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ABSTRACT

A record-like data structure is introduced into Prolog, which is fundamental to represent and
analyse linguistic information. The domain of the new language is an extension of Herbrand
universe with partially tagged trees. The usual first order unification is extended toa record-like
giructure, which is called a partially specified term. Both declarative and procedural semantics
are given hased on the framework of standard logic programming. It is proved that the language
is sound and complete for the two semantics. However, this is done without using lifting lemma
and unification lemma because of partiality of the semantlics of the langnage. Some examples
are given to demonstrate design motivations from recent linguistic theories, such as unification-
based grammars and situation semantics.

1. Introduction

The main objective of this paper is to describe a model of a logic programming language over partially tagged
trees (PTTs). A PUT is a model of record-like data structure. The syntactic form of record-like strocture
described in this paper is called a partially specified term (PST).

This research was motivated by the question of how to represent and to process linguistic informnation, includ-
ing syntax, semanties, and praginaties, more uniformly than existing Prolog. According to the unification-
based grammar formalism, linguistic information is represented in complex features and phrase structure
rules giving constraint in the features. In other words, it is a consensus among computational hinguists that
linguistic infarmation should be encoded in a record-like data structure called a feature set, and that linguistic
theories can be described as constraints in the feature sets.

The approach of this research was to combine unfication-based grammar formalism [Shieber et al 86] and
situation semantics [Barwise and Perry 83] with logic programming, in particular, Prolog. Through the
approach, it turned out that the extension of the first order term to a record like structure gives a more
natural and unified view for natural language processing, and that a record-like dala structure is more
suitable [or representing semantical objects than the usual first order term.

It is well known that Prolog has Definite Clause Grammar (DCG) [Pereira and Warren 80] formalism embed-
ded and that DCG is an instance of unification-based grammar. In DCG, a feature system is represented in

* This is m.1 ;a;:;,e:nded version of what was presented by the author at Warkshop on Foundations of Deductive
Databases and Logic Programming, August 1988, Washington, DC., organized by J. Minker.
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usual terms. Syntactic features ( the agreement feature, for instance) are represented implicitly in the physi-
cal order of argument places in the term. However, in nature, there is no intrinsic order in the features. First
order term in Prolog needs to be extended to a record-like data structure to represent linguistic information
more explicitly.

Thus, the feature set in PST noetation, proposed here,
{plural/+, person/ 2nd}

is identical to
{person/ 2nd, plural/ +}.

The example below shows how PSTs are used to describe linguistic and semantic information in a natural
and flexible way. Clause (1) below says that a situation X is a discourse_situation if X has five named
parameters, sit (situation), sp (speaker), hr (hearer), d1 (discourse location) , and exp (expression), such
that sit parameter S has three state of affairs (soa) as specified in the body of the clause. Clauses (2) and
(4) are the usual ones for membership. Clause (4) defines the prenoun “you,” as a funclion which extracts
the hearer from the given diseourse situation.

(1) discourse situation({ sit/S, sp/I, hr/You, d1/Here, exp/Exp} ):-
member(soalzpeaking, | ag/I, loc/Here} ), S},
member{scaladdressing, { recip/You, loc/Here} ), 5],
member(sea(utter, { obji/Exp, loc/Here} ), S).

(2} membar(X, [XIY1).
(2) member(X, [YI|Z]):-member(X, Z).

{4) noun(you, { ip/X, ds/{ sp/X} } .

Introducing the record-like struciure into Prolog might scem trivial and only o matter of notational variance.
Actually, it is not trivial becavse it turned out that there were subtle points between the usual first order
term and thet record-like structure. At first, the logic programming scheme proposed in Jaffar, Lassez and
Maher[83], which is based on the equality theory, was applied to try lo give the semantics of the extended
Prolog. Soon, it was found to be difficult because of the parliality of the record-like structure PST, proposed
here. Intuitively, P5Ts can be merged so as to form an indefinitely wide structure. In this aspeet, the PST
can be secn as a representation of anadic relations in Pollard [85]. Thus, PST has no notion of arity. Indeed,
in giving semantics to PS5Ts, there can can be no counterpart of the lifting lemma and unification lemma,
which play basic roles in giving soundness and completeness results in Lloyd[B4], for instance. This paper
shows that there is a restricted notion of solufion o en egualion such that the natural unification process
propased here preserves the set of solutions. This is the one of the main technical motivations in this study.

Although it is not the purpose of this paper to introduce situalion semantics [Rarwise and Perry 83 or
situation theory [Barwise B3], a few worde pertinent here. Situation semantics was the choice for underlying
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semantics of natural language. One of the major reasons {or that was that the theory views the three
components of languages, 1.e., syntax, sematics, and pragmatics in a uniform way, treating pragmatics and
even syntax as semanlics using situations and constraints. Situation theory is a meta-theory for situation
cemantics. ‘The theory is understood as a kind of set theories for doing semantics, and is expected to play
a similar role for natural language semantics to whal the set theory has done for mathematics. Semantic
objects should be described by situation theory just as mathematical objects should be described in some
formal version of the Cantorian set theory, ZFC, for instance, in the end

Mow, the central objects of situalion semantics are situations. A situation is represented by a set of state
of affairs. A state of affairs is a triple (R, a,p) where H,a,p are relation, assignment, and pelarity. Each
relation, R, is associated with a set of argument places, arg( ). The order of argument places is meaningless.
An assignment is a partial function which assigns objects to argument places in arg{ /). Thus, an assignment
is the mew type of ohjeet to be represented in computer languages [or semantic analysis of natural language.
The main idea behind the research approach was that the PST serves as representation for both linguistic
information and the assignment, which is basic in representing situations. Indesd, the built-in unification
Letween ST, described later in this paper, is the same as the standard merging operation not only between
complex linguistic features but also between those assignments.

Another point from situation semantics used in the programming language proposed here is compler indeter-
minates (CI)[Barwise and Perry 83]. A Clis a kind of description and is represented by an ordered pair of an
indeterminate and a condition. A condition may have more than two paramefers. CTs play such a basic role
in situation semantics that earlier research attempted to introduce C'ls into Prolog by extending standard
Prolog unification to CTs as follows. Let [xl<] and [yld] be two C'ls, where x and y are indeterminates and

¢ and 4 are conditions, The unification for these is reduced to unification x with y, and to solving conditions
c and d.

unify{lxlel, [yldl)} « unify(x,y), solvelc), solve(d).

However, there was a problem in identifving parameters of the two conditions given. The solution to this
problem was very simple [Mukai 85, Mukai and Yasukawa 83]. The user of the language must give identifiers
to parameters so that the unifier ean identify which pairs of parameters of the conditions should be unified.

From these observations on feature set, state-of-affair, and €7, it was concluded that & record-like structure is
a necessary extension to standard Prolog for a unified representation of linguistic and semantic infermation.
With these motivations in mind, a semantics of PSTs based on the domain of PTTs is given in this research.

A record-like structure alone is not sufficient to treat intensional aspects of description. Porto[86] for instance,
is relevant to this problem. This is another problem in further research and is out of the scope of this paper.

As in Ait-Kaci[84], the first order term is extended to record-like structure. However, this research differs from
Ait-Kaci in the semantic domains. The P77 domain is taken as a natural extension of Herbrand universe
as will be shown in the final chapter. On the ohter hand, Ait-Kaci interprets the record-like structure as
a type description with semi-lattice theoretic order. Furthermore, Ait-Kaci tries to extend the record-like
structure to have disjunction and negation embedded in the structure. Also Kasper and Round [86] discusses
these topics using the automata theory. This paper does not discuss such built-in representation for two
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reasons. One is hecause the research was intended to concentrate on PTT semantics as a natural extension
to Herbrand universe. The other is that disjunctive information is represented using sets of Horn clauses and
that lazy evaluation control should be able to treat such disjuntive information in a practical sense. Based on
a practical intuition, the researchers take a view that negative information can be treated by lazy evaluation,
and are interested in the idea of constraint logie programming by Jaffar and Lassez[86] to cope with this
problem. However, this is oul of the scope of the paper,

This paper shows that the proposed language has soundness and completeness properties with respect to the
PTT interpretation just as the usual Horn clause logic does. However, the completeness part of Ait-Kaci[84]
is still open. This is not surprising because Ait-Kaci works in general semi-lattice theoretic framework and
this research, on the other hand, uses a fixed domain, which is a natural extension of Herbrand universe.

1. Goguen suggested Lo the researchers that technical results in this paper may be achicved by the theory
af COrder Sorted Algebra [Goguen and Meseguer 85] within the equality theory of algebera as associative,
commutative, idempotent with unit. The proof is expected to appear later.

The organization of this technical discourse follows Lloyd [84]. The method in this paper differs from the
standard theory in that the lifting lemma and unification lemma{Lloyd 84] for the PTT semantics cannot be
used, because patiality is a new feature in the semantics of the language.

This paper starts with the definition of partially tagged trees (PTT). All PTTs form the semantic domain.
A FPI'T is n tree which is allowed to have tags only at the tip nodes. However, as will be show at the
final chatpter, it is easy to extend the tree so that it can have tags at intermediate nodes. A tree here
may be infinite. Also, a tree can have an infinite number of branches at a node in the tree, Then, the the
record-like data structure with variables will be introduced, which is called partsally specified term (PST),
as a syntactic device to denote incompletely a tree in the domain. A PST is always finite, There are no
predicate symbals, even equality symbol =, in the language, and no function symbels. This restriction is
not theoretical but rather expository. There is no problem, as mentioned just before, in intreducing funclion
symbals and predicate symbols by allowing the function symbols at intermediate nodes in P1Ts. Indeed,
such an extension will be defined in the final chapter. A PST in a program clause behaves like a term some of
whose argument places are missing becavse they have nothing to do with what the local clause wants to do.
More precisely, supposing that only [, m and n are labels in the language, any PST can be translated into a
first order term with a fixed functor f of arity 3. Let {,m, and n correspond to 1st, 2nd, 3rd argumnent places.
Then a PST {I/z,m/y} is translated into the first order term f{z, y, £} for some new variable z. However,
the researchers do not contend with this interpretation, because, as argued above, linguistic information has
nothing to do with the notion arity and has no predefined order, and because linguistic information is partial,
Rather, the logic programing should give semantics of partially specified terms not through a first order term
but in a more intrinsic way.

The technical heart of the paper defines the unification over PST= and solufion to an enguation. They will
be defined so that the unification preserves Lhe set of salutions to the equation. The unification algorithm is
proved to have termination property. Assignment of variables to PTTs and notion of interpretation will be
defined as usual. Since a partial data structure is used, it is not easy to define the notion of solution te an
equation between two PSTs. One might think that it will be enough to define that an assignment is a solution
if and only if there is a compatible interpretation of both sides of the equations in the sense of natural order
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of PTTe. Unfortunately, there is a simple counter example which demonstrates that this simple definition
does not work well, This is the reason for using a special kind of assignments called a malching assignmeni
for a given PST and PTT. The solution to an equation is defined based on the matching assignment. It is
proved that the unification preserves the set of solutions. This will be one of the key lemmas to establish the
soundness and completeness of the language.

As a computational device, environments will be introduced to be sets of PSTs. Environments are basic in
this formalism. They are an extension of the ordinary formalism, which is a system of normal form equations.
This formalism shares some ideas with CLP [Jaffar and Lassez 86] in that an environment is a constraint on
salutions over the domain of PTTs, which is an ardered set induced by the subset relation between trees. Asa
basic property of environments, the lemnma will be proved that every congruent and conflict-free environment
has a solution. This is a counterpart of the existence proof of a solution to a normal system of equations over
infinite trees [Colmeraver 82].

A program in the language is a set of Horn clauses. That is, a Horn clause is defined as a pair (p, Q) of
a PST pand a set @ of PSTs. A model of a given program is defined as a set of PTTs which is closed
under implication. Replacing ground substitution for assignment, the proof is similar to the standard proof.
Also, a correct answer environment is a translation of a correct answer substitution of Lloyd[84], which works
1o define the declarative semantics of Horn clause logic programuning. A configuration of SLD derivation is
represented by a pair of goal and an environment. A computation will be defined based on the transition
relation between configurations. The soundness of this derivation rule is proved in a similar way to the
standard one. This soundness will be that if there is a refutation then each solution to the final environment
maps the goal into the model of the program. As a final result, it will be proven that & correct answer
environment will always be displayed as a final environment of some refutation for the goal. This is the form
of the compleieness result of the language.

The final chaptler of this research will extend the Herbrand universe with the PTTs, so that even nested
structure of first order terms and PSTs can he used. The paper concludes by demonstrating unification
based-grammar formalism in the extended language.
PST and its PTT semantics has already implemented in several versions, named CIL, ou top of Edinburgh
Prolag and ESP [Chikayama 84], and has been used for natural language processing, among chter applications.
2. Partially Tagged Trees
We fix a set LABEL throughout the paper. An element in LABEL is called » label {ny,...,0,} stands for
the string of labels ag, ..., 8,. In particular, {} stands for the empty string, The length of the empty string is
zero,
Definition, We define concatenation, *, between strings by the fallowing equations:

(J*x =1,

r*() =z,
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l:r.tl, . u“:l- * ll:bl, ...,ﬁm:ﬁ - {al, ---1dﬂ=h]1 .--.ﬂm}-

Definition. A free is a non-cmpty set T of finite strings which is closed under prefix. Thatis, fzepyeT
then r € T. Each element in T is called a node of T_ Note that every tree has the empty string ().

Definition. Let T and = be a tree and a string of labels. We define T'//x to be the set of strings y of labels
guch that z#yis in T.

Clearly, if T//z is not empty then also it is a tree. A node in a tree T may have infinite branches. That is,
there may be infinite labels @ such that T'//(a) is defined, ie., non empty.

Definition. A node = in a tree T is a leaf node iff £ is not a prefix of any other node in T. Namely, for any
yif z#yisin T then y = (}. We define leaf(T) to be the set of leal nodes of T

Definition. Let Ty and Ty be trees. 17 15 a sublree of T2 if Ty C T3,

Proposition 2.1. Let T} and Ty be trees. The union Ty UTh 18 ¢ tree. The tnfersection Ty M T 15 a2 tree.
Proof. Obvious. ]

Definition, Fu.r a string = and a set T of strings, we define a tree z + T by the following equation:

g T={:z|quFyeT zeu=z+y)}.

It is obvious that x + 7' is a tree. For a label a, we will use the convention a+ T = (a) + T'.
Example.

() » {{}, (8}, {c). (e, d)} = {{}: o), {2, B), {a,c}, {a,¢,d} ]
We call the tres, {{)}, the trivial tree,

Proposition 2.2. For any non irivial free T, there are possibly infinite number of labels ay, ..., aq,... and
frees 47, ooy Loy .o such that

T=gy+Ty L Ua,«Ty -,

The labels and irees are delermined wnrguely by T

Proof Lel L = {n:|_:|r ll:u:r F s T]. It is clear that

T=|_J{o~(T//{a})la € L}

and

as(T//{a)) b= (/{4 = {0} (a#b)
Also it is clear that for any label z and tree A such that r= A4 C T there is some label a € L such that =@
and 4 C T//(a). By this property, uniqueness is casy. I
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Definition. Let f and g be functions. f and g are compatible iff the (set theoretical) union of f and g is a
function. The union is called the merge of f and g.

Example. Assuming [ = {(a,1),(b,2)} and g = {(b,2), (e, 3)}, the function {(a, 1), (b,2),(c,3)} is the merge
of f and g. On the other hand, the two functions {{a,1),(b,2)} and {(b,4), (e, 3)} can not have their merges.

Definition. An ordered pair (T, f) of a tree T and a function [ is a partially tagged free (PTT)iff domni f) C
leaf(T). The domain dom(f) may be the empty set ¢ . The FTT ({0}, #) is called trivial.

If there is no confusion, we write simply a for the PTT ({{}},{({}.a)}}). Supposing that f is a function
defined on strings of labels, and that z is a string we define [/ to be the function such that (f//z)(y) = 2
iff f(z*y) =z Fora PTT t and a string =z, we define tf/x = (T/ /=, f//z), where t = (T, f).

Definition, Let £ = I:.Th fi)and iz = {Tz,ljrg} be FTTs. The pair t = (T3 UT:, fiu fa) is called the merge
oft; and ;1 tis a PTT. The merge of 1y and fs is written ¢, +1p. We define £y <12 if Ty C Ty and fL C fa.

It is easy to check that the set of PTTs s 2 commutative, associative and idempotent semigroup with the
trivial PTT as the identity with respect to the merge operation.

Example. Assume £ = ({(), {a}}, {({e), D)}) and £2 = ({{), (}}. {(8),2}). Then

ty + tz = ({{}, {a), (B)}, {({a), 1), ({B), 2)}).
Also
({00, (e}, &) + ({0, da), (@, b)Y}, {{a, 8), 1)) = ({0}, (a}, {a, )}, {({a, &), 1)])-
For any FTT {,
t+{{{)).é)=1

Note that both ; + ({(), (a)} {({a}, 3)}) and ({{}}. {(0, D) + ({0}, (a)}, @) are undefined.

A set of PTTs is called consistent iff any pair of ¢ and ¢/ in the set has the merge £ 41",
Proposition 2.3. A consisteni sel of PTT's kas the least upper bound wilh respect to the order < .

Proof. Obvious. J

3. Partially Specified Term

Let VARIABLE and ATOM be disjoint sets. An element in VARIABLE and ATOM is called a variable
and @ constani, The set LABEL was introduced in the previous section. We assume that LABEL and
VARTABLE have no member in common.

The following auxiliary symbols are used:

{H/.0).

Tt should be noted that there are no function symbels and predicate symbols in our language. Indeed, we
have not even the equality symbol =, until the final chapter.



Mow we introduce syntactical representation to denote PTTs,

Definition. We call an element of @ a partially specified tevm {PST ), where @ is the least sel satisfying:
{a) @ has all constants and variables,

(b) for any finite n > 0, and distinet labels a,, ... a,, if all elements py, ..., p, are in ), then the set

““h’rpljs “'s{":lifrpn‘-l} iz in Q
A PST is called proper if it satisfies condition (b). In particular, the empty PST ¢ is proper,
Here, we gather utility Tunctions concerning F5Ts for later use.

Definition. Tet p and g he PSTs. Let a be a label,
keys(p) is the set of labels a such that (a/q) is in p {or some PST 4.
assoc{a,p] = g iff (afq) €p.
pairsip, g) = [assoc(a, p) = associa, g)la € keys(p) Mkeysig)]},

vars(r) = the set of variables which occur in =,

Example.
beys({afz.b/y}) = fa,b}.
assoc(b, {a/z,b/y}) = b.
pairs({a/2), {a/1,5/4)) = {z = 1}.
pairs{{a/1},{a/2,b/y}) = {1 = 2}.

Definition. Let p be a PST. For a string o = (a1, ..., @), we define p//a inductively:

p//)=p
and
plf{ag,nz, . an) = assoc(ay, p)f/las, .. aa).
Example.
{a/{b/{c/1}}}//{a, b,c) = 1.
Definition.

Sfrontier{p,p) = ¢ : if pis a constant,

frontier(p, g) = {p = q}: il either p or g iz a constant,
Sfrantier(p, g) = {p = g}: if either p or ¢ iz & variable,
Trontier(p, ¢) = |J{ frontier(u, v)|u = v € pairs(p, ¢)]: otherwise,

Example. fl‘ﬂﬂfiﬂr{{uf?,bfl:cfz}}, {aI,-"S, bll-"y}} = {‘2 =3, {c‘.i'z} = y}_
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4, Equality and Environment

Definition. An assignment is a partial function defined on variables which assigns PI'Ts to them. Let p be
an assignment. We can extend p to the PSTs naturally by induction as below. Let k be a constant, and let
a; be a label,

(a) p(k) = ({0} A0 EID),
(b} plé) = ({0} 4).
() pldar/Piy e GnfPa)) = ar# p(pn) + o+ Gn ¢ p(pa).

Example. For any assignment g , we have,

pl{af1,6/{c/2}}) = ({0}, (), (B). (b, )} {({a)y 1), ({B. ), 2)})-
If p(x) = ({()}, #) and p(y) = ({{}, ()}, {({e}, 3)]) then
pl{afz,b/y}) = ({1 {a), (), (b, )} {((b. ch 1))

The notion of solution to an eguation is basic in the semantics of PST. First we define the matching
assignment.

Definition. Let p and t be a PST and a PTT. An assignment § is called & matching assignment from p to
t if § satisfies the following conditions:

(1} U pis a variable then 8{p) =1,
{2} if pis a constant then 6{p) = t, and

(3} if p={a3/p1, ., 80 /pn)} then there are a finite number of PTTs 1y, ... tn, amd 5 such thatt = ay +1; +
o 4 G + 1y 4 5, and that for each i(1 < i < n), # is a matching assignment from p; to t;, where s//{a;)
is undefined for each a,.

We write mateh(p,t} for the set of matching assigments {rom p to £

Example. Let  be a variable. Suppose that assignments 0, p, a #51" p, end a PTT t satisfy the following:
Mzy=c+xl4+da2,
plr)=exl,
p={a/2},
t=—asfcal+dul)+bsesit fed)

Then, #is = rﬁat.c.hiug assignment from p to ¢, but p is not.

Definition. An assignment p is defined inductively to be a solution to the equation p = ¢ by the following
conditions:

{a) p € maich{g, p(p)) il p is a variable,



(L) p € matehip, plq)) il g is a variable,
(e} plp) = p(g) if either p or ¢ is a constant, and

(d) pis a solution to all equations in pairs(p, g} if both p and ¢ are proper PS5Ts.

An assignment p is called a solution {0 a sysfem of equations iff p is a solution to all equations in the system,
We define sal(P) to be the set of solutions to P.

Definition. The height of a constant or variable is 1. The hetght of a PST of the form {a@,/p1, ... 80/ pa} is
1 + the maximum of the heights of py, .., pa{n > 0). The height of the empty P5T is 1.

Example. The height of {afb, c/{d/e}} iz 3.

Lemma 4.1, Leit and & be @ PTT and an assignment. Lel p and g be PSTs. If 8 iz a matching assignment
from both p and g ot |, then 0 is a solution of the equation p = q. That 1,

mateh(p, 1) N maichig,1) C sol({p = ¢}).
Proof. We prove by induction on the ininimum b of the heights of p and g,

1} Let h=1 {Bmae} Let 8 £ rnuh.'hfp, E} and & € rnutch{q,i}. First suppose ig a variable. By the definition
of match, we have 8(p) = . Then we have & € malchig,t}) = match(g, #{p)). Therelore # is a solution to
p = q. It is similar to the case that g is a variable. Suppose both p and ¢ are constants. By the definition of
match, we have #(p) = t and #{q) = t. Then we have & € sel(p = ¢). Since h = 1, it is impossible for p and
g to be proper PETs, Ik remaidns unly the case that one of p and i iz a comatant and the other is a proper
PET. Without loss of gcmzralil.y_. WO CRIL :iup]}u&iug r iz o constant and q iz a PST. From the definition of
match, it is casy to show that match(p,t) N matekiq, t) is empty. This concludes the base step.

2y Suppose that h > | and that this lemma holds for any &' < h. By the definition of height, we can
assume that both p and ¢ are proper PSTs. Suppose that (afu) € p, (a/v) € ¢, 1//{a) = ' for some
label a. Dy the definition of match, we have § € mateh{u,t') N match(v,t'). Applying the industion
hypothesis, # is a solution to w = v. Since u = v is an arbitrary element in pairs{p,g), we conclude that
¢ € sol(pairs(p,q)) = sol({p = ¢}). |

Lemma 4.2, If ¢ is a selution fo p = g, then p € match(p, plp) + plo)).
Proof. We prove by induction on the minimum height b of p and g,

{1} Suppose h = 1 [Base). From the definition of height, either p or ¢ must be either a constant, variable,
ar the empoty PST. From the definition of solution, since p is a solution to p = g, we have p(p) = plg). So,
we have p(p) + plg) = plp) = plg). Tt follows directly from the definition of match that p € match(p, p(p)).
Since matchip, p(p)) = match(p, p(p) + plg)), we have the conclusion,

(2) Suppose h > 1. We assume that the lemma helds for ' < h. Beth p and ¢ must be proper PSTs. Since p
is o solution to the equation p = g, p is also a solutien ta pairs(p, §) of equations. Let p’ = ¢’ be an equation
in pairs(p,q). Then there is some label a such that (a/p’) € p, (afq") € ¢, and p € sal{{p’ = ¢']). Clearly,
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the minimum height of p' and ¢ is less than A by definiton. Applying the induction hypothesis, we have
o € match(y, p(p") + plg'))- So, from the definition of match, we have p € match({a/p'}, a* (p(p") + pla"))).
Recalling that the label a is arbitrary, from the definition of the solution, we have p € match(p, p(p) + ().

Definition. A set E of sets of PSTs is an environment if for any variable =, there is at most one element w
in E such that z € w. The unique element w is denoted by class{z, E).

Example. Assume E = {{z}, {y, 2, du, {b/1, c/y,d/2]}}] is an environment. Then class(y. E) = {y,z}.

Definition. An environment £ is congruent iff for any w € E, p,q € w, and u = v € frontier(p,q) there s
some w' € E such that u € v’ and v € w'”.

Example. E = {{z,{a/y}, v, {a/z}}} is a congruent environment.

Definition. Let p and E be an assignment and an environment. p is an solufion ip F iff for every w in E
and every p and g in w, p is a solution to p = g. The sct of solutions to E'is denoted by sol{ E).

Definition. An assignment f is compafible with an enwronment £ iff #(p) and 8(y) can be merged for any
we E, pgew

Definition. Let 8g, ..., 0. ... be a monotone sequence of variable assignments, i.e., f,(z) < Bpsilz) for any
variable . We define the limit assignment 0 by the pointwise limit of 6;: 8(x) = sup{fa(z]|n 2 0}. We write
§ = sup{f.|n =0}

Proposition 4.3. For any monotone sequence of assignments fg, ..., 8y, ... end a PT'T p, the fellowing
equation holds:

sup{a(p)ln > 0} = (sup{faln 2 O])(p).

Proof. Let § = sup{f,ln > 0). We prove by structural induction on p.

(1) If pis a constant then the proposition is true since both sides of the equation are p.

(2) 1 pis avariable then we have (sup{f,|n = 0})(p) = sup{f.(p)ln = 0} by the definition of sup{#a|n > 0}.
(3) Ip={ai/p1, .- e/pe} then

sup{fa(p)in = 0} = sup{8a({01/p1, - ar/p-Dn 2 0}
= sup{ay * Ga(p1) + - + ar » n(pr)in = 0}
= a; * sup{fa(pi)in = 0} + ... + &, + sup{fa(p)in 2 0}
—ay »0(p1) + ...+ a- *8(p,) (by the structural induction)
= 6(p).
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Definition. An equation p = ¢ is a conflict iff one of the following three holds:
{1] pand ¢ are distinct constants;
{2} pisa constant and g is a proper PST

(3} pisaproper P5ST and g is a constant.

We say that a set P of P5Ts is consistent when for every p and g in P, there is no conflict in frontier(p, ¢).
Also, we say an environment E is consisfent when all elasses in E are consistent,

Example. The set of PSTs {{a/1,8/1},{a/1,4/2}} is not consistent,
We say an assignment ¢ is normal for E iff 1(z) = o(p) for any variable z and a PST p with p € class(z, F).
Proposition 4.4. Fvery congruent and consistent environment has o solufion,

Proof. Let E be and congruent and consistent environment. Let o be an assignment compatible with E
and normeal for E. We have the assignment defined by

@(¥)(z) = sup{{y)lv € class(z, E)}.

Clearly, () is normal for £ We prove ®(1) is compatible with £ Let ¢ an ¢ be any assignments such
that for any variable r there are some p and ¢ in class{z, £) such that

¥ie) = vp) < ¥(z)
and

ﬂlﬂ{.t'} 3 #I[g} E ﬂl(#]

We show that f'{r) and " (s} can be merged for any r and s in the same class in E. Let g = h € frontier(r, s).
Since F is congruent and consistent, g and h are in the same class and either ¢ or b is a variable. Suppose
¢ is a variable. Then 4'(g) = yi{g") for some g" in cless(g, £) by the assumption. Since ¢" and h are in the
same class, ¥ig') and ©(h) can be merged. Also from the assumption, ¥(h) = @ (k). Then ¥'(g) and v"(k)
can be merged. It is similar to the case in which h is a variable. Namely ¢'{r} and ¢"(s) can be merged. Tt
is easy to see that Sy }{r} is the merge of all orms ¥'(r) above. That is,

T(Y)r) = ¢ (r) + () + ¢ (r) + -

and
S()(s) = ¥'(s) + ¥ () + 4" (s) + -

Since any ¢!*}{r}) and ¢'/)(s) in the right hand sides above can be merged, the left hand sides can be mergerd.
This means that ®(y) is compatible with E.

Now, we define the sequence of assignment , f;, ... 8., ... inductively: if a constant k is in class{z, E') then
we define ¥(z) = k. Otherwize, we define (2) = the trivial tree, namely, ({{}}, #). We define 6, = (¢},
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and fn41 = ®(0,) for n > 0. Clealy 8, is compatible with £ and normal for E. By what proved above, every
8, is compatible with E and normal for £. It is easy to see that #u(z) < fp41{=) for any variable =. Sa, we
obtain the assingment § defined by f(z}) = sup{f,(z)|n > 1}. Tt is routine to ses that f is normal for £ and
compatible with I,

We show that @ is a fixpeint of & . Let  be a variable. Then

B(x)

sup{f.jn = 1}{z)

sup{fn(@)in = 1)

sup{@(8y-s)(2)ln > 1}
sup{sup{#n-1(y)|y € class(z, E)}|n = 1}
sup{sup{fn-1(¥)in = 1}y € class(z, E)}
= sup|{f(y)ly € class(z, E)}

= &(0)(z).

il

‘This means that § = ®(f). It is essential in these derivations that the merge function ty + t3 is continuous
with respect to 1y and (3. Finally, we prove that f is a solution to E. Let w € E, and let x, y be variablas.
Let p and & be a PST and a string of labels such that £ € w, p € w, and p//a = y. It suffices to show that
8(x)/fa = O{y). Since 8(p) < G(z) by the comstruction of 0 , we obtain 8(p//a) < #(z)//a. Now we prove
#(z)/ /o < B(y) to conclude the proof.

8(x)/ [ = sup{sup{#ala//o)in > 1} € w}
< sup{sup{alg//c)lg € w}n = 1}
< sup{sup{fn(ri|r € class(y, E)}|n = 0}
= sup{fu(y)in = 1}
= f(y).

5. Unification

Definition. A unification configuration is an ordered pair (P, I} of a system P of equations and an cnviren-
ment E. We define sol{ P, E) = sol{ P)Mscl(E). An element in the set is called & golution to the configuration
(P, E).

We define a unfication algorithm ever P5Y's in the following three steps. First, we define a function nezt:

{F, A} = next(p,q, E),
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where E is an environment and both p and g are PSTs. Second, we define a binary relation = hetween
configurations, simply by (P, E) = ({P—{p = ¢})UA, F), where {F, A} = nezi(p, ¢, E}. Finally, we describe
our unification algorithm to be a procedure to eompute sequences of unification configurations

(P.,E))= .= (P,,E.).

Wae uze the notation merge(X, YV, E) = (F = {X, YU {X UY} in the next definition.

Definition. For P5Ts p, ¢ and an environment £, we define u = nexi(p, g, £) by the following conditions:
(a) u={E, ¢} if pisa variable and q € class(p, £,

(b)) uw={(E ¢): il ¢is a variable and p € class{g, E),

(¢}  u= (merge(classip, £, class(g, EY, E), {u = v|u € class(p, E), v € class(q, E)}) : if both p and ¢ are
variables and class{p, E) & class{q. E),

(d}y w={F pairsip,q)}: if both p and ¢ are proper P51,
() u={(F - class(p, E)) U {elass(p, E) U {q}}, {5 = qls € class(p, E)}) : if only p is a variable,
() u=mest(g,p, E): if only g is a variable,
{(g) u={E,¢): if pand q are the same constant, and
{(h) o= {{undefined)): otherwise.
Example. Let z and y be variables. Let £ be an environment. Then,
neri(l,1, E) = (E, ¢).
next(1, 2, E) = {{unde fined)).
nezt(z, y, {{z} {y}]) = ({{z,9}} {z = v]).
next(z,y, {{z,v}}) = ({{z, v}}, ¢).
next({a/l,b/x}, {b/y,c/2}, E) = (E,{z = y}).
Definition. We define a binary relation = between unification configurations by the following:
(PEY= ([P~ {p=q})UA F)il next(p,q, E) = (F, A) for some p = ¢ € P,
Unification Algorithm:
Input: A system of equations.

Chutput: Either an enviornment or FATLU RE.

Method: Let Py be the given system of equations Py, Let Ej be the environment Eo = {{z;},.... {za}}
where zy, ..., =, are the variables occuring in Py, If there is a finite sequence (P, Eq) = ... = (P, Fn) with
Fy =&, then return E, as the output, otherwise return FATLIRE,
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Example. Let X and Y be variables. Then,
({{a/X,b/X} = {b/V,a/1}}, {{X}.{VY}})
o (X £ 1), (X = V)L XL D)
= ({X =V} {{X 1LY
= ({X =y 1=Y}{{X,1.Y}})
= ({X =YL {X. LY
= (¢, {{X, ¥, 1))
Example. Let X and Y be variables. Then,
(X = {a/Vb/Y LY = {o/X,b/X), X = ¥), {(X}.1V})
o ({X = {a/V,b/YLY = {a/X, b/ X}, X =YX, {a/Y, /Y]] {Y]])
= ({Y = {a/X,b/X}, X = Y} {{X, {a/Y.b/Y]},{V}})
= ({Y = {a/X,b/ X} X =YX, {a/V. 0/ Y]} AY, {a/ X b/ X}}])
= (41X = Y1 {X {a/Y, /Y1) AY {a/ X, 8/X))))
= (X2 V.Y = XELAXY, {a/Y,0/Y} {a/ X, }/X )
= ([V = X} {X, ¥, {a/Y,b/Y )}, {a/X B/ X}})
= (&, {X,Y, {a/ Y. b/Y}, {a/X B[ X}})
The result means a singleton graph with two self loops with labels a and b.

Proposition 5.1. The wnification algorithm terminates.

Proof. From simple combinatorics, there are enly finite environments appearing on the sequence of configu-
rations of a unification process. The environments on a given unification process are monotone in the sense
that if w € E and (P, E) = (P, E"), w C v’ for some w’ € E".

Assume that the algorithm does not terminate. Then there must be some integer E such that all the envi-
ronments after initial k steps are saturated. So, the sequence can be written

o = {( Py, Ei) = (Peyr, E) = (Pign, Ep)= ..

where each P; # ¢ with j = k
By the definition of =, we have either the following (1) or (2) forany j = k.
(1) P C P P # 5

(2) p=q€ P and Py = (P —{p= q})Upairs(p,q) for some proper P5Ts p and ¢g. By double induction
on the eardinality of Py and the maximum height of the equations appearing in Py, it is proved that there
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can not be an inifinite sequence of finite sets which satisfies the above conditions. This is a contradiction.
This concludes that unification terminates. |

Proposition 5.2. The untfication preserves fhe sel of solutions. That is, if (P, E) = (P E') then
sol( P, E} = sol{ P, ).

Proof. Dy the definition of (P, £) = (F’, E'), there is an equation p = ¢ € P such that P' = (P—{p = ¢} )uD,
and next(p, ¢, £) = (E', D). According to the definition of =, we prove the theorem dividing into the following
cases,

(a) Suppose pis a variable with ¢ € class(p, E). Namely, we suppose E' = Eand P'= P - {p=q]}. It
is clear that sol(P, E) C sol(P'.E). Il # € sal(P', E) then 8 is & solution of p = ¢ sinee p and ¢ are

members of the same class in E. So # is a solution to p = g, Therefore 0 is a sclution to P. Then
# & sol( P, E).

(b) Suppose g is a variable with p € class(g, E'). It is similar to the case (a).

(¢} Suppose both p and g are variables with elass(p, E) # class(g, E). That is, we suppose that
P'=(P—{p=q})U{u=vlu € class(p, F),v € class(q, E)}

and
E' = merge(class(p, E), class(g, E), E).

If § € sol( P, E) then we have 8(p) = 6(q) from p = g € P. Let u,v € class(p, F') Uelass(g, E). By the lemma
4.1 8 1= a solution of u = v since § € match(u, #(p)) N match{v, 8(p)). From this, # is a solution to both P
and E'. S0 we have & € Sol( P’ E'). Therefore, we have sol(P, E) C sol( P!, E").

We prove the reverse direction. Suppose # € sol(P',E’). # is a solution to p = ¢ since elass(p, £} U
class(g, E) € E'. So we have # € sol(F), that is, sol(P', '} C sol{P). 1t is clear that sol(E') C sol(E).
Therefore we have sol(P', E")  s0l(P, E).

{d) Suppose both p and g are proper PS8Ts. That is, we suppose E' = E and P' = (P—{p = q})Upairs(p, ¢).
The solutions to p = g are the solutions of pairs(p, g) by definition. Then we have sol( P, E) = sal{ P, E").

(e} Suppose only pis a variable. That is, we suppose £’ = (F — {class(p, E)}) U {elass(p, E) U {q}} and
Pr={P-{p=qhu{u=ql|uc class(p, E)}.

Suppose # € sol( P, E'). With ¢ € mateh{q, #(p))} in mind, we have & € match{u, 8(p)) N match{v, d(p)) for
any u,v € closs(p, £) U {g}. Applying lemma 4.1, # is a solution of u = v. So 0 is a solution to E'. Suppose
u € class(p, ) and u = ¢ € P, Applying lemma 4.1, from # € match{u, #(p)) and # ¢ matehig, #(p)), it
follows that # is a solution to u = g. So # is a solution te P'. Therefore, we have § € sol(P’, E"). This
concludes sol( P, E) C sol(P', E').

We prove the reverse direction. Suppose § € sol(P'.E’). From sal(E') ¢ sol(E), we have § € sol(E).
From class(p, E) U {q} € E', it follows that # is a sclution to p = ¢. So # is solution to P. Then, we have
# € sol( P, E'}, namely, sol( P, E") C s0l( P, E).
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(f) Suppose only g is a variable. It is similar to the case ().

(g) Suppose both of p and g are an ideutical constant. That is, we suppose P'= P —{p = g} and E' = E.
Clearly we have sol( P, E) = sol(I"', E').

{h}) Suppose p = g is a conflict. There are no P' and E' in this case. So we need not consider this case. [l

Remark. Let p and g be PSTs, and let p and « be assignments. p and ¢ may not be unifiable even if p(p)
and p(g) can be merged. Also p and ¢ may not unifiable even if w{g) = #(p).

Example, Let p= {a/X . B/X}, ¢ = faf{c/1}.b/{c/2}}. Cleary, p and g are not unifiable. PTTs pip) and
plg), however, can be merged for p with p(X) = {d/3}. Also, we have 7(q) = olp) for ¢ with #(X) = ¢ .

Proposition 5.3. Let P be a system of equations. Then conditions (1) and (2) are equivalent:
(1) P has a solution.
(2) P s unifiable.

Proof. {1) = (2). Let # be a solution to . We can soppose P = {s = &'} without loss of generality. Let
Fy = P and Ey = {{z}|z is a variable occuring in £ or s'}. Consider a maximal sequence (Fp, Fo) = ... =
(., Eq) with length n. From the termination property of the algorithm, n is finite. Applying proposition
5.2, we have sol(Fi_,, Ej-1) = sol( Py, By, From 8 € sol{ Fa, Eq), we have sol( Fy, Ej) # ¢ for any i with
0 <i < n. From sol(F;, E;) # ¢ , F; can have no conflict. 5o, we have B, = ¢ by the maximality of the
sequence. This means just that s and ' are unifiable.

{2) = (1). There is a sequence (Fy, Eg) = ... = (¢, Fr) with Py, Ep and E, above. It is easy to show that
E, is congruent and has ne conflict. So E, has a solution by proposition 4.4. 5o Fp has a solution since
sol(Py) = sol(E,) by propesition 5.2. |

Corollary 5.4. If p{p) = plg) then p and g are nnifiable.

Proof. The equation p = ¢ has a solution g - So, u and v are unifiable from propesition 5.3. |

6. Program and SLD Derivation

Definition. A program clause is a pair (p, B) consisting of a PST p and a finite set B of PSTs. A goalis a
finite set of PSTs. 1s A program is a finite set of program clauses,

A program clause of the form (p, ¢) is called a unit clause and written
p-
A program elanse of the form (p, {p1, ..., P }) (0 # 0} is written
PP e
A derivation configuration is an ordered pair ({7, E) of a goal G and an environment £.

17



Definition. We write ({7, E) — (7", E') iff the condition {1) and (2) below are satishicd, where & and o'
are goals, £ and E' arc environments and G = {1, o P} for some PTTs pyy oo pas

(1} There are n copies g; — g},..., g}, of some program clauses such that &' = fal.. g, -0l k)
{2} All pairs of heads and bodies are unifiable. Namely, ({p1 = g1, - Pn = g}, E) = .. = (¢, £').

When we need express explicitly the program clauses which are used in this transition, we write

(G,E)=(G" E"Y (8©)

where 8 = {{p;,qi — q{....,qL]][l <ign}.

The nitial environment of a poal is the set of singletons {z} such that = is a variable oceuring 1n the goal.
Definition. A finite sequence (G, Eg) — ... — (¢, E) is a {SLD) derivation of a goal & where Ep is an initial
emvironment of (7.

7. Model

Definition. Let II be o program. A non-empty set M of PTTs is a model of 11 iff for any assignment
B, program clause p — Py, ..., pn in 0, a PTT ¢, and PTTs &y,..,0n € M, if # € match(p;, ;) and # €

mateh{p, 1), then £ € M.

Proposition 7.1. The infersection of models of the program is a model of the program.

Proof. Obvious. ]
Theorem T7.2. There extsts the least model of the program,
Proof. The interection of all models is the least model. |}

Proposition 7.3. The sel of models of the program is chain complete. Thal @s, if My C .. C M, C ... @5 a
chain of models then M = [ J{M;|i = 1} 15 0 model.

Proof. Suppose ty,..,tn € M, p — p1,....0n € I and {[{match{p, &)1 < i < n}) Nmotchi{p, 1) £ & .
There is an integer & such that {#;,..,1,} C Mg, Since M is a model, we have t € My, Then we havet € M.
Thercfore, M is a model. ||

To characterize the least model, Let us define a function ¥ such that, for a set S of trees,

W(S) = {tithere are some #, a program clavse pe—=py, ... . pga €1, and 1y, .. I, €T
such that @ € [{match(p;, &)1 <1< n} and & € match{p,t)}.

Proposition T.4. The transformaiion ¥ is monolone.
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Proof, Obwious. [}

Proposition 7.5. The condition (1) and (2) are equivalent,
(1) ¥(S)c§.
(2) 5 iz o model of the program.

Proof. Obvious. i

Now, we have obtained the monotonic transformation over the chain complete lattice, which consists of all
the models of the given program. By the lattice theory, the following theoremn 7.6 and 7.7 are easily proved
[Llcyd 84].

Theorem T.6. There exists the least firpoint of the transformation V.

Theorem T.T. M, 1w = the least model = the least fizpoint of ¥, where My = ¢ and Myay = WM, with
n =0,

8. Soundness and Completeness
Let A be the least model of the program IT .

Praposition 8.1. (Soundness) Let G = {p1,....pa} be o non-emply goal, and let E be an tnitial envirenment
of G. Let (G,E) — ... — (¢, E') be a derivation and assume that p € sol(E"). Then for any PST in
G and any solution p in sol(E'), there is some t an M such thal p 15 @ maiching assignment from p te b
p € malehip, t).

Proof. We prove by induction on the length ! of the derivation. Suppose G = {p1, 0 Pnl

(1) Suppose [ = 1. There are n copies g1, ..., ¢n of some unit clanses of the program II such that ({p; =
Gl P = Gn}, E) = .= (4, E'). Let p = p; be an element in the goal &. Applying proposition 5.2, pis a
solution of each p; = ¢,, since g is 2 solution to E'. Then, by lemma 4.2, we have p € match{gi, p(pi)+ plai)).
Then, since M is a model of I , also we ebtain that ¢ = p(p;) + p{gi) 18 1n M. Applying lemma 4.2 again, we
finally obtain p & match{p;, t).

(2) Suppose that { > 1 and that this proposition holds for I’ < [. Let E be the initial environment of G. The
whele derivation can be written (G, E) — (G", E") — ... — ($, E'), where, G* = {g}, .. qi,, 0] o0 6E,
for some copies g; — q},...,¢}, of program caluses (1 <4 < n). From the definition of the derivation, we
can suppose ({f1 = §1..0Pn = @a b £) = .. = (4, E"). By the induction hypothesis, for any sclufion to
E', there are by + ..+ ko PTTs, t}, . 1] 07,1} in M such that p € match{ (gf.t}) for any i, j with
(1<i<n,1<j<k) Foreach i, by lemma 4.2 with { = p(g:) 4 p(p;), we obtain p € mateh{g;, 1), since p
is a solution to p; = q;. Because M is a model of I , we have t € M. Applying lemma 4.2 again, we finally
obtain p € match(p;,t). |}

We prove the completensse of our SLD derivation. Let TT be a porogram and let Mg = ¢ and May; = W{Mn).
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Suppose that we are given the following data:
m: a positive integer,
tii i € Ml <i<n),
Goagoal G = [pr, . pal,
E: an environment,

g6 g sol( E) and # & matchip;, ;) for any i{1 <1< n).

Lemma 8.2, For the above data, there are the followng:
' a goal,
E': an environment,
g ~— g1, b, ¢ copies of program clauses (k; 2 0,1 < i < n),
by A7, AR elements in Moy, and
p o an exlension of 6 | salisfying the following condittons.
(1} ({p1.oeipnl, B) — (G E').
(2) G'={g1. 0,016k, )
(3) pesol(E)Nsol(E )N sol({p1 = q1,-...Pn = Gn})
¢ € mateh(p, 1),
g € matel{g;, 1),

pematchigy i) (1=i<n 1<) k)
(4) =g .= gh E)= .= (8, E)

Proof. Since {; € My, from the definition of M,,, we obtain program clauses ¢; — qi,....qf, € T, PTTs
i']....,til € M.y, and assignments g such that p; € mateh{g, ;) and py € mutch(q},t}] for cach 1,7
(1=<i<ml<;<k) Sinee copies of two distict program clauses can be assumed to share no variable,
we can cheose them so that dom(pi ) Mdom(p;) = ¢ (i # 7). Also, we can suppose that for each variable =
occuring in g — gi,..., ¢, appears in only in the class class(z, E') = {z} in E and that 6(z) is undefined,
because & s a new wvariable. With this and the fact that p; and g have no variable in common, i.e.,
dom{f) N dom{p) = &, we can define p= 6 L py U .U pp.

Since p is an extension of # , we have p € mateh{p;, t;} and p € matchig, i), and p is a solution to £. That
is, we have p € sol{{p1 = q1,....Pn = gu}, E). 5o, by proposition 5.2, we have ({p1 = ¢14.c0,Pn = g}, E) =
wo = (@, E"). Then p € sol{ E"), since our unification preserves the set of solutions. By the definition of
SLD derivation, we obtain ({p1,...,pn}, E) — (G', E'), where G = {g{, ..., 4k, -, €% -, €5, )} Therefore, we
obtain all from (1) to (4). §
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Proposition B.3. Let m, &, E, and # be a positive integer, the goal {p1,...,pu}, an environment E and a
solution to £, Assume that there are PTTs l; € My and that & € mateh{p;, t;) for each {(1 <1 < n). Then
there is @ derivation of length m whose first configuration s (G, E).

Proof. Prove this by repeated use of lemma 8.2 m times.

Let zandt be a PST and a F1'T. 11 is in the least mode] of T and match(p, 1) # ¢. Then, from proposition
8.3, we have ({p}, E) — ... — (&, I').

Lemma 8.4. Let G = {py,....pn} and @ = {{p1.q1 — 71)s coos (Prs @0 — n )} Lot E and F be environments.
Suppose

(1) (G E)— (G EY(8), and

(2) sal{F}y C soli 7).

Then, we obtain

(3) (G, F)— (G, F") (O}, and

{4) sl E") C sol{F') for some envirenment ',

Proof Let P = {p = ¢3y(p.q — v) € @}. Then, from (1), we have (P L) = ... = (#, £"). Then,
sol(P.E) # ¢ From (2), sol(F, F) # & , since sol{ P, F) D s0l(P, F). From propositien 5.2, sol(F') =

sol(I, F) O sol( P, £') = sol(£"). So we obtan sel(E') C sal(F'). Applying the definition of the relation —,
we obtain,

(G.F)—{G" F) ()
|

Definition. An environment £ is an answer environmeni of G T the following conditions hold:
{1} class(x, E) has exactly two clements if » € vars(5),

() closs(r, &) = {2} il ris not in vars{&), and

(3) wors(p)Nvars(G) =g i{peclasg(z, E) and p# x.

Let A be the least model of the given program.

Definition. An answer environment £ of 2 goal & is 8 correci answer environment il for any solulion p
€ sel{l) and p € (7, there is ¢ € M such that g € mateh(p, t).

Definition. We define the sel acevars((, B of reachable vanables for a denivation configuration (&, E) by
the following recursive definitionasl eguation:

pecvars(G, B) = vars(Q) U {acevars(p, £)|3xE vars(G)p € class(z, E1}).
Example. accvars{{{a/z}, {&/v1}. {{=z.7). {v, s} {u}, {+}IV) = {z,v. 7, s}
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Proposition 8.5, (Completeness) Let A7 E, and Ey be the least model of the program, a goal, @ correct
answer envirenment of G, and the indial environment of G. Then there @5 an environment B safisfying the
Sollowtng:

{a) there is a derivation (7, Ep) — ... — (¢, E'), and

(b) ike restriction of any solulion § € sol{ B} te accvars((7, EY) can be exlended to some solulion &' € sol( E').

Proof. Let @@ = {yly is a variable, 323p € class(z, E)p # = and y € vars(p)}. Let F be a renamed version
af E by substituting a new constant for each occurrence of variable z € € at every doubletons in E. Then
also F is n correcl answer environment.

So, applying lemma 8.3, there is a derivation
(1) (GF)— .= (. E")

for some environment E". Let ¢ be any constant which was introduced in the renaming above, Then, for
any w € E” with ¢ € w, if u € w and u # ¢ then u is a variable. Also it is clear thai if y € Q then
class(y, B} = {y}.

Applying lemma 8.4 repeatedly, the derivation (1) is simulated by (2) below, to obtain an environment B

(2)  (G,E)— ...— (¢, E™).

Since (2) is a simulation of (1), for each y € Q, class(y, ™) consists of only variables. Also applying lemma
8.4 to derivation (2) repeatedly, we olilain an environment £ as follows.

(3} (G, £g) — ... — (¢, £,
(1) sol(E™) C sol(E').

Since class(y, £"') consists of only variabls for each y € @, i.e., each y in (s sl not instantiated, each
restriction # of a solution of £ to acevars((, £) can be extended to some element of £, With this and (4}
together, ' can be extended to some solution to E'. This concludes the proof. ]

9. Extended Definite Clanse Grammar

As an application of our theory of PST and PTT, we give an extension to the DOG (Definite Clanse
Grammar) formalism. First we give an extension of Herbraud universe with PTTs. Also we extend the first
order terms with P5Ts. In other words, we will can use both first crder terms and record-like structure
(PST) freely in the extended DCG. Thus, we have more natural and flexible representation for linguistic
information, which is comparable with unification-based grammar farmalism, for instance, PATR-11.

9.1. Extended Term

Let F be a set of functors. Assuming each functor is assigned an arity, we define the Icast set TERM
satisflying:
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(1} TERM includes every variable;

{2y TERM includes every constant;

(3) TERM includes every form of {a1/z1, .., @,/2a}, where each a; is label and each z; is In TERM ; and
(4) TERM includes every form of 2(21, ..., Zn), where each z; is in TERM and 2 is of arity n > 0.

Each element in TERM is called a term,

For convenience, we use freely standard infix notations used in Prolog, e.g.,
[{a/[x1¥1, B/£(X,¥1}, XJ.

9.2. Extended PTT

We define an extended PTT to be an ordered pair (T, f), such that dom(f) is a subset of T and such that if
flzy=hithen {1,...n} = {alz+{a) € T} where n is the arity of A. Replacing the TERM and the extended
P19 for PST and PTT in the proposition, it is easy to show that all propositions we have developed so far
in the previous sections hold.

0.8 Extended DCG

We define the extended DG by giving examples as follows. Rule (1) below is a grammar rule, which is a
pair of a PST and a list of PST’s and equality constraints. Unit clauses (2) and (3) are for lexical items.

(1) {cat/s, head/H} —
{cat/np, head/H1},
{cat/vp. head/H),
HB={subject/Hi}.

(23 1ex{jack, {ca.t,-"np, I-.uad.fja.ck]-).
{3) lex(runs, {eat/vp, head/{subject/X, pred/run(X)}}).

The clauses fram (4) to (8) below form a definition of the interpreter for the extended grammar. Unit clause
(4) is to interpret the equalily constraints in the grammar rules.

(4) x=X.

(5) parse(X-X, A=B) ~— A=B.

(6) parse([XiY¥Y]1-Y, F}) — lex(X, F).

(7) parse(X-¥, (A, B))— parse(X-Z, &), parse(Z-Y, B).
(8) parse(X=-Y, F) — (F—B), parse(X-¥, B}.

Execution of the grammar looks like this:
?-pa‘raa{ [jack, runsl-[], F}.
F={cat/s,{head/{subject/jack, pred/run(jack)}}}.
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