ICOT Technical Report: TR-240

TR-240
Performance Evaluation of a Unification
Engine for a Knowledge Base Machine
by
y. Morita, M. Oguro (NTT). H. Sakai.
S. Shibavama (TOSHIBA Co.),
H. Itoh and. Y. Morita

March, 1987

COYRT. 1ICOT

Wit Rokusal Bldg. 21F N3 456-3191= 5

|[:O'] 498 Mita 1=Chome Telex 1COT 132964
Ainato-ie Tokyo 108 Japan

Institute for New Generation Computer Technology

Performance Evaluation of a Unification Engine for a Knowledge

Base Machine

Yukihiro Morita, Masami Oguro! Hiroshi Sakai}
Shigeki Shibayama® and Hidenori [toh
ICOT Research Center
Mita Kokusai Building, 21F,
4-28, Mita 1-Chome, Minato-ku, TOKYO 108, JAPAN

January 30, 1987

Abstract

In this paper we describe the performance evaluation of a unification engine
(UE) for a knowledge base machine.

The UE is dedicated hardware that performs the retrieval-by-unification opera-
tions (RBU operations) associated with a relational knowledge base model. It is
a conceptual model for a knowledge base in which the knowledge is represented in
relations consisting of terms, and unification on terms is used as the retrieval mech-
anism. The performance of the T.‘;'E mainly depends on the amount of data passing
each component.

We have developed two kinds of pipeline unification methods and performed a
quantative comparison of the two methods. The MAM method which applies the
most general unifier at the end of a unification is proven to outperform the SAM

method,

'NTT Electrical Communications Laboratories

{Toshiba Corporation

1 Introduction

The Fifth Generation Computer Systems (FGCS) project in Japan aims to de-
velop inference and knowledge base mechanisms to impilement a knowledge informa-
tion processing system. We are developing a knowledge base machine which is an
extension of a relational database machine [Itoh 86]. This knowledge base machine
tc based on the relational knowledge base model in which knowledge is represented
by terms. This machine stores the knowledge in the secondary storage in the form
of a term relation in which elements of each domain of each attribute of the re-
lation are extended to terms from atomic values. Operations which retrieve these
terms (tuple) in the term relation are also extended to using unification and called
retrieval-by-unification (RBU) operations[Yokota 86). We use the unification engine
(UE), dedicated hardware to RBU operations, to perform fast knowledge retrieval
[Morita 86a).

Tlis paper describes the performance evaluation of the UE. Section 2 describes
the confizuration of the UE and its simulator. Section 3 shows some results of the
performance evaluation of the UE for sample data. Finally, Section 4 proposes a new

unifieation method that improves the performance of the UE.

2 Configuration of the UE

A relational knowledge hase system architecture was proposed in [Yokota 86] and
[Monoi 86]. Fast unification is the key to the performance of the computation on
this model. We propose the UE, dedicated hardware for performing retrieval-by-
unification operations at a high-speed[Morita 86a].

Figure 1 shows the UE confizuration. A UE uses three channels, two for input
data streams to it and one for ontput data streams from it. A stream is a line of
contiguous data items that flows through each units. It processes data streams bv a
pipeline fashion: it gets the data stream from input channels, processes it and put
the results on the output channel.

The unification engine consists of the following units:

tuple memory(TM): The tuple memory stores input tuples.

[

PGU

SU (Sort Unit) (Pair Generation Unit) UNU (Unifieation Unit)
—! pRU i
:‘E
| Tuple memo
D ry —|
Tupie memary ._|
—‘ PRU Ea 0GU (=
. i 2
UE configuration

Figure 1. Unification engine configuration.

preprocess unit{PRU): This unit extracts an object item (term) from a tuple
and sends out only that item to the sort unit. For example, in the case of join
between term relations kby(4, B) and kby{C, D) on attributes B and C, this
umit sends to the sort unit only the values (terms) of attributes 5 and C.

sort unit (SU): The sort unit sorts sets of terms according to the order of gen-
erality using a two-way merge-sort algorithm. This unit contains several sort
cells. The input data is a variable-length character strings represented by TRIE

representation[Aho 81] that reduces the amount of the data of the later cell.

pair generation unit (PGU): This unit accepts two sireams of sorted terms,
then generates pairs of possibly unifiable terms and send them to the umifi-
cation unit. At the same time, pointers to each original tuple in the tuple

memory corresponding to the pair is sent to the output tuple generation unit.

output tuple generation unit(OGU): This unit refers to the tuple memeory and

generates the output tuple according to the information of the PGU.

unification unit(UNU): The unification unit obtains the most general unifier
(mgu) of generated term pairs and applies it to the output tuple received from

the OCU. The UNU contains several unification cells and application cells.

unification cell: The unification cell finds the disagreement of the input data
pair and finds a substitution, if possible, for a variable. Then this cell
sends the substitution information to the corresponding application cell.

application cell: The application cell applies the substitution for one variable

to the original tuples.
postprocess unit (POU): The postprocess unit reforms the output data.

The entire UE operates in a pipeline fashion among these units. The pipeline fow,
hewever, becomes discontinuons because of the dvnamically generated intermediate
results.

We have evaluated the performance of the UE using a simulation program written
in C. This simulator simulates the behavior of the unification engine at a clock-cycle
level, according to a hardware model. The hardware model is set up to be [easible
using current technologies. [n this paper, basically, one clock cycle is defined as the

time required for one read,/write RAM operation of 1 word {4 bytes) of data.

Level of the Node ' Tuple | Data l Result

Name ! 2 3 | No. | Length | Tuple No.
Paral | 1 binary functor 3 constants 18 352 156
Paral | 2 binary functors J constants 35 502 [31
Paral | 3 binary functors 3 constants 52 1032 460
Paral | 5 binary functors ri 3 constants BG 1712 TG
Para? | 1 binary functor | 1 unary functor | J constants 14 196 178 |

| Para2 | 1 binary functor | 2 unary functors | 3 constants 35 871 5635

| Para2 i1 binary functor | 3 unarv functors | 3 constants G6 2340 1169
Para? | 1 hinary functor | 4 nnary functors | 3 constants a7 4909 1963
Para3 | 1 Jary functor 1 constants 16 256 2356
Parad | 1 3ary functor 2 constants 38 1200 824
Parad 1 dary functor 3 constants T 4008 1914

| Para3 | 1 3ary functor 4 constants 142 | 10660 3700

Table 1. Parameters of sample data
3 Performance evaluation of UE

Since the unification-join is the heaviest among RBU operations, as join opera-
tious in normal relationel operations, because of its O(N'?) computation complexity
with a naive implementation, we evaluated the performanece of the unification-join

operation of the UE.

3.1 Sample data

The first evaluation data we used s a zet of artificial terms in which the functor
that appears at each level is restricted to an element of the specified set of functors
for each level., We uzed these sets of terms as unary term relations and evaluated the
processing time of unification-join betweesn the identical term relations and output
tuples that contain attribute values of both term relations (the result relation is
a binary relation). Table 1 lists the parameters of the sample data. By using

these artificial sets of terms. we think that the results are not hiased to a particular

application. This we thought important as the initial stage of this kind of simulation.

The second evaluation data we use is the DCKR sample data. We expected, by
contrast to the former artificial sample data, a more application-oriented behavior.
The DCKR {Definite Clause Knowledge Representation)[[oyama 83] is a way to
represent the knowledge of structured objects by means of definite clauses. The
DCKR sample data is a term relation in which a piece of structured knowledge is
stored them into a term relation. [Murakami 86] gives a method to store knowledge
represented by DCKR into term relation together with an inference mechanism using
RBU operations. The sample DCKR term relations are show in Appendix A.

In order to evaluate the UNVU separately with a former research result [Yasuura 85],

we used apother artificial sampie data, which is given in Table 3.

3.2 Processing time of the UE

Tle main components of the UE are the sert unit (SU), the pair generation unit
{(PGU) and the unification unit (UNT). Figure 2 shows the total processing time of
UE and the processing time of each unit {or the data Paral. The processing time
of the UE is almost cqual to the time of the UNU in Iigure 2, and it is true in the
cases of Para2 and Para3. In these cases the selectivity (result tuple count relative
to the product of each relation’s cardinality) of the unification-jein is poor, that is,
PGU generates a lot of pairs. The amount of processing of the UNU depends on the
amount of input data, and the amount of the input data to the UNT depends on the
filtering efficiency of the PGU. Therefore, the processing time of the UE depends on
the selectivity of the PGU and the processing speed of the UNT,

On the other hand, in the case of DCKR sample data, processing times of the
SU, PGU and UNU are a 60%, 90% and 20 to 30% of the processing time of the
entire UE, respectively. In these cases, (1) selectivity of the unification-join is good,
and {2) PGU works effectively to reduce the amount of pairs to be checked at the
UNU considerably, so the processing time ratio of the UNU to that of the entire UE
is smaller than the above cases.

We describes the a performance evaluation of each unit in the foilowing subsec-

tions.

50000
UE', sty
SUW —- 1
PGU| e
UNUI —
10000 ! r/
i |
£ 5000 | - .
al
B
&
-]
2
)
g
W
1000
500
100

100 500 10040
Data size (Words)

Figure 2. Processing time of each unit

=

5000

200

175 —

noTRIE| e—9 4

Pracessing Time (Clocls)
=
n
S

1 2 3 4 5 6

Sort cell numhber

Figure 3. Effect of the TRIE representation

3.3 Processing time of the SU

To consider the processing time of ST, we were interested in the performance
improvement caused by incorporating the TRIE representation. It is an effect of
the TRIE representation that the processing time of the SU is better than the time
proportional to the amount of input data for SU in Figure 2. If we used normal
flat representation instead of TNUIE, the 5U performance would he propertional, at
the best, to the amount of input data. Each sort cell reduces the common substring
among contignous input data items in a data stream. Data used In Figure 2 and
Figure] show the effect of data reduction by using TRIE. Since we use the two-way
merge-sort algorithm, the nth sort cell of 3U requires the memory for 2" tuples and

there is a fill-up delay for the first 2® tuples. So if there are no common substrings

105

~ A
H E ._-' rl‘ E
PARAT| .

P -u""“""-?“""""-h-““""II:'f

PARAZ n 5
PARAZ A K
= ‘ : A :
i3] K :
e S £
3 , :
C Ia
£
5 104 T T :
2 P : :
£ E :
B : :
E-T1] H E

= e T E-r-nﬂ ammnT
E g :
oy ¥ i
1] : :
: s :;

2 é.
s
n '
L
L
’ll"
103 A ;
102 103 104 105

Amount of output data of PGU (Words)

Figure 4. A relationship between the processing time and the amount of the

output data of the PGU

in the tuples, then the processing time of the succeeding cells is greater than that of
the preceding cells because of fill-up delay (Figure 3).

3.4 Pracessing time of the PGU

In the case of Paral, 2 and 3, the amount of output data for the PGU is larger
than the amount of input data. Figure 4 shows the relationship between the amount
of output data of the PGU and the processing time of the PGU. In Figure 4, it is
shown that the processing time of the PGU is in proprotion to the amount of its
output data. Therefore, if the amount of output data of the PGU is larger than that

of input data, the processing time of the PGU is bound to the amount of the output

Level of Node | Variety of Functor
1] 2] 3
Root 1.08 | 1.08 | 1.08
Intermediate | 1.08 | 1.86 | 2.63
Leaf 1.08 | 1.69 | 2.73

Table 2. A generated pair/unifiable pair ratio

data and the processing time of the pair generation checking is smaller than the time
to send a pair to UNT. In other words, the next pair can be generated while the

currentiy-generated pair is output to the UNT.

The ratio of input data and output data of the PGU is an impertant factor for
the p!rfl::rma.n-lza of the entire TE. The performance of the entire TE depen&s on
the selectivity (of the unification-join) and the pair generation algorithm. Table 2
shows the gen.erated pa.i:,a’u:ﬁﬁa.hle pair ratio of the pa.l: generation algorithm to
each data (Paral, 2 and 3). We call this ratio the filtering fuctor of PGU in this
paper. The filtering factor get worse if the variety of functors that appear at the
intermediate or leal node is rich. Put another way, the performance of the UE drops
when terms in the term relation have complex structure. This is because the pair
generation algorithm has to produce numerons pairs when they have many ares,
which corresponds to the structure complexity.

[Henschen 81] and [Morita 86b] proposed the term index scheme and [Okmori 6]
proposed the hash-sort method for the unification-join. These methods, gener-
aly speaking, have better filtering factor than our pair generation algorithm, be-
cause these method check more nodes than our method. The algorithm to gener-
ate possibly-unifiable pairs is a tradeoff between pair generation check calculation
load and selectivity. These methods, we think, are more suitable to perform the
unification-join operation on relaticns which are classified according to hashing {or
indexing). So we pian to employ these techniques to decompose unification-join

operation to be done parallelly by multiple UE's.

10

Unification between #1; = f{a@1.224...,8%) and {5 = XL X, ..., X, where

i=1,...,7.

Number of Tuples
UNU |
k| 11| 55 | 20:20 | 50:50 | 11
1] 18] ¢ B, 6| 10
2 21 12 9 g1 13
10l 561 ar| 27| 26, 37
25| 131 | 76 | 56 82

unit:clock /pair of tuple

*:[Yasuura 35]

Table 3. Effect of pipeline
3.5 Processing time of the UNU

The UNU processes data in the pipeline fashion. Table 3 show the effect of the
pipelipe. In this table, the processing time of the UNU per pair of tuples is compared
to the hardware algorithm of unification proposed in [Yasuura 83]. The processing
time of the UNU is not better than Yasuura's algorithm in the nuification between a
single pair of terms, but the UNTU performs better in the case of unification between
multiple pairs of terms. This tendency is clearer when the multiplicity increases. This
eclearly shows the pipelining effect and thus proves the effectiveness of the pipeline
hardware confizuration of UNU.

The UNTU has two kinds of input data streams; one consists of attribute-value
pairs for unifiability checking whichk comes from PGU, and the other one which comes
from the OGU consists of cutput tuples the most general unifer ({mgu) is applied to.
The relationship between the amount of input data from the tuple memory to the
application cell and the processing time of the UNU are shown in Figure 5. This
Figure shows that the processing time of the UNU is in proportion to the amount of
the input data from OGU to the application cell.

In the sample data case, two unary relations are unification-joined to form a

binary relation each attribute of which consists of the original unary relation. So

106

PARAT| T
PARAZ| = | R
PARAZ| a | R

105 : —

104

Processing Time of UNU (Clacks)

ws |5 /b : :
102 103 104 106 106

Amount of input data to Apply cell (Lia) (Words)

Figure 5. A relationship between the processing time and the amount of the
input data form OGU of the UNU

the amount of input data from tuple memary, which becomes output tuples by the
application of the mgu, is about twice larger than that of input data from PG U. Sioce
the amount of the input from tuple memory is this large, naturally the processing
time for computing the most general unifier of the pair of terms is smaller than the
processing time of applying the mgn to the input data from the tuple memory to

farm the output tuple.

3.6 Discussion

The performance of UE is basically an accumulation of each component. However,
each component works in a pipeline fashion, mere pipe travel time (a performance
measure of separate components) does not affect the performance when large amount
of input data is supplied. In this case, more influential to the performance is the
dynamic variance of data streams. Especially, the behavior of ST, PGU and UNU
greatly affects the perfarmance since in each nnit such dynamic variance takes place.
The SU incorporates a hardware variable-length two-way merge-sort algorithm. Un-
like the fixed-length hardware two-way merge-sort, the behavior of the sort cells
depends heavily on the variance of the input data length. So, generally speaking,
the processing time of the ST depends on the amount of input data, a necessity, and
how it flows down the cells without busy interiocks caused by the variance of data
items. In our results, the processing time of ST depends almost only on the amount
of input data. This is because 1) the sets of sample data we used did not have much
variance in their data length among tuples and 2) the TRIE representation could, in
average, lessen the amount of data transfers between cells, which prevents inter-cell
locks cansed by long tuples transiers.

The PGU is performing a kind of filtering, that is, it is trying to reduce the
amwount of data {pairs) to be exactly checked for unification in the succeeding UNU.
As is given in 3.4, there are algorithms for this filtering. The feature of our filtering
almorithm is that it can receive two input sireams dyvnamically at the same time.
So if separate channels are provided to each input port, as in our configuration, the
total time for input can be reduced to nearly a half of the single channel case.

The UNU algorithm is based on performing a one-argument unification at each

unification cell. Although we Zave a better method in Section 4 in this category, the

13

processing time is bound to the maximum of the amount of input data for unification
checking or output data which is the successful result of unification. In that sense,
since we cannot contrel the amount of successful unification (the output), the PGU is
the kev to the overall performance. (A naive PGU could generate Cartesian product

of two input relations inte TNT.)

4 Refinement of the UNU

4.1 Modified UNU configuration

Since the original method applies each substitution locally at each unification cell
to each variable, we call this the local substitution application method (SAM). SAM

has the following features(Figure 6(a}).

1. Each unification cell processes a pair of terms and obtains a substitution for
one variable. Each cell campares two input streams until a differsnce is found,
and obtalns the substitution, if one of two input items is a variable. After that,
the unification cell sends the substitution information to the corresponding ap-
plication cell, at the same time, the application cell applies the substitution to
the remaining sections of the two streams and sends them to the next unifica-
tion cell. Therefore, genernry speaking, the terms get longer in size as they go
through the unification cells. This causes the processing time of the succeeding

ceils to become longer than that of the preceding cells.

2. Each application cell processes the output tuple from OGU and applies a sub-
stitution for one variable. Since each cell applies the substitution, the amount

of data passing through the preceding cell is smaller than that of the succesding
cell.

The SAM has the following problem.

When the mth unification cell finds that a pair of terms is not unifiable at its
place, the application cells prior to the mth application cell have already begun to
read the correspondicg output tuple and to process it. Since the processing time
of UNTU depends on the amount of data that passes through the application cell, as

mentioned in Section 3, this behavior degrades performance.

14

Liu

g

R

tan
2o

2

PGU

L

L1
e

gt

CELR R

Liy

aan

e R

AL
e, W
FEE R L

b by O P T S R R ;_33:

| Unif. =
I PGU L= ey

b ﬂgﬁ_*g i i
#*ﬁ%ﬁ. L gaﬁ &’ﬁ

2

L
5
.

2

Ty

i

e

AT
e

7

ot et
HE
ol

; S
.| mgu

» - N -\;ﬁwgf .--.. -y,
Cell1 | Cell? wﬁmgﬂfﬁﬁ Cellp .
*.‘""“-e&iﬁﬂ.*ﬁm e m*‘%%ﬂwﬁ.‘“ S T e

g
2

H B

]
(1]
=
B
-
=

ki
Pl

et mpme

i

oGU

(b) mgu Application Method (MAM)

Figure 6. UNU configuration corresponding SAM and MAM.

15

To soive this problem, we propose the Mast general unifier Application Method

(MAM) shown in Figure 6(b). The MAM has the following features.
1. The unification cells work just as in SAM.

2. We use mgu cells to compute most general unifier of the pair of terms {rom
substitutions for each varfable. The first mgn cell sends the substitution ob-
tained by the corresponding unification cell to the second meu cell. Each
cell applies the substitution obtained by the corresponding unification unit
to the data from the preceding mgu cell and sends them with the substitu-
tion to the succeeding cell. For example, when an mgu cell accepts a set of
substitutions #;_; = {f{a}/X, Z/Y} and the corresponding unification cell ob-
tains a substitution #! = {a/Z}, the cell applies ! to the #:_; and cutputs
#; = {f(a)/X,a/Y,a/Z}. The output of -the last mgu ceil is a most general
unifier of the pair of terms.

3. In this method, mgn is applied to the output tuple after the mgu cells camplete
the mgu. Thus the application cell applies the mgu only to the output tuple
cﬁrrespnndjng to the snccessfully unifiable pair of terms. Therefore, we can

eliminate the time required at the application cells in using SAM.

At first sight, if there are many pairs of terms not unifiable in the input data of
the UNU, MAM is faster than SAM. The discussion of the two cases is given in the

following subsection.

4.2 Comparison

Figure 7 shows the relationship between the generated pair/unifiable pair ratio
(filtering factor) and processing time of both methods. We contral the filtering factor
by changing the constants in the relation. In Figure 7 the input data to the first
unification cell is the same in all cases, and the size {L;,) is a 2 x 1728 words. That
means that the number of generated pair is also constant. Thereflore, the filtering
factor depends on the amount of output data that depens on the number of unifiable
pairs in this case.

The amount of the input data to the first application cell { L;,) is 265 words in

the case of SAM. In the case of MAM, it is variable depending on the filtering factor.

16

8,000

&
=
=
=

4,000

Processing Time of UNU (Clocks)

“I_\:I
L |
=
o

Figure 7. Relationship between fltering factor and processing time of UNU

(Large)

Filtering Factor

(Small}

< % %" ¥ ¥ N NEENEER NS -

E SAM -— E

[MAM !3—-—'3'_] i

C | | -
-q—.uﬁi i i |-t

: A]
i R i
b= 'I. =
o, :
C : :
r 1 i :] [[3 ' i | [
P
1,000 2,000 3,000

4,000

Amount of Qutput data of UNU (Lo} (Words)

17

The broken line in the fizure is the processing time of SAM by changing the amount
of the all-unifiable input pairs. This line is given as a reference. Figure 7 show the

following facts.

1. If the amount of the output data (L) is larger than P (filtering factor of abant

1.50 in this case), the processing time depends on L, in both methods.

2. If L, is smailer than P, the processing time by SAM does not depend on the L,
and the processing time of the MAM is alwayvs smaller than that of the SAM.

The first fact means that L, is larger than any of the amount of data passing any
application or unification cells in this case. The second fact means that the amount
of data passing the last application cell in the SAM and the last mgu cell in the
MAM are both greater than the L., and the former is lareer than the latter.

Since there are 40 to T0% unifiable terms in the input data to the UNU (filtering
factor 1.4 to 2.3) in the sample data cases (Paral, 2 and 3), MAM is faster than
SAM. ?

Next, we compare two methods by DCKR sample data. The filtering factoris 1
to 7.14 in the DCKR sample data. So as we mentioned above, it seems that MAM
is faster than SAM in small filtering factor range. But SAM is 1 clock faster than
MAM, for example, in the case that filtering facor is 3.57, the processing time of
SAM is 1628 clock and that of MAM is 1629.

The reason is that when the L, is larger than L;, as in these cases, then the
processing time of computing mgu is larger than that of applying the mgu. In these
cases, the length of each output tuple is smaller than that of stream which represents
each pair of terms (the join attribute is not specified to be output). Therefore, SAM
is faster than MAM which requires one more cell over SAM.

On the other hand, if the processing time of computing mgu is larger than that
of applving the men, then MAM is faster than SAM. Figure 8 indicates this. In
this figure, the axis of abscissa indicates the mean length of output tuples that go
through the application cell{s) {L,/Number of output tuple).

The mean size of the pairs of attribute values that is checked to be unifiable
or not by the unification cells {Li/Number of tuple) is 13.7 words in this figure.

Therefore, MAM is faster than SAM if the fiitering factor is high and many attributes

18

7,000

6,000 & . . %
~ £ SAM | e—e | / i
e E | MAM | o—s | j
© 5,000 [: Lk =
= 3
: /]
S 4000 E / | i
£ : / -
B L /1 3
"]

Z E / /3
2 3,000

E E .l/ // j

& £ / 3

2,000 E ’_/ / 1

E _gﬁ'- = = /E/ 3

1,000 £ . . 3

o
L]

20 40 &0

=

Length of output tuple of UNU (Words)

Figure §. Relationship between size of cutput tuple and processing time of
UNU

are specified for the output.

5 Summary

Iu this paper we described a performance evaluation of UE. The performance of
£ depens on the amount of data that passes each companent. The filtering factor
of PGU drops if terms of lnput relation have complex structures and the performance
of UE also degrades. We proposed the MAM to compensate the degradation. We
also explained the effect and effective area of MAM against SAM, In the [uture, we

plan to study the parallel control techniques of UE's.

10

ACKNOWLEDGEMENTS

The authors thank Mr. I. Yamazaki of Toshiba Corporation and the members of

KBM working group at ICOT for many useful discussions. The authors also thank
Mr. K. Shiranami and Mr. M. Takahashi of JUSE Computer Art for their coding

the simulation program.

References

[Aho 81]

[Henszchen 81}

[Itoh BE)

[Koyama 85}

[Monoi 86}

[Morita 86a]

[(Morita 36b]

[Murakami 83]

Aho, A. V., Hoperoft, J. E., and Ullman, J. D., Data Structures And
Algorithms, Addison-Wesley, 1981.

Henschen, L., and Naqvi, §., “A Fast Literal Indexing Scheme", ibid,
pp. 528-520.

[toh, H. “Research and Development on Knowledge Base Systems

at ICOT", Proceedings of the 12th International Conference on Very
Large Databases , August 1986.

Koyama, H., and Tanaka., H. “Definite Clause Knowledge Repre-
sentation™, Proceedings of Logic Programing Conference’85, ICOT,
pp-95-106, 1086,

Monoi, H., Yokota, H., Murakami, M., and Itoh, H., “A Large-Scale
Knowledze Base Machire Control Technique Using Multi-Port Page-
Memaory™, ICOT Technical Report TR-156., Febrnary 1986.
Morita, Y., Yokota, H., Nishida, K., and Itoh, H., “Retrieval-By-
Unification Operation on a Relational Knowledge Base”, Proceeding
of the 12th International Conference on Very Large Databases , Au-
gust 1986.

Morita, Y., Wada, M. and Itoh, H., “Structure Retrieval via the
Method of Superimposed Codes™ Proceeding of the 35th IPSJ Con-
ference, 6L-8, In Japanese, 1986.

Murakami, M., Yokota, H., Itoh, H., “Formal Semantics of a Rela-

tional Knowledge Base”, ICOT Technical Report TR-149., December

20

1983,

[Murakami 86] Murakami. M.. Yokota, H., and Itoh, H., “Description of Knowledge

Base Software Retrieval-Bv-Urnification Language”, Proceeding of the

32:5 IP5J Conference, 131-9, 1986, In Japanese.

[Ohmori 86] Ohmori. T., Yoshida. 4. 20d Tanaka. H.. "An Anproac: to a Rela-

tional Database Svstem Integrated with the Inference Power”, AISE-

91 Technical Report of IECE. AI86-21, pp.33-40, July 1986, in Japanese.

[Robinson 65] Robinson, J.A., “A Machine-Oriented Logic Based on the Resolution

Principle”, JLACA 12, pp.23-41, January 1965.

[Yasuura §5] Yasuura, I., Ohkubo, M., and Yajima, 5., “A Hardware Algorithm

for Unification in Logic Programming Language”, Technical Heport

of IECE, EC84-67, pp.9-20, March 1985, in Japanese.

[Yokota 86] Yokota, H., and Itoh, H., “A Model and Architecture for a Relational

Knowledge Base”, ICOT Technical Report TR-144, Proceedings of
the 13th International Symposium on Computer Architecture, pp.2-
g, June 1986.

Appendix

A DCKR sample data

[DCKR]

[sem{cl,4),E] [zem(ele, A} ,B]
[sem{ele,A),B] [sem{mam,4i) ,B]
[sem{jevwel,A),EB] [sem(stone,A) ,B]
[sem(jewel,A),E] [sem({accezsory,A) Bl
[sem(jewel,A),B] [sem{fcrtune,A) ,B]
[sem(diamond,A),B] [sem(jawel,A),B]
[sem(sapphira,A} ,E] [sem{jewel,A),B]
[(sem(ruby,A) ,B] [sem{jewel,A),B]

[sem(A,zink_in{water)),E] [sem(A,density(heavy)) Bl

21

[sem(hare,color(white)), 4] [sem(current_season,state(winter}),A]
[sem(hare,calor{breowal),4] {sem(cur-ent_seascn,state(summer)),al
(sem(man,4),EB] (sem(human,A),B]

[sem{bird, has_a(A)),E] [sen(wing,has_a(4)),BE]

[se=(=iks,A),3] [sem{caz,A),3]

[se={gezte,a),2] [sem{cat,4) ,B]

[se={hideyoshi,A),3] [sem(cat,a),z]
[se={gicvanni A),H] [sem{cat,4),2]
(sem(gicvanni,A),B] Fsem(eat, i) ,2]
(sen(companelila,i),B] [sem{cat,4),BE]

[sem(caz,A) ,B] [sem(animal,A),B]

{sem(car,4),B] (sem(traffic,A),B]

[sem(bmw,4) ,B] [sem(car,A),B]

[zem(four_st_engine, A),B] (sem(engine,4),8]

[sen(psi,A) ,B] [sem{ccmputer,A),B]
[sem(bit_map_terminal,A),B] (sem(terminal,a) ,B]
[sem(computer,has_a(A}),E] [sem{terminal has_a(A)),B]
[sem{computer has_a(A)),B] [sem{terminal,is_ali)),B]
[sem(psi,has_a(4)),B] [zem(bit_map_terminal ,has_a(4)),E]
[sem(psi,has_a(A)),E] [sem(bit_map_terminal,is_a(4)),B]
[sem{bit_map_terminal,has_a(4}),8] (sem(bit_map_display,has_a(a}) B8]
[sem({bit_map_terminal has_a(a)),B] {sem(bit_map_display,is_a{4)), 5]
[sem(keyboard,A},B] [sem(input_device,A),E]
[sem(terminal, has_a(A)),B] [sem(keyboard,has_a(4)),B]
[sem(terminal ,has_ala}) ,B] [sem{keyboard,is_a(a)),B]
[sam(kayboard, has_a(A)),B] [sem(key,has_a(k)),5]
[sem(kevboard,has_a(A)),B] [sem(key,is_a(A)),E]
(sem(ala,coler(g=a)) Al A

[sem(mam,bt(wam)},A] A
[sem(accassory,locks(beautiful)), Al A
[sem(accessory,on(ring)),4al A

[sem{accezsory,on(necklacel)}, i) A

0

[sam(stone,density{heavy)), 4] A

[5&m[stcne,ha:dness{high]},A] A
fsam(fsrzune,pricelexpensive)), Al IS
[se=(fzztune,in_the{safal),Al A
[se=(2iz=end,celociclear)), Al 4
Cee=(=uzy,cclor(zed)) Al A
[se=(szppnire,color{blue)},al A
:se:ipea:l.cnlar{#hitaﬁj.ﬁ] A
[sem(cur—ent_moen,state(not_full meen)),Al A

[sem(wolf,faca(shaggy)),Al A
[gem(walf ,attacks(lady)), Al A&
[sem(wolf,attacks(children)) Al A
[zem(human,facal{nct_shaggy)), 4l A
[sem(man,attacks{lady)), Al A
[sem(birds,zan_fly(yes)), Al A
[sem(bat,can_Ifly(yes)), il A
[sem(tobiuo,can_flylyss}),.Al A
[sem(aizplane,can_fly(yes)) Al A
[sem{penguin,can_flylnel},Al A
[sem{bird,zan_fly(yes)),Al A
[sem(bird, has_a(wingl),Al h
[sem{cat,likes(milk]}),i] A
[sem{cat,likes(fish}), Al A
[sem{cat,likes(kotatsul),Al A
[semﬂgiauanzi.culor{hlnwn}},ﬁ] A
[sem{gonbe,coler({black)), A A
(sem(nideyoshi,color(whita)), Al A
[sam{siavanni,:ulcr{st:ipa)}.1] h
[sem(car,has_a(wheel)) ,A] A
[semiwheel,has_a(tred)), Al A
[sem{car has_a(four_st_engine]l), Al A

(sem(four_st_engine,has_alvalve)),A] A

23

