ICOT Technical Report: TR-232

TR-232
An Evaluation of the FGHC
via Practical Application Programs
by
M. Kishimoto, A. Hosol,
K. Kumon and A. Hattori
FUITTSU Lid.

February, 1987

1987, 1COT

Mita Kokusar Bldg, 21F (03 456-3191 -5

" :DT 4-28 Mita 1-Chome Telex 1COT 32064

Minato-ku Tokve 108 Japan

Institute for New Generation Computer Technology

An Evaluation of the FGHC
via Practical Application Programs*
Mitsuhire Kishimoto, Akira Hosoi,
Kouichi Kumon, Akira Hattori
FUITSY LIMITED
1013, KAMIKODANAKA, NAKAHARA-KU,
KAWASAKI 211, JAPAN
kiss@flab.flab. fujitsu.junet
hosoi@ flab.flab.fujitsu.junet
kumon@{lab.flab.fujitsu.junet
Abstract FGHC (Flat Guarded Horn Clauses) is a family of
parallel logic programming languapes. It has been chosen as the
kernel language for the Parallel Inference Machine (PIM) of the
Japanese fifth generation computer project (FGCS). To offer
valuable suggestions for the decisions on design of a high
performance PIM, we implemented an efficient language
processor for FGHC and developed practical parallel application
programs written in FGHC, These application programs bchaved
differently from other well-known small cxample programs. We
have also reflined our methods for implementation of the
language processor according 10 measurement and analvsis and
discussed the required functions of the PIM.

This research was sponsored by MITI as a part of the Japanese

FGCS project.

KEYWORDS: LOGIC PROGRAMMING, PARALLEL PROCESSING, AND-

PARALLELISM, FGHC, PIM, CONTEXT SWITCH, SUSPENSION.

*To be submitted at the Fourth Symposium on Logic Programming,
San Fransisco, August 1987

1. Introduction

We are developing a new high performance Parallel Inference Machine
(PIM) as a part of the Japanese filth generation computer project (FGCS)[1].
FGHC (Flat Guarded Horm Clauses [2}), a family of parallel logic programming
languages [3, 4], has been chosen as the kemel language for the PIM.

Precise analysis of practical parallel application programs is esscnual for
designing a high performance PIM. Until recently only small example
programs have been used for this purpose. But the behavior of these programs
seems to differ from the behavior of the typical knowledge processing
programs that will run on the PIMs in the future.

We began our research on a high performance PIM through measurement
and analysis of practical parallel application programs., For this purpose, we
first implemented an efficient FGHC language processor consisting of an
interpreter and an emulator. Meanwhile, we developed practical parallel
application programs in FGHC. We picked up a parallel swiichbox wire router, a
VLSI CAD program, for an in-depth analysis.

We measured many dynamic characteristics of these practical programs.
They behaved differently from the small example programs. Based on an
analysis of the mcasured data, we refined our implementation methods for the
language processor suitable for the practical programs. These are reflected in
the design of our PIM.

We will describe the sequential implementation of FGHC in Section 2.
Section 3 is an explanation of the practical parallel application program, the
purzllel switchbox wire router. In Scction 4, we show many of the dvnamic
characteristics of the parallel wire router and verify the appropriateness of
the implementation techniques. We will discuss the refinement of the

language processor and the required characteristics for the PIM.

2. Sequential Implementation of FGHC
2.1 Language specification

FGHC is similar to standard Prelog [5]. Symbols that begin with an
uppercase letter are variables and ones that begin with a lowercase letter are
function symbols, predicatc svmbols or atoms. A program in FGHC is a
collection of guarded Horn clauses. A guarded Horn clause is a logical
impiication of the following form with guard goals

H :- Gl.., Gm | B1, ... Bn.

where H, G1, ... Gm, B1, ... Bn are atomic formula. H is called the clause head,
the Gi's are called guard gouls, and the Bi's are called body goals. Trust operator
"1™ separates the passive part (Gi's) from the active part (H and Bi's).
Logically, the guarded Horn clause should be read as "H is implied by the body
Bl, ..., Bn if the guards G1, ... Gm terminates successfully”. A sct of all clauses
whns‘t heads have the same predicate symbol with the same arity is called a
procedure. A procedure is the logical disjunction of its Horn clauses.

A goal is the basic execution unit of FGHC. The role of the FGHC's goals are
very similar to processes in operaling svsicms. So, they arc sometimes called a
process. A goal clause starts the execution. The goal clause has the following
form.

=B, .., Bn.

This can be regarded as a guarded Horn clause without a passive part.
Execution of FCHC is regarded as the rcduction of goals under a procedural
interpretation. Geal reduction tries to unify the cusrently executling goal and
the head of a clause, and to execute all the clause's guard goals. If the head is
unifiable and all guard goals tcrminate successfully, the body goals are
spawned., Even if there is more than one clavse that satisfies the above

conditions, only one clavse can be committed nondeterminately, Unlike

Led

Prolog, FGHC is neither able wo backirack nor to try all clauses. If one of the
clauses is committed. the others are abandoned and never considersd again.
Unification in FGHC is extended to include communication and
synchronization between goals. In the passive part of a clause, wvariables in
the caller goal can be read, but attempting to instantiate the wvariable suspends
the goal. This suspended goal is resumed when another goal instantiates the
variable, on which the suspended goal is hooked. On the other hand, there are

no restrictions on the unification of the active part of the clause.

2.2 Language Processor

To cxamine practical parallel application programs written in FGHC, we
developed a sequential implementation of the FGHC language processor on
Fujitsu's S3500 super mini computer. The language processor must provide a
debugging aid for FGHC programs. Also, it must run at least as fast as an
efficient implementation of Prolog. Meeting these demands, our language
processor consisis of an interpreter and an emulator. In this paper. the

discussion is based mainly on the FGHC intcrpreter.

{13 Interpreter

Parallel programming is a relatively unknown field, so programmers in
this field need powerful debugging aids. Qur interpreter is well suited to
meet this need,

Even in the interpreter, execcution speed is still an important factor,
because the debugging peried will be long and the programmer needs high
speed processing 1o achieve fast turn around. The interpreter must run
almost thc samc specd as cfficient Prolog interpreter. Thus the interpreter
was written in C, and we adopted eflicient methads and stratcgies described

in the next section,

4

{2) Emulator

Warren's abstract instruction set [6] is well-known as a high
performance Prolog abstract architecture, which we call WAM for short.
The FGHC emulator adopts an abstract instruction set KL1-B (kemnel
language one base [7]). KL1-B is a rcfinement of WAM that is tuned for
FGHC.

The emulator is also written in C. lts main design criteria is speed. On
the emulater, the example programs run almost 10 times faster than on the
FGHC interpreier.

Although, 1the intcrpreter and the emuiator have the same data
structures and the same execution medel, but they have not yet been

integrated. This work will be donc in the future.

(3) Compiler
An FGHC compiler generates ecfficient KL1-B codes to run on the

emulator and was written in Prolog.
2.3 Sequential Implementation

We adopted the following implementation methuds and sirategies for our
language processor. Based on the behavier of practical programs we will

discuss their appropriateness and will refine them in Section 4.

(1) Non-busy-waiting strategy (NBWS)
The exccution speed of a language processor that adopts a busy-wailing
strategy, decreases in proportion to the number of suspended goals.
Because practical FGHC programs are expected to have huge number of

suspended goals, a2 non-busy-waiting strategy should be more efficient

(2} Muluple waiting on unbound variables
A suspended goal, which is multiple wailing on somc uninstantialg

variables, ecan be resumed when one of the wvariable is instantiaied. There

are two methods for implementing the multiple waiting. Both methods hook
the suspended goal to the unbound variables that caused the suspension. In
the first method, when the goal 15 resumed, the resumed goal kills all the
other hooks at that time. In the second method a resume flag that is shared
by all hooks is turned off when the goal is resumed. According to the
resume flag, the other hoocks kill themselves when their wvariables are
instantiated,

The second method omits the cost of searching and Killing the other

hooks. We adopted this methed [or multiple walting on uwnbound wvariables,

{3) Storage of the goal record

Context switches, the exchange of the currently executing goal, happen
very frequently in FGHC execution. Warren's implementation, in which the
goal record is kept im the CPU, cannot increase its efficiency for FGHC,
because the cost of writing the context switched goal back into main
memary is greater than access advantage of keeping the goal rccord in the
CPU.

To avoid this, we only load a pointer to the current goal record into the
CPU instead of the whole goal record. This methoed is suitable for an

execulion model that switches context frequently.

(4) Bounded depth-first strategy

We adopt the bounded depth-first strategy for our goal execution. The
depth-first strategy decreases the number of context switches. It also
decreases the number of existing goal records.

Boundcd mcans that the reduction has a depth limit. The bound forces a
context swilch at lcast every 100 rcductions. This keccps the execution fair
If we solve the generalor-and-consumer problem without any bhound,
generator's goal would run forever and the consumer's goal would never

cxecute.

3. Application programs

We expected that the dynamic characteristics of small example programs
(see Figure I) would be different from the characteristics of 1ypical
knowledge processing programs. which will run on the PIMs in the future.
The analysis of the small example program might mislead us.

We must discuss the refinement of the language processor and design of
PIM hardwarc based on the analysis of the practical programs not to make
such misstep. Thus we developed a practical parallel program written in FOHC
and measured its characieristics. The program must satisfy the fellowing
conditions to be useful for this purpese.

append([H|T], ¥, £):- Z = [H[ZI]], append(T, ¥, ZI} .
append({], ¥, Z):- Z=1Y.

nrev(f], ¥)- Y = fj.
nrev(fA/B], C):- nrev(B, D), append(D), [A], C).

{a) nrcverse
primes{Max, Ps):- gem(2, Max, Ns), sift(iNs, Ps) .
eenNG, Max, Nsf):- NO <= Max | NsO = [NO/NsI], NI=NO+1,
gentMNl, Max, Ngl).
gen(NO, Max, NsG):- NO > Mazx | NsO ={} .

sify[P{Xsl], Zs0):- Zs0 = [P/Zsl], filter(P, Xsl, Ys), sifu(Ys, Zsl).
sift([], Z50):- Zs0 = [].

JiltertP, [X/X51], Ys0):- A:=X mod PA =\= 0] ¥s0 = [X/¥s1],
filrer(P, Xs5l, Ysi)

Srleer(P, [XiXs1], ¥s0)- Av=X mod P, A == (0} filrer(P, Xsl, Ys(}).

Julter(P, [], ¥Y50):- Y50 = [] .

(b} primes
grort([X[Xs], Y50, Ys3):- part(Xs, X, 8, L) , gsort(5, Y50, [X/¥52]) ,
gsartfL, ¥s2, Ys3).
gyort{f], Ys0, Ysi - Y0 = ¥sl |
partifX/Xsf, A 8 Lid)- A < X /L0 = [X/LI} CpariiXs, A8, LI .
part({X/Xsf, A, 50, L}~ A >= X [50 = [X/81] , partiXs, A, 51, L) .
parid(], .8 L):- §={[], L={].

{c} qsom

Figure 1. small example programs

(1) Parallelism
The problem that the program will solve must naturally include a large
degree of parallelism. [t is inappropriate to drag out parallelism by lorce.
The scale of parailelism nceded is 10 or 100 times more than the number of
processor elements in the PIM. This means the problem must naturally

include from 100 to 1,000 scale parallelism.

{2) Communication and syachronization mechanism
FGHC is a parallel logic programming language based on the
communication and synchronization mechanism. The small ecxample
programs, however, are based on the call and return mechanism like
sequential programming Jlanguages. To evaluate FGHC in the parallel
aspect, the application programs must act on the communication and

synchronization mcchanism.

(3) Practical problems
We developed application programs under the restriction that the
programs solve a practical problem. To make the analysis relevant, we
avoided constructed problems. Also the size of the application program
musi be more than 1,000 steps.
Futhermore, we try to show that FGHC is useful by solving practical
problems in FGHC, since FGHC is not recognized as a practical programming

language wvyeL

{4} Comparison with other languages
It is necessarily to compare with another programming lamguage 1o
show FGHC to be useful, The refinement of FIM hardware and language
processor implementation technigues arc only relative comparisons on
FGHC. Another kind of comparison, with a program written in another

programming language, for example C, iz also imporant

9

Unfortunately, none of the small programs shown in Figure I, satisfies the
above conditiens. In terms of our criteria, these programs are unsuitable for

the base of the design and for refinement.

We could inspect FGHC's functions by developing practical parallel
programs. Also we could gain various ecxperience in debugging parallel

programs. However, these topics will be discussed in another paper.
3.1 The parallel router

We chese a switchbox wire router as our practical parallel zpplication
program [8], since it satisfies all of the above requircments. The swichbox
wire router is a gate-array VLSL CAD program. It is used in the final stage of
L5I design. It is characterized as foilows.

(a) The switchbox is a rectangular routing area without obstructions.

(b) The signal terminals are only on the sides of the area.

(¢) The terminals are on all four sides and their positions are fixed.

(d) There are two routing layers, and each terminal is on one layer or the

other.

{e) Complete connection of all terminals are neccded.

() A connection may be a non-minimum spanning path.

Figure 2 is an example of swiichbox wire router problem. The numbers
written on the four sides are net identifiers, The router program connects all
tcrminais that have the same identifier. A sct of these terminals is called a net.
There are two routing layers, an upper and a lower one. To keep the routing
algorithm simple, the upper layer has onlv horizontal lines, and the lower

laver has only vertical ones. Vias connect the two layers,

2 6 4 1 5
3 4
*—— 5
4)
2 & 2
4
6 $ 5
6 3 1

Figure 2. Switchbox wire router problem example

The flow chart of the whole parallel wire router is shown in Figure 3. The
parallel router fterates the fellowing operations. The router scarches
minimum spanning path for cach net, and dctects bottleneck grids on
minimum spanning paths. There are indispensable grid points as a bottleneck.
And the router cxamines whether the botleneck grid on the minimum
spanning path is a rcal bottlencck on the whole routing area., The operation
for each net is independent from the other, The parallel router has two kinds
of parallelism. Searching for the bottleneck grids simultanecusly is the large
grain parallelism and fine grain parallelism will be explained later. After
these parallel operations, the nets try to acquire their bottleneck grids. This
acquisition is scguential operation,

If all the nets have connected, the router terminates successfully.
Otherwise, there are stili one or more unconnected nets when all nets have
acquired their bottlencck grids (they are balanced). The router tries to select
and allocate additional non-bottleneck grids o one of the unconnccted nets.
This selection is regisiered for future backiracking., And the router begins o
scarch for bowtlencck grids again, The last case is a conflictien of the

bottlensck grids. If confliction occurs, it backtracks to the last candidaie grid

10

11

sclection, undoes all grids allocated after the last sclection, and selects another

Initialize
= L

candidate grid.

|| R
Minimun-spanning- ||/] " parallel
A e rasasa
path search) execution
I .J{:s;.f-
- & F
Bottleneck I f;-’
grid search a4 i
= _.F: F]
L ‘g’: ;g
<|f. ;.-
£y
Real bottleneck ;o
) . h i
examination T
T f
H
Acquisition of /
the bottleneck grids | 7
H

Balanced .
Arbitration

between nets

Canflict

Backtrack -H
-

Candidate
grid selection

Figure 3. Wire router Now chart

The main and the most time consuming part in this router is the minimum
spanning path search. We did not usc the whole wire router program for our
measurement, but instcad used only this part. We will describe the minimum

spanning path scarch in detail.

A parallel switchbox wirc router, writtcn in C has been reported [9]. Their
program is run on cellular array processor (CAP). Bui a comparison between

FGHC program and C program is beyond the limits of this paper.
3.2 Minimum spanning path search

In the wire router, many perpetual processes called nodes are placed at
every grid on both layers. For example, the struciure of the whole routing
arca (4 X 5 grids) is shown in Figure 4 {a). Figure 4 (b) shows the detail of
each node. The minimum spanning path search is prﬂccss:-d in terms of
sending messages belween nodes, and updating the states of the nodes. Many
perpetual processes cooperate in parallel, since the switchbox wire router
naturally has a large degree of fine grain paralielism. This is the second kind

of parallelism.

Upper routing layer
(horizontal lines)

O Node
) Terminal

Lower routing layer
(vertical lines)

{2) Structure of the rouling area

Farward node

Backward node
{on the same layer)

(on the same layer)

Another node
(on the other layer)
{b} Struciure of each node

Figure 4. Structure of a node connection

We used the following three algorithms to scarch for a minimum spanning

path. The first and sccond are known as siandard grid expansion algorithms.

(1} Sequential wave front (SWF} method

The SWF method is a well-known Lee-Moore type rouwrer, In terms of a

labeling message. cach node is lubeled by its Manhattan distance from the

starting terminal. All nodes thar have the same label are linked, They are

called a wave front. The SWF method is shown in Figure 5. In this figure

14

and also in Figures 6 and 7, we usc onc routing layer to keep the
explanation simple.

The next wave front sprcads sequentially from one side of the last wave
front. In figure 5, we show the order of the wave front expansion. When
the expansion has done, the new wave fromt checks whether it has reached
the end terminal. If it has not, the new wave front starts a next wave front
cxpansion. We feel there is not enough parallelism in this seguential

method.

Wave front

000 0.0.00

: Py |
Iy awe Start terminal
End 000 “ (z) © 0 -
Il ’
terminal O

;C;) @ e Exé:?gziﬂn
Labeli

O 00000 O |* mesuage
Nod

O O O O O @ @ @with gis’:ﬂncc

\. /

~

Figure 5. Sequential wave front method

{2) Volley wave front (VWF) method
This method is a refincment of the SWF methed. All nodes on the last
wave front watch {are suspended on) the same variable. This wvariable 13
instantiated by the check process, when the check for reaching an end
terminal fails. All the suspended nodes will be resumed and start to send the
nezxt labeling messages at once.
The VWF method scems to have a large degree of parallelism. The

mechanism for this method is shown in Figure 6.

Wave front

Start terminal
End

terminal

s N
< Labeling
message

0 0 0 O« _
O O O O ®wiLhN§;siunct

p J

Figure 6, Volley wave front method

(3} Reckless running (RLR) methad

The RLE method has little sequentiality. The mechanism for the RLR
method is shown in Figure 7. When a node receives a labeling message with
distance information, Dm, from one of the neighboring nodes, the node
compares its own stale Do (current known distance) and Dm. If Dm z Do,
the node ignores this labeling message. If not (Dm < Da), it substitutes Dm
for its own state and sends the new labeling message with Dm + 1 to the rest
of its neighboring nodes.

This method has a hupe degree of parallelism and the processing is very

simple. In the worst case, however, it does a lot of usecless operations.

Start terminal

End
terminal

Fipure 7. Reckless running method

4. Dynamic characteristics of application programs

In this section, we will explain the dynamic characteristics of the parallel
wire router. Also we will discuss the appropriateness of the implementation

techniques for the language processor described in Section 2, and refine them

based on the analysis. We also list the [unctions reguired of the PIM hardware,
4.1 Performance

We have made two kinds of comparisons to evaluate the performance of the
FGHC interpreter. The first comparison is with a Prolog interpreter written in
C, because recently the Prelog interpreter has enough performance, and is
used practically. The exccution time for several small example programs run
on both interpreters is shown in Figure 8. We can do these measurcments only
on small size programs, because it is very difficult 10 make two programs using
the same algorithm but written in different programming languages. Figure 8
shows the FGHC interpreter has from 42 1o 80% of the performance of the

efficient Prolog interpretcr.

16

Preleg

O rae

Execution tlime +- Speed

{sec)
00T 0% T 90%
?1i/,.A 1 80%
¥ + 70%
10.0 + +60%
ﬂ.% 15%% Speed ratio
+ 40%
ioT T30%
TE0%
[z 110%
0.1 4 —h ' 0%
nrev 30 gsort 30

Frogram
Figure §, Comparison with a Prolog imerpreter

Omitting the backtracking and related operations helps the FGHC
interpreter to run fast. However, the FGHC interpreter could not use an
efficient stack mechanism since the order of the goals is non-deterministic in
FGHC. Furthermore, it must include a goal suspension mechanism. [n the
programs used for Figure &, no suspension has occurred, though the overhead

of the suspension checking decreases the FGHC interpreter’s performance.

The seccond comparison verifies the advantage of the non-busy-waiting
strategy (NBWS). We compared our interpreter with an FGHC compiler wrillen
by Ueda [10]. The FGHC compiler compiles from FGHC source program to Prolog
object preogram. The compiled code uses a busy-waiting strategy (BWS).
Figure 9 shows an interesting result of the comparison., When there are none
or a few suspended goals (nrev, gsort and prime in Figure 9), the NBWS
interpreter runs only 3 times faster than BWS compiled code. Thus we could
say that the busy-waiting strategy is efficient for programs without

suspensions.

17

O Suspensians

Suspensions * NBWSBWS
2,500 41.5 145.0
A 14
35.2 p - 0.0
2 000 rogram with |
T °/ ‘1\ suspensions 35.0
22.2 +30.0
1,500 ¢ y o 86 —fase Spesd raiio
Program] TN 15.9 20.0
1,000 without 11.4
. * =
Suspensions 1130
¥
L 110.0
131 25 a8 |
ot 5.0
0 T] T T T T T] 0.0
nrev qsort prim SWF1 SWF2 VWFi VWFZRLR1 RLR2
Program
BWS: busy-waiting-strategy
NBWS: non-busy-wailing-strategy

Figure 9. Comparison between BWS and NBWS

When there are many suspended geoals, however, the NBWS interpreter
runs from 10 to 40 times [aster than the BWS compiled codes. In Figure 9, SWF,
VWEF and RLR are in this case. The SWF, VWF and ELR indicate the method
described in Section 3.2, and 1 and 2 are the program number. Practical
application programs, like a wire router, would have many suspended goals,
Based on this data , The NBWS is essential and the interpreter has enough

performance for practical use.
4.2 Context swilch

Goal reduction usually spawns somc children goals., The control transfers
from the reduced goal to the eldest child goal. This transformation is not a
context switch. Conlext switch is an exchange of the currently executing goal

to the non-child goal that is in the ready-goal gqueue,

18

Context switch occurs in foilowing cases. The current executing goal
reduced with a fact, clause without children goals. Or the executing goal is a
buili-in predicate, or it suspended on some uninsiantiated wvariables. We show
the number of reductions and the number of context swiiches for several
programs in Figure J0. Roughly speaking, 2 context swiich occurs every 12
reductions, Strictly speaking, from 2,18 to 2.74,

This ratio is lower than we would expect at first. The depth first strategy
runs fast in the child-spawnig tyvpe reduction. But the result denied the

advantage of depth first strawcgy

[Reductions
£l Suspensions

Reductions _—

Suspentions reducisusp

T 2.74 .
6,000 2 45 058 » .00
. \ . ‘
5,000 ¢ ¢""—-'-“"""--.,E”ﬂ 218 "\\‘-' 1280
0..________‘
40001 4200
3,000 1 150

Rario

20001 1.00

1,000t i vf. 0.50
i e

0 — 0.00

F Swr2 VWF WWF2 ALR1
Program

Figure 10. Number of rcductions and suspensions

We measured intervals between context switches. A histogram of the
mtervals is shown in Figure 1J]. The raw data (Figure 1] (a}) is the number of
intervals, and the weighted data (Figure 71 (b)) is the product of the number
of intervals and the interval itscll, which eapressed the number of reductions
they include. This figure shows that the zcro and one intervals are

predominant.

19

Frequency

300 i
&oo :[

a
00 &
&00 = IWF]
500 k= WD
400 P 0= ALRY
300 4= ALR2
200 -
100 ¢ '\\.
N\
4] 1 t + t T e D e e e e e
] 1 2 3 4 B & 7 8 3 11 12 13 14
Interval of the context switch
{a) Raw data histogram
Frequency X interval
1200
1000 /
7‘1
800 ;I' = Vi1
-&= \WF2
800 5
| o= BLR1
&
400 + = RLRZ
200 +
0 t t e e

1 2 3 4 5 B 7 2] g 11 12 13 14
interval of the context swilch

(b) Weighted data histogram

Figure 11]. Histogram of context switch interval

21

For an imerval of zero, o goal, picked from the rcady-goal queue, is not
actually executable. This is because goals are put into the ready-goal queue
without checking the suspension condition, when the clavse was commitled.

We sugmested two methods for decrcasing the number of interval-UO-type
context switches. In our implementation, we adopied the second method since

it decreases the number of context switches by 10%.

fa) Check suspension conditions when body goals are spawned

When a clause is committed, the suspension conditions of its body goals
are checked. If these conditions are satisfied, the goal is spawned in the
usual manner. If not, it i5 hooked on an uninstantiated variable and
suspended immediately,

The conditions check suspends the greater part of the goals. However
most of hooked goals are going to be executable and resumed until they are
dequeued from the ready-goal queuwe. The method increases useless

suspensions and resumptions. Thus we have not adopted this method,

(b} Giving priority to resumed goals
We thought the resumed goals have lower probability of suspension
than the goals in the ready-goal queue. So, we give priority o the resumed
goals. The resumed goal uses the high priority ready-goal queue and is
reduced hefore the other goals in the normal gueve. This method decreases

the number of context switches at most 10% (Figure 12).

We had expected the maximum of context swiich interval to exceed 100, and
thus set wp a bound of 100 reductions. However, we found the maximum is
actually less than 40 in the parallel wire router programs,

The large number of context swiiches and the short interval of them
indicate that the task size is small and s parallelism is fine grained., This fact

reguires that the PIM have two hardware supported functions. First, it must

have fast context switch support, and second, it must have an cificient goal

management mechanism.

*+= QOriginal
Reduc/susp 9= Refined
30 2.8 2.3 2.8
g—""
| 2.2 2.3
2.4 2.6___ —°
20 2.1 = *
' 2.0 2.1
1.0
a.ﬂ T L] L 1
SWF1 SWE2 bigwave PR2-1 PR2-2
Program

Figure 12, Refinement of suspension mechanism

4.3 Number of suspended goals

We measured the number of active and suspended goals. The active goals
are ones in the ready-goal queve. The suspended goals are hooked 2t some
variables. Figure 13 shows the result. The horizonial axis is the time from the
beginning measured with reduclions, We summarize the dynamic

characteristics of the parallel router program as follows.

(a) Suspended goals predominatc
In all stages of execution, about S0% of goals are suspended. Active goals
increase momentarily. The perpetual processes, the characteristic objects
of parallel logic programming languages, are suspended almost their
entire lives. Thus a non-busy-waiting strategy is essential for efficiently

exccuting practical programs like our parallel wire router,

22

Mumber of goals
180 -

160 7
140
120 -
100 4
80 T
60

A =

20

0 2o 400 800 8400 1000 1200 1400 1600 1800
Reduction

(a) Execution of the VWF1 program

Number of goals
140 1

120
160

7 1k\h“hhhu
Suspended

60 gpals

40 4

20 7

] t 1 } $ 1
1] 500 1000 1500 2000 2500 anog
Reduciion

(b) Exccution of the RLR2Z program

Figure 13. Number of active and suspended goals

{b) The number of goals does not fluctuate
Goals are divided inte two classes, perpetual goals and temporary goals.

The perpetual goals exist during all exccution. When a perpetuzl goal

b3
Tad

receives a message from neighboring goals, it spawns temporary goals 1w
perform the task requested by means of the message. The temporary goals
are almost active, and the perpemnal goals are suspended. The number of
temporary goals is negligible since there is a large number of perpetual
goals.

In the initial stage, the number of suspended goals grows rapidly. In the
intermediate stage, the summantion of active and suspended goals does not
fluctuate. In the final stage, it diminishs abruptly and becomes zero. The
pattern is shown in Figure /3.

At times during the intcrmcdiaic stage, the resumption of a lot of
perpetual goals appears as a big fall in the suspended goals and a sharp rise
of the active goals. Even then, the total number of both goals does not
fluctuate.

We had adopted depth-first strategy for our language processor to keep
the number of goals small. According to Figure I3, however, the depth-first
strategy also has a large number of goals. The depth first strategy does not

have enough advantages we expected before.

5. Conclusion

We have developed an efficiemt FGHC interpreter. It runs from 40 to B0% of
the speed of an efficient Prolog interpreter and from 10 to 40 times faster than
an FGHC compiler with a busy-waiting strategy. [t has enough performance
for practical use.

At the same time, we choose the parallel wire router for practical parallel
application programs and developed them in FGHC. According to the
measurement and analysis of the paraliel wire router, we pointed out the non-
busy-waiting strategy is essential, but the dcpth-first strategy does not have

enough advantages.

We are going to developing a multi processor implementation of language
processor. And we also re-cxamine the language functions and the
programming stylc of FGHC, because the tasks are 100 small to execute

efficiently.

Acknowledgements

The authors wish to acknowledge the guidance received from the staff
atl ICOT, especially that of Mr, Kimura and Dr. Uchida, the lauboratory's
manager. Mr. Tanghashi and Mr. Hayashi ef the Artificial Intelligence
laboratory gave us the chance for our research and encouragement. We also
wish to thank the other members of the laboratory staff for useful discussions,

and Mr. Kishishita, Mr. Tzkaya and Mr. Hirano of FUJITSU SSL for cooperation

in developing the parallel wire router programs.

References

[1] Goto A. and Uchida S. Toward a High Performance Parallel Inference
Machine - The Intermediate Stage Plan of PIM - TR 201, ICOT, 1986

2] Ueda K. Guarded Horn Clauses. TR 103, ICOT, 1985,

[3] Clark, K.L. and Gregory, S. PARLOG: parallel programming in logic. ACM
Transactions on Programming Languages and Systems 8, January 1986

[4] Shapira, E.Y. A subser of Concurrent Prolog and ity interpreter. TR 003,
ICOT, Tokvo, February, 1583

[5] Bowen D.L. (ed.). et al. DEC svstem-100 Prolog User’s Manual. DeptL of
Artificial Intellipence, Univ of Edinburgh, 1982,

[6] David H. D. Warren. An Abstract Prolog Insiruciion Ser. Technical Note
309, Artificial Intelligence Center, SRI, 1583,

(7] Kimura Y. An Abstract KL1 Machine and its Instruction Ser. 1o be submiticd
at '87 SLP.

[8] Burstein, M. and Pelavin, R. Hierarchical Wire Routing. IEEE Trans.
Computer-Aided Design Integrated Circuits and Systems Vol CAD-2, No. 4,
Oct. 1983, pp. 223-234,

(8] Sinda, T. Kawato, N. Ishii, M. 'Paralle]l reuter. Proc. National Conflerence of
IECE, 1885, in Japancse,

[10] Ueda, K. Chikavama, T. Concurrent Compiler an Top af Prolog Symposium
on Logic Programming, 1985 pp. 119-127

25

