported for parallel
progranming languages based on Horn logic. Verification systems lar
languages such as GHC needs to have different features from the verification

sysrems of traditional parallel programsing languages. In the systems for
traditicnal programming languages already reported, the pumber of processes is
[iwed Tor any input value before a program executed and processes cannol he
generated dynamically during its eseculion, 1L is difficult to Tormalize in an
axiomatic way the programming languages which contain dynamic generation of
processes, in GHC, processes are presented as goals, so they are senerated
dynamically as the example of a program to [ind the maxisum elemcnt [rom a
given list in the tourpament sanncr, {see Section. 3). A verification systen
Tor GHC prograss should be powsrful enough to prove such program.

The author investigated an axiomatic svsies for proving partial correctneoss of
GIC programs. This article presents fragments of the axiomatic systenm.

Scction 2 of this article contains a brief Introduction of GIC and a
definition of partial correctness. Section 3 introduces a fragment of the
axiomatic system with a sinple example of prool. It is an elementary part of
the system, The scection shows how the partial correctness of programs which
pontain dynamie generation of processes are proved using an induction method,
Section 4 presents o reflinement of the proof system by which programs with
contral of nondeterminism by guard mechanisms can be verilied,

b Tull set of axiomatic systes and discussions on soundness and
conpleteness of the system will appear in [Murakanmi 87].

2., Partial correctness of GIHC
2.1 Guarded Horn Clauses

Guarded Horn Clauses (GHC) [Ueda 85} is a parallel logic prugrameing
language. For a set of predicate symbols PRED, fumction symbols FUN and
variable synbols VAR, a program of GIC conzists of a finite set of gvarded
elauses. A guarded clause has the [orm:

H :~ Bl,w, Bon}{ Al, =, Anm,

where H is called the head of the clawse, H, Bl,-,Bn is the gvard
part, and Al,,Am 15 the hody part. Mowe that a clause head is

incleded in a guard. Each Bi {1 = i = n) has the form "true’, T = 5,
T o= 5 gr T= {™=1 S ete.,, where T and S are in the set of terms TERN
construated from FUN and VAR, Each AJ (1 = j = m) has a form of
pi{TLl,Tk) or T = %, where p & PRED and Ti (1=1=k) & TERM,

11 has the fora p(T1,- Tk). The cperator | is called a commitment
operator. A goa! clause has the fors of a body part and is denoted as:

Gl, -,Gh

where each Gi (12i=2h) is called a goal.

The computation rule of GHC prograe is as follows. To execule a program is
te refute a given goal by means of input resclution wsing the clauses
forming the program. This can be dome in a fully parallel manner i.e. each
Gi (1l 21 2 h) is solved in parallel and each clause is vLested in parallel
for each Gi under the following rules.

{a) Solving the guard part:

For a goal & amd a elawse O @ H:- Bl,- . Bn | AL, =, An il G
and H can wnify without instantialing any variable term (substituting

any non-variable term into variable term) in G and Bl,-+, Ba is solved
withoui instantiating any variable in G then the guard part of C
succeeds,

(b) Suspend:
For a gosl G and a clavse © if Bl,~, Bn or unilication hetween

and Il cannot succeed without instantfaiing variable terms in G, then O
suspends with O wntil the variable terms in G are instantiated by some
olher goal.

(o) Commitment:

For a goal © and a classe ©, whon the geard part of © suceceds, it
is Tirst confirmed that no other clause has been committed for G, If
confirmed, T is selected exclusively For subsequent of geal. Unification
invoked in the active part of clause C cannot instantiate the goal G
until C is commited to O,

A goal which has the form "true', atem{T}, T = 5 or T > (<) §
ete. 15 solved as a huilt=in predicate.

Example:

The following is an example of & GHD program that takes two list in first and
second argusenl as inpuls, merges Lhem amd returns the result te the thied
argument. Lists are denoted wsing the syntax as DEC-10 Pralog.

merge((Al Ix3, 1y, 0 := true | O = (AlOut), merge(lx. Iy, Qut}.
mergellx, [A|1y), O = true | O = (AlOut), mergellx, [y, Outr).
mergellx, (1, 0) - wrue | Ix
merge([], ly, U} - true | Iy

0,

0.

1f the goal has the fore of:
mergel[1,2), ¥V, Z)

whaere ¥V and 7 are variahle terms, then only the first claose can commil with

this goal and the second and the third clavse suspend. The fourth clause does
not malchs the goal. Thus, nondeterminise of the program is controllied by

the guard mechanism, After the Tirst elause is committed, the suhsequent goal

has Tollowing fore:

= [H0utl, mergel(l2]1. ¥V, Oulr).

2.2 Partial Correciness

In GHC, the direction lor execution of & program is indicated implicitly by
the guard part, For the example of "merge(X, ¥, Z) in the previous section,
¥ and Y are for inputs and Z is for cutput. ln the case of defining partial
corpectness, the explicit description of the execution direction of programs
is useful. The deseription of execution direction of programs is esxpressed by
annotating each argument in the head parts with + (input argument) or -

{output argosent). For a program with annotated head parts, an invocation of a
clause C by a goal G is consistent with the annotation il C is invoked
by & with variabhle terms in all arguments annotated with -. For exasple, when
the "append” program 15 annotated as!

Z

append(X+, Y+, =) - = Z.
| append{¥l, ¥, Z1}, £ = [4]|Z1].

¥ = (3] ¥

append{X+, ¥4, Z-) = ¥ = [A]X1]

then "append({1,2},02,41,X)" and "append((a],U,V) are consistenl with the
above annotation, and 'append((1,2,3),%,0(1,2,3,4,5})" is net.

[Bel. L)
Let D be a set of guarded clauses:

Hl:= B1l,~, Binl | All, -, Alml,
Hz:- B12,--, Bln2 | AlZ, -, AlmZ.

Hs:- Bls,-, Blas | Als, ., Alwes,

Each argument of (11, - ,Hs is annotated by + or -,

Let G1, -, Gk be goals, & and W be input and cutput condition
respectively, 1, -+, Gk is partially correct wet. @ and W iff for any
computation with input satisfying @, following (1) or (2) is true.

(1} G1, ., Gk do not suceead or al least ene invecaticn which is not
consistent with the asnotation in M1, =+, Hs is called during the
computation.

{2} ¥ is true lor the result of the computation.

The above situation is denoted as
& {Gl, -, GHl o ¥.
M afrer } is abbreviated if there is no confusion. In the above definition,

the notions of 'computation’ and 'success’ are used. Strictly speaking, these
notions should be defined based on operational semantics of GHO {Takcuchi B86).

(Fxample]
For following GHC program:
reverse(X+, Y=) = Lrue | revi{X, {1, Y).

revi{E+, Y+, Z=}) (- E=[) | ¥ = L.
revl(C+, Y&, Z-) = C = (A|Y) | revi(X, C&[Y], Z).

‘reverse(U, V), reverse(V,W)" is partially correct w.r.t. input econdition
"true’ and output condition 'U = ¥ . ln other words:

true [reversel{l, V), reverse(V, Wi} U = W,

2.3 Inference Kules

This scolion shows an elementary fragment of the set of inference rules,
Variahles appearing in a proofl are abstraciing a nusber af terms in TERM which

appear during the execution of a program. In this arvicle, '"wvariable' means
abstract variables appearing in a proof, which are denoted by lower case
latters u, v, zl, z2, - which are not in VAK. Varisble terms appearing during

the execulion of a program which are in VAR (and in TERM) are denoted by upper
case lettars U, ¥V, -, Variables appearing in program clauses are considered
as variables when they are used for verification, 'Tera’ means an element of
TERM. A term appearing in a proof is called "ters form',

{Substitution}
& {C1, -, Gn} W

ﬂm‘ :cGli.”i- tJGﬂll f.‘l"':l’

whore @ 15 & substitution.

Consequence 1}
{ quen ¢ {Gl, -+, Gn) W Yo W'

& {GL, e, Go) W

(Copsequenca 2}
d = b & {51, -, Gn} W

¢ {Gl, -~ Gnp ¥

{Derivalion 1}
¢ N T=5 =W

h {T=5} ¥
{Darivation 2}
P1, -, Ps
$ {G) W

where P1, -, Ps is the sequence of all formulas delincd as following.
There is & guarded clause:

Hj o= leﬂ e H.i h\:l |-|'"51j1r B | Aj ‘_11- (lgji-&)

in 13 such that Hj is wnifiable with G {(o,G = o, 1] for

some suhstitution el .

and o, does nol substitute any variable appeariag in @ in arguments
of Hj annotated with '-', and PJj has a following form:

Pi= s ~oa,Rijk A o,d {o,All, .o, ANin}] a, W
k=1, h,

where any variahle appearing in the tere form which is unified with a term
form appearing in an argumeni annuiated - does aot appear at the left of * {

{Parallel)
@1 {G1) Wi, -, &r {Gn} ¥n

A @i (G e, Gal AW

i=l,n i=1,n

where @1 and i (Wi and Wj) do not share any variable for all
i, i (1 =i, 030, i = i)

In this system, all formula which are true in the domain of the program are
regarded as an axiom like usual licare-like system.

f

Proof Schema

In mest of Hoare like proof system, a proof schema is defined as a tree in
which each of the leaves corresponds to an axiom and Lhe root rorresponds Lo
the formula which expresses partial correctness. In this systes, Iu addition Lo
ayioms, 'the hypothesis of induclion’ can appear as a leal. Such definition of
prool schesma is found in [Hurakami B€).

[Def, 2]
4 proof schess of formula & { G1, -, Gn by Qs a tree such that!

1} The root of the tree corresponds to @ { G1, -, Gn Pow o,
2} For every node n, one of al or b} [ollowing is true.

a} For some inference rule (shown in 2.3), n is an instance of a
conclusion and each child of n corresponds to a premise.

b)) n is a leaf and one of following is trus,

(i) n is an axiom. In other words, n is a theorem without {, } -part.

{(ii) n is identical to one of its sncestors n' and Derivation 2) rule
is used at least onee on the path form n' to n.

2.5 TFxample of Prool

This is a program to Tind the maximum element Trem a binary tree. For
example, the result of ‘max((((11,0411,03)]), ¥)" is X = 4.

max{lx, y¥l+, 2=} i= y = [) | max(x, 21}, max(y, 22}, max2(zl, z2, z}.
pax([x]+, z-) = atow(x} | 2 = %,

Nuw the praof of following lornula is deseribed:
binary(u) [max{u, v) } v € Jul A (Vi € |u]l = v 2 x)
where "hinary(u)' means that u is a hinary tree of [AJ. "max2(z21, 22, 2}

is a predicate that takes =1 and =2 as Input and returns the greater
elenent of them as 7. The definition and correctiness proof of this predicate

[

are omitted. |u] means the set of elements ol list "u' .

it is easy to show Lhat:

binary((y11) A stomi{yl) = (V x € [¥1) = yl 2x). ——=========== (1)
From (i} :
binary((y1)) A atom{yl) = (n=yi = (¥ x € (3] = = = 1)),
Applying the rule {(Derivation 1} : T W
binary{{y11) A atem{yl) { m =31) (¥ x € (y1} = m = x). --—-== (3)
For "max?’, it is easy to show!
teue | max2{zt’, 22, 23")) ({z1' = 23 Azl' 2 22") V
(22" = g3 A 22 Z zl'}). ==-=- (4
On Lhe other hand, applying substitutions ol = [ul/u, vl v] and
a2 = | u2/u, v2/v } o (0}
binary(ul) { max(ul, v1) } vl € Jull A Wy & lul] == vl & %))
binary(u2) { max{u2, v2) } v2 € luz| A (Wx € u2} == v2 2 x))

From (4), (5}, (6) and the rule {(Parallel} :

true M binarv(ul) M binary(uZ)
[maxful, v1), max({u2, v2), max2{zl", 22", =3})
¥l & lull A [(wx € Jull = v1 2 x) A
vE2 £ Juz| A (Wx £ [ul| = v2 = x) N
{{z1" = 23" M ozl' Z z2') W
(22" = 23 A 22 Z z1')). ————mmmmmemm (T)

ppplving (Substitution) te (7) with a3 = { v121", v2/22", n 23" |} :

true M binary{ul) A binary{ue2}
[max{ul, v1), max{u2, v2}, max2{vl, v2, m) }
v1 € Jull A (¥x € Jul| = v1 = %) A
vE £ |uz|l A (vx E lui] = vi & x) N
({vl = m A vl & v2) WV
(v2 = m A ¥2 = ¥1)), ~mmmo—mmm——mmn= (8]

{9) and (10) can easily be shown [rom the properties of binary trees,

vi & Jul]l A (Wx € lul] = vl 2 x) A

v o= w2l A (Y € Ju2] = vz =2 ox) N

(vl =@ A vl Z v2) W

(vi=m M v = v1))
= n & [lul, w2)l A (¥x € [{v], u2]| =n 2 x)

——smmre———— (8)
binary((ul, u2)) = binary(ul) A binapy(u2) -———-—-=====- (10}
Applying {Consequencec 1) and (Consequence 2) to (&), (9), (10) :
binary(lul, v2l) { mox{ul, vi), max{uZ, v2), max2{vl, ¥2, w} }
p € [lul, u2)] A (¥x € |{ul, u2)| = 0 = x}.
----------------- (11}
(12) is trivial.
binary({ul, u2]) A u? = (1 = binary{[ul, wZ}) =----== (12)
From (11) and (12), applying {Consequence 2} :
binary({{ul, uz)) A w2z = [}
[max{ul, ¥1), max(u2, 2}, max2{vl, v2, m) }
o & (ful, u2]] A (¥x € [{ul, u2}| == 2 x).
B e e 0K
From (3) and (13), applving {Derivation 2} :
binary(u) | maxiu, vJ } v € |ul A (vWx € lul = v & %)
This Tormula is identical te (0), Thus the procl schema Is constroated.
¥ig. 1| shows the whole prool schema.
a

Hypothesis of Hypothesis of

\ , induction induerion
{Prool of "max2') 0]
—_— ——Substitution) ——————Substitution)}
{4) {5) {6)
I3 Parallel}
———Lybytitution)
(10) {8) (9) a3y
Consequenca) *2 ————————
{11 (12} {27 (Axiom)
Cansequance) Derivation 1)
(13} {3)
Derivation2)
(0)
Fig 1

3 Control of nondeterminism with suspend
3.1)} annotation
This section shows how to prove partial correctness of progrems which

contains contral of nondeterminism with the geard mechanism. The following
progran is a fragment of Brock-Ackersann's anomaly in GHC {Takeuchl 8E).

p2{lu, vlx)l+, w-) = true | w = [u, v¥].

merge(fulxl+, v+, w-) = true | w = (ulv), merge(x, ¥, v).
mergel(xt, [ulyl+, w=) i= true | w = {ujv]), mergelx, vy, v).
mergelx+, [1+, w=} = trua | % = w.

mergel [3+, v+, w=) = trua | ¥ = w.

lu Brock=Ankermann' s anomaly., merge’ is invoked with a variable term in
its second argument and executed with p? in parallel. So when "merge’ is
invehed, the [irst clause comamits first in any case,

As in this exsmple, It also often happens that only the invocation where
some arguments are variable termsi s of interests, In particolar, it is
assential when discussing the offect of synchronization. In this section, the
situation that some variables are variable terms Is described by annotating
the variables with | . For example, Lhe invoecation of "merge’ with the
wvariahle term in the secend argument is deseribed as:

mergelu, v, W)L

The notion of partial correctness is redefined as follows flor goals
containing o variable unnciated with | .

[Def, 3]

Let 13 be a sel of guarded clauses as (Def. 1) . Let GL, -, Gk be goral sy
and @ and W be the input and owtput eonditions. G1, -, Gk is
partially eorrect w.r b, & and W iff for any computalion starting with
variable term in variahle annotated with | and input satislying @,
(1}, or (2) is true.

{1} G1, -, Gk do not succeed or at least one invocation which is not

- B =

sonsistent with the annstation in HI, «,Hs s called during the
computation.

(2) W is true for the result of the computation.

New infcrence rules fer the Tormula containing variables annotated with |
are introduced in the following caption. When variable % is annotated at some
mecurrence in a formula, X iz annotated at all occurrence in the foraula.

The result of unification of x and vl is ¥,

4.2 Inference Rules for Formulas with | Annotation

The lollowing rules are introduced instead of {Substitution} and
{Derivation 2} in Seetion 2.3,

{Substitution } _
@ (G, -, Gn) W

o {aGl,~, oGn) oW

where o does not substitute a non-variable tere form for the variable
apnotated with | . and does not make variables annotated with | and variables
appearing in G1, -, Gn which are not annotated, identical.

{Derivation 273
Pl, . Ps
& (G) W

whare P1. -, Ps is the sequence of all Pj (1 S J = s} deflined as
Fol lows:

There is a guarded clause!

Ik

Hj - Bil, =, Bibh |AjlL, =, Aln. (J=1,8

in D such that HJj is unifiable with G {o; G = oy HiY

o, doas not substitute any variable appearing in ¢ for
variables in apguments of [1j annotated with -, does not substitute
non-variable ters form for the variable annotated with | in the enification of
a ters appearing in G, and a term form appears in HJ as an argument annaiated
with +, and Pj has the following form:

Pi= /No,Bik A o, [a,Ajl, = o, Ain) o, ¥
k=1, hy
where any variable appearing in the term [orm which wnified with an argumont

annotated - does not appear at the lelt of (.

i Tormula containing variables annclated with |} can be inferred by
following rules:

1Y If % is annotated in the premises then x is also annotated in the
conciusion.

2) & variable x appearing in G of @ {G} W can be annotated with |
it ¢ (G) W is a conclusion of {Derivation 2"} and for any j (1 5 J
= 5} o, doss not substitute a non-variable term form for x.

) A variable x appearing in 5=T of @ {S="T) W can be annotated
if & {S=T) V¥ is a conclusion of {Derivation 1}.

4y & variable x appearing in G of @ {(G) W can be annotated il
¢ (G} W appears in a proef schesma as a hypothesis of induction,

Using this refinement of the axiom system, the following can be proved.

la, bl=u f{merge{u, v |, w), p2(w, o)) o =f{a, b)

3.2 Example of proof 2
In this section, the proof of fellowing formula is given.

(4, B} = U {merge{li, V), W), p2(W, Out)) Out = (4, B)

From:

true M ¥ = 03 = V = 03 -—- S — (1)
applying {Derivation 1}:

true (V] =03} ¥ 5 03, —————mrmmmmm——mmmemmmmmee (2)
On the other hand, from:

true A 01 = (B1|02] = 01 = [B1|02) ————————————===(3)
applying {(Derivation 1}:

true (01 = [B1]021) 01 = {B1]02), =====-=m===mmmeee— (4)
From {2}, applying {Derivation 2"}:

teue { merge({), V1, 03)) V=03 - (B)

Frem (4) and (5}, applying {Farallel}:

true (01 = (B1i02), merge((), V1, 03)) V=03 A 01 = [BLlO2).

mmmmmmmmmmemmmae (B
applving {Substitution’) with o = (02 f 03}
true (01 = [B1]02)}, merge({), VJ, 02) } V = 03 A 01 = [B1]02].
Feomt T
(B1) = (B1) = true, V =03 A 01 = (B1]02) = 01 = [B1|V)
—————————————————————— (8)
applyving (Consequence 1) and {Consequence 2):
[B1] = (B1) (01 = (B1]02), merge((), Vi, 02) } Ol = [BLIVI.
oa the other haad, from: ©
[B1) = [} AV =00 = 0L = [BL]V] s == (10}

_1{].‘

applying (Derivation 1):

(Bi) = () {¥i =01} 0L~ (BLIV]. e {11
From (0) and (11}, applying {Derivation 2%

(B1) = 11 {mergelli, Vi, 013 01 = [R1IV] == (12}

where o, for (8) is @

{(81)/11, BL/A, [1/1x, ¥/1y, 01/0, 02/0ut } ,
and o, for (11) is:

{0/, Viy, 01/0)

Furthermore from:

true A Wo= (AL]O11) = (011 = (BLi|vi) = W = [Al, BItivil)

------------------- (13}
applying {(Derivation 1
true | W = (AL[DI1)) (011 = [B11|V1] = W = [AL, BlL|V11).
memmmmm e (14)
From (12) and (14), applying (Parallel}:
(Bil = 11 {W = (A1]0113, merge(11, VI, O1)} O1 = [B1|VT A
(011 = (BI11¥1) = ¥ = (&1, B11|V1])
B et 0 1)
applying (Subsiitution} with o' = {o1/011, B1/Bil, V/¥1} :
(B1] = i1 {W = [A1]01), merge(ll, V1, @)1 01 = [(E1IVY A
(01 = [B1]¥] == W = [Al, BLIV]).
------------------------ (18)
From:
0l = (BI|V) A (01 = [BL|V) = W = [Al, BLIV]) = W = (a1, BIIV)
[Al, B1] = (A3}T1) = (B1) = 11
UL L

applying {Consegquence 1) and {Cunseguence 2

(AL, B11 = [AL|11) {W = (A1]01), mergelll, Vi, 01y W = [AL, BLIV].

cmmmemmmmmmmemm= (18)
On the other hand {rom:
(A1, B1} = [} A ¥ =W = W= [Al, BLIV)
——————————————————————————— {19)
applying {Derivation 13}:
(AL, B}) = () (V1 =W} & = [&l, BLI¥}. ====—"- {20)
Froe (9) and (10}, applying {Derivation 2" ¥:
(41, BL) » 12 (merge(l2, V), W)} W = (&1, B1{V] -====—==-= (21)

= 11 -

where o, for (16) is:
{ CALII1)/12, A1/A, 11/1x, V/ly, W/0, 01/0ut)

apd for (20) ist
(ry/1e, v/l RAO D .

On the other hand, the prosf of the ecorrectness of p? is as following. At
firsi, it is easy Lo show:

Lrue A Outl = (A4, B4) =» ([A4, B4]_]1 = (43, B3}V2] = Qutl = (43, B31).

mmmmmm e n o= (22)

Applying {Derivation I}:
Lrue {0utl = [A4, B4} ((A4, B4|_1 = (a3, B3IVZ] = Qutl = (A3, B31).

SR}
ipplving {Derivation 2):

true (p2(WL, Dutl)) W1 = (A3, B3|VZ) = Outl = (A3, Bal.

I—————— . ¥}
where!

o= [(A4, BAl_1/W1, Gutl/0, A4/k, BAJB}.
From (21) and {24), appiving (Parallel}:

(A1, BLY = 12 {morge(12, V1, W), p2(W1, Outl)) ¥ = [Al, BLIV] A
(W1 = (A3, B3|V2) — Outl = (A3, B3]).
e €
tpplying {Substitution}

(a1, B1l = 12 {merge(i2, V1, W), p2(H, Out)) W o= A1, BYL|VI A
(W = [Al, BL|¥] = Out = [&L, B1l).
e f26)

From:

W= [A1, BLIV) A (W = (AL, BL|I¥) = Out = [Al, BID)
- Dut = Eﬂli M]

———————————————— {27)
applying {Consequence 1):
(41, B1) = 12 {merge(i2, ¥l , W), p2(W, Out)} Out = [41, B1)
e 1.
The result is derived applying {Subsiitution} with
o™= (AfA1, B/BL, UJIZ} .
(4, B) = U {merge(®, V1, W), p2{l, Out)) Out = [A, B)
—-- - (29)

Fig. 2 shows the whole proof schema.

- 12 -

(1)

{Derivationl}
{ A 2 (3) {Derivatlonl}
Derivation {Derivarlon
Hel) {5) (4}
(Paralle
b) (6l
(gubstiwution) ———
(7) (&) {10)
{ Conscquence) @) o {Consequenoe}
{Derivation2") {Perivationl” }
(12} {14
{Tarailel) -
(15)
{Gubstilution)}————
(18]) (16) (17} (22) _
{Porivation} {Consequence) {Deravationl}
(2o 18}) . (23) T
- ¢{Derivation?’ } ———(Derivationd ¥
(21) (24}
{Parallel}
(25}
{Substitution) —
(26} (27}
{Consequence)
(28] .
{Substitution}
{29)
Fig.2

4, Conelusion

This abstract introduced fragments of an axiomaiic systiem for proving
partial correctness. These are the most elesentary parts. It is not encugh Lo
prove partial correciness for sironger output conditien. For exanple, in
Block-Ackermann’ s anomaly, the following can be proved in the Tragmont system
introduced here:

no=(a) (t2n, o)l o =la, al ¥V o= la, stall.

however, the following cannot be proved in this system although Lkis formuls
is Lruc:

no=lal (t2in, o)) o =1{a, al.

To prove a correcifess properiy like this, a method to formalize effects
of synchronization is needed. This is done by introducing u new notation
ropresenting communications broiween processes explicitly and refinement of
the inference rule (Parallel}. This refinement of axicmatic systea and
exumples of the proof will appear in [Murakami 87].
Acknowledgemenls

Toenyld Vike te thank Dr. Ho Furukawa, br. K. Ueda, Dr. J. Tanaka and Mr. H.
Seki, and all other members of First ard Third Laboratories. of 1007 for many
psaful discussions.

(References]

[Clark 861 K. L. Clark and 3. Gregory, PARLDG: Paraliel programnming in
logic, ACH Trans. on Programming Language and Systems BE, 19846

_1::"..

[Daransart B87) ¥, Deransart, Partial Correctness of Logic Programs,
submitted to Syap. on Logic Programming 87

(Kanamori 861 T. Kanamori and H. Seki, verification of Prolog P'rograms
Using an Extension of Execution, Lecture Notes in Gomp. Seci., Mo. 2253, 1086

[Levi 85) G. Levi and C. Palamidessi, The peclarative Senantics of Logical
Read-only Variables. Prc. of Symp. on Logic Programming 85 1985

(Levi 87) G, Levi and C. Palamidessi, An Approach to The Declarative
Semanties of Synchronizatien in logic Language, lo appear in Froe, of
International Confl. on Logic Programming A7, 18587

[Murakami #6] M.Nurakami and Y. Inogaki, Verification System For Partial
Correcipess of Communicating Sequential Processes, Systems and Computers
in Japan, 1988

(Murakami 87] M. Nurakami, Axiomatic Sesmantics of Guarded Horn Clauses,
Tec, Kep. of ICOT in preparation

[Saraswat 85) V. A. Saraswail, Partiel Correctness Semantics for CP L] .].E],
Lecture Motes in Comp. Sci., no. 206, 1885

(Saundararajan 84) N. Saundararajan, Axiomatic Semantics of Comeunicating
Sequential Processes, ACH Trans. on Progragming Langvages and Systems,
Val., 6, Ne. 4, 1884

(Shapiro RG] E. Y. Shapiro, Conourrent Prolog: & progress report,
lLecture Notes in Coap. Sci. No. 232, L1986

{Takeuchi 86) A. Takeuchi, Tewards a Semantic Madel of GHC,
Tee, Rep, of 1ECE, COMPBG6-59, 19886

[Ueda 85) K. Ueda, Guarded Horn Clauses, Tec. Rep. of I1COT, TE-103, 1885

[leda 86] K. Ueda, On Operational Semantics ef Guarded llorn Clauses,
Ter., Nemo of 1C0T, TH-D160, 1986

- {1 =

