ICOT Technical Report; TR-214

TR-214

A Deductive Database System Written in
Guarded Horn Clauses
by
N. Miyazaki and Y. Mitomo®
(Oki Electric Co.)
H. ltoh and T. Takewaki

November, 1986

w986, 1ICOT

Mita Rokusai Bldg, 21F [5) 456-5191--3

I(:C] | =28 Mita 1 Chome Telex 1COT J22064
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Deductive Database System Written in Guarded Horn Clauses

Hidenori Itoh, Toshiaki Takewaki,
Nobuyoshi Miyazakit and Yuji Mitomo#

ICOT Research Center
Institute for New Generation Computer Technology
Mita-Kokusai Bldg. 21F, 1-4-28, Mita,
Minato-ku, Tokyo 108, Japan

(tOki Electric Industry Co. Ltd. , # Japan Systems Co. Ltd.)

Abstract

In this paper, we propose a deductive database system written in
the parallel logic programming language GHC (Guarded Horn Clauses).

1. Introduction

Knowledge information processing systems have been proposed from the
viewpoint of logic programming, such as an inference machine for efficient
inference processing and a knowledge base system for efficient retrieval
processing. Moreover, advanced knowledge representation languages are being
developed in logic programming to implement the knowledge information
processing systems. The advantages of developing these systems in a logie
programming environment are developing and processing efficiency, and
expansion of facilities.

In this paper, as a first step to the knowledge base system, we propose a
deductive database system (DDS) model which stores and manages a set of Horn
clauses as knowledge, and we show that its basic functions can be written in the
logic programming language GHC (Guarded Horn Clauses) [Ueda 851, which was
implemented at ICOT for the parallel inference machine.

Our DDS is composed of two components and has a set of rules comprising the
intentional database (IDB) and a set of facts as the exlensional database (EDB)
[Gallaire 84, Deyi 84). IDB and EDB are managed separately by their respective
components. The first component manages IDB and compiles the queries from user
or application programs into relational commands using IDB. The second
component manages and retrieves items from EDB using their relational
commands. IDB and EDB uare assumed to be accessible in common by user or

application programs, and the size of EDB is assumed to be very large. Now, for
efficient searching in and handling of EDB the second component is equipped with
multiple dedicated retrieval processors (RP) controlled in parallel.

2. Guarded Horn Clauses

GHC is a simple, powerful and efficient parallel logic programming language
[Ueda 85].

A GHC program is a finite set of guarded Horn clauses of the following form:
H:-G1,..,Gm|B1,...,Bn. (m>0,n>0).

where H, Gi's, and Bi's are atomic formulas defined in the usual way. H is called a
clause head. the Gi's are called guard goals, and the Bj's body goals. The notation '
is a commitment operator. The part of a clause preceding '| is called a guard, and
the part succeeding '|' is called a body. Declaratively, the above guarded Horn
clause is read as "H isimplied by G1, ... ,and Gmand By, ..., and Bn".

A goal clause has the following form:
:‘E‘[,...,En. {n.'?[l}

This can be regarded as a guarded Horn clause with an empty guard. A goal
clause is called an empty clause when nisequal to 0.

We use symbols beginning with uppercase letters for variables and ones
beginning with lowercase letters for function and predicate symbols. The
nullary predicate 'true’is used to denote an empty set of guarded body goals.

The semantics of GHC are quite simple. Informally, to execute a program is to
reduce a given goal clause to the empty clause by means of input resolution using
the clauses constituting the program. This can be done in a fully parallel manner
under the following rules of suspension:

(a) The guard of a clause cannot export any hindings to the caller of that
clause, and

(b) the body of a clause cannot export any bindings to the guard of that clause
before commitment

In this paper, we use a subset of GHC, called Flat GHC (FGHC). FGHC is
allowed to have only system predicates in guards of clauses. In the following
section, we introduce a deductive database system maodel.

3. Deductive Database System Model

A deductive database consists of a set of Horn clauses. A set of ground unit
clauses is called an extensional database (EDB) and is stored in a relational
database. The mapping between these clauses and relations is a well known one-
to-one correspondence between a fact and a tuple based on first-order logic
[Gallaire 84). Other clauses (rules) belong to the intentional database (IDB).

Our deductive database system model consists of a deductive processing
component and a relational database processing compenent as shown in Figure 1.
Here, both IDB and EDB are used in commen by user and application programs.

These two components are sometimes called an intentional processor and an
extensional processor. The deductive processing component acceptsa query and
compiles it into an equivalent program that includes a set of relational queries.
Here, a query consists of a goal clause and a set of rules. It computes the result of
the query by executing the compiled program using the relational database.

The query deductive processing algorithm is divided into two stages.

(1) Horn elause transformation (I1C1):
The system analyses a given gquery and delecls recursive predicates.
It also transforms the query to an eguivalent extensional normal form.
The extensional normal form is defined as a set of clauses whose bodies
contain only recursive predicates and comparisons. Extensional
predicates are special predicates and indicate that corresponding facts

User or Application Programs J

Query

.

Deductive Processing
Component (IDB)

Retrieve
Command

.

Relationul Database Processing
Component (EDB)

DS

Figure 1 Deductive Database System Configuration

are stored in an extensional database, Extraction of necessary clauses is
also done by HCT.

(2) Generation of a program containing relational queries:
The resultant program is iterative if the query includes recursive
predicates, and itis non-iterative if the query does not involve recursion.

When applying the setting evaluation [Yokota 86], the query is always
transformed into an iterative program even if it does not involves recursion, and
the predicates eliminated by the partial evaluation technique in HCT have to be
executed. Then, HCT is said to be an improvement method of the setting
evaluation on these points.

The relational queries generated in the deductive processing component are
sent to the relational processing component to retrieve from the EDB. The basic
algorithm of HCT and the RP parallel control method are discussed in the
following sections.

4. Horn Clause Transformation

The following is a basic algorithm for Horn clause transformation (HCT)
written in GHC. In HCT, we introduce a basic partial evaluation algorithm for
breadth first expansion.

Procedure HCT(goal, IDB, Transformed-rules):
/* Input : goal, IDB *
/* Qutput: Transformed-rules *

begin;
/* search for the recursive predicates */
recursive-predicates := [];
call BFPE(goal, IDB, Temporary-rules, recursive-predicates);

/* check if the result is already obtained */
if recursive-predicates =[] or goal is the only element of it
then do;
extract "head" and "edb-body" of pseudo-clauses in Temporary-
rules and Transformed-rules := [head :- edb-body]:
end then;:
2lse do;
/* repracess if the query is complex */
for goal and every element of recursive-predicates R do;
call BFPE(R, IDB, Temporary-rules, recursive-predicates):
extract "head" and "edb-body" of pseudo-clauses in Temporary-
rules and Transformed-rules := ++[head:-edb-body]:
i* "4 4+ "means add new elements */

end for:
end else;

end HCT;
The Horn clause transformation is effected by using BFPE as follows.

Procedure BFPE(goal, 10B, Temporary-rules, Subgoals);

/" Input ooal, IDB ¥

/* Quiput: Temporary-rules %/

M Input & Output: Subgoals]
begin;

recursive-predicates := Subgoals;

/* expansion of the root */
Find rules in IDB that unify to goal and construct a set of pseudo-
clauses in the form

{head :- body | edb-body | predecessor | recursive-preds}:

/* expansion of nodes other than root */
repeat until the body of all pseudo-clauses are empty;
for all pseudo-clauses do;
if the leftmost predicate of the body cannot be expanded,
then remove it from the body, and add to edb-body;
if the leftmost predicate is found to be recursive,
then add it to Subgoals;
end for;

/* expand nodes */
for every pair of T in the set of psevdo-clauses and
R in IDB do;
if the leftmost predicate of the body in T unifies head of R
then construct new pseudo-clause and
add it to Temporary-rules;
end for;
end repeat;
end BFFE:

An example program of this algorithm written in GHC is shown in the
Appendix,

Because the basic algorithm for Horn clause transformation stops when it
detects recursive predicates, and because the number of the clauses in IDB
{query) is finite, the algorithm always halts for any query. The algorithm just
simulates the hreadth-first way of first-order theorem provers except that it
defers the evaluation of recursive predicates and other special predicates.

Therefore, the new program transformed by HCT is equivalent to the original
guery.

Here, we will omit the detailed argument on the generalized theoretical
analysis for example the treatment of mutual recursive predicates [Miyazaki 86].

Next, a simple example is shown.

Now, :- ancestor(taro,Y) isa query from user program, and the following
rules are in IDB,

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z.,Y).
parent(X.,Y) father(X.Y).

parent(X.Y) mother(X,Y).

father(X.Y) edb(father(X,Y)).
mother({X,Y) edb(mother(X,Y)).

Here, edb is an extensional predicate indicating that the corresponding
facts are stored in EDB, The program transformed by HCT is as follows.

edb(father (X,Y)).
edb{mother (X.Y)).
edb(father (X,Z)), ancestor (Z.Y).
edb(mother (X,Z)), ancestor (Z,Y).

ancestor (X.,Y) :
ancestor (X,Y) :
ancestor (X,Y) :
ancestor (X,Y) :

And, the following relational commands can be generated from this result
represented by only edb and recursive predicates.

ancestore =
II5({ (0=tarolfather))
I E,U]; = mm{m(}ther}}
U T 4(01 = garolfatherg=1 1>< ancestor))
U II; 4{0} = tare(motherg = ><| ancestor))))

Here, '0" is selection, ><[is join, 'TI" is projection, and 'J' is union, respectively.
Execution of recursive commands should terminate when the least-fixed-point
appears. In other words, for every command all solutions are always searched
when execution terminates.

5. Relational Database Component

The relational database component has three sections as shown Figure 2.

Control

+
RC
""""‘“IHPI —>
Relational
Query RF Parallel . EDB
4 Controller .

RC
—H BFP, |+—¥

RC: Retrieve Command
RP: Retrieve Processor

EDB: Extensional Dalabase

Figure 2 Relational Database Component Configuration

{a) a number of retrieval processors (RP); While the sets of data stream into
the RPs, RPs perform the relational operations such as sort, join and
selection on them,

(b) query analyzer and RP parallel controller,
(¢) EDB storage.

RY parallel controller receives a relational retrieve comuand from the
deductive processing section, analyzes it, and produces a strategy for efficient
retrieval from EDB.

The parallel control stralegy is developed from the following parameters
(Itoh 87)].

{a) Number of available EPs when the retrieve command iz received from the
deductive processing section,

(b} T}-‘IIE of commands (ex. external-sort, internal-sort, jnin and prl}jﬂ!‘.tinn},
{c) Size of the data to be searched and handled, and
(d) Amount of current available working memory.

The following program shows how the RP parallel control method can be
written in GHC. It is clear thal the relation between this program efficiency and
the number of RPsis liner. All annotations are in italics.

/* "schedule” process "TnQuery " with N processors of retrieve. "RPscheduler” checks
status for all RPs, and assigns job to free RPs. "in"convert the query to the retrieve
command.*/
schedule(N,InQuery) :- true | in{InQuery,Command),
'RPscheduler' (Command,StreamStream),
generate_distribute(N,StreamStream).

"RPscheduler' ([C|T],StreamSt) :- true |
inspect(StreamSt,NewStreamSt,Ans),
checking_state(Ans,Div, List),
divide(Div,List,[C|T],NewStreamSt).

‘RPscheduler'([] ,StreamSt) :- true | closeStream{StreamSt}.

i* "elogeStream "informs every RPs that end of command. */

closeStream([stream(N,A)|Rest]) :- true | A=[term],
closeStream(Rest).

closeStream([]) = true | true.

{* Predicate "generate__distribute "creates streams for every RPs. */

generate_distribute(0,5tSt) :- true | StSt=[].

generate_distribute(N,StSt) :- N=\=0| StSt=[stream{N,Stream)|Rest],
'RP*(N,Stream), M := N-1, generate_distribute(M,Rest).

/* “inspect "inquire at every RPs for itz status (busy or free). */

inspect([] ,New,Res) :- true | New=[], Res=[].

inspect([stream(N,St1)|Rest],New,Res) :- true |
St1=[ins(State)|St2], Res=[(N,State)|ResR],
New=[stream(N,St2)|NewR], inspect(Rest NewR, ResR}.

i* "ehecking _ state"count number of free RFPs, and search for number of RPs. %/
checking state([] , Div, List) :- true | Div=0,List=[].
checking state(] (N,busy)|Rest], Div, List) :- true |
checking_state{Rest,Div,List).
checking state([(N,free)|Rest], NOiv, NList) :- true | Riv := Div+l,
NList=[N|List]. checking_state(Rest,Div,List).

/= “divide " allocates job for free RPs. "sendToFreeRP" divides job for each Free RP

through division of data and sends out commands to Free RPs. The data is divided

into N parts by "splitNpart." #/

divide(0,List,Comnand,StSt) :- true | "RPscheduler’(Command,3tSt).

divige(N,List,[C|T] ,StSt) :- N=\=0 |
sendToFreeRP(N,List.C,5tSt NewStSL), '"RPscheduler'(T,NewStSt).

sendToFreeRP(N,List,Cmd,St,NewSt) :- true | splitNpart(N,Cmd,CL}),
sendingCommand(List,CL,5t NewSt).

sendingCommand([] .[] St JNewSt) :- true | St=NewSt.
sendingCommand ([N|T].[W|CL],[stream(N . 5t)]Rest] NewSt) :- true |
St=[cmd(W)|St2], NewSt=[stream(N,St2)[NN],
sendingCommand(T,CL,Rest, NN).
sendingCommand([N|T],CL J[stream(M,St)|Rest] NewSt) :- M =\= N |
NewSt=[stream(M,5t) |NewR]. sendingCommand([MN|T],CL,Rest, NewR).

/* predicate RP 'simulates Retrieve Processor ™/
"RP'(N,[Exec|Command]) :- true | checkingCommand(N,Exec,Command]).

*sendToRP' sends the command to Nth RP and, Response 'is instantiated when

execution is terminated. */

checkingCommand(N,term ,Command) :- true | Command=[].

checkingCommand(N, ins(C),Command) :- true | C=free, "RP’(N,Command]}.

checkingCommand(N.cmd(C),Command) :- true | sendToRP(N,C Response),
response(Response,Command Next), "RP'(N,Next).

response(R ,[ins(C)|Cmd],N) :- true | C=busy, response(R,Cmd,N}.
response(end, Command JN) - true | Command=N.

6. Conclusion

In this paper we indicated the possibility of developing a deductive database
system possessing a set of rules and facts using the parallel logic programming
language GHC. Thus, the following advantages are expected from the deductive
database system.

(a) Database (data, rules), system control program, database management
program and user or application program can be handled with the logic
programming in the same manner;

(b) Expansion of its own functions applying meta-programming technigues,
for example database/knowledge base management function, knowledge
acquisition and knowledge integrity constraintcheck.

We are now developing a deductive database system on the personal inference
machine (PSI). This system can be connected by network physically and by
Horn clauses logically with the personal inference machines (PSI) as host
machines and the parallel inference machine which is also written in GHC, The
parallel inference machine controls sending queries to the common database
stored in the deductive database machine, In this system, we will investigate the
relationship between degree of parallelism and granularity of data to be processed.

This means these whole systems will be written in GHC and we expect to
realize thereby an efficient knowledge processing system.

Acknowledgment

The authors express their appreciation for various discussions with Dr.
Furukawa, Dr. Ueda and members of KBMS project at ICOT.

References

[Ueda 85) Ueda,K., "Guarded Horn Clauses”, in Proc. of Logic Programming'85,
Wada,E. (ed.),Lecture Notes in Computer Science 221, Springer-Verlag, pp.168-
179, 1986. Also ICOT Technical Report TR-103, June 1985.

[Miyazaki 86) Miyazaki, N., Yokota, H., and Itoh, H., "Compiling Horn clause
queries in deductive databases: A Horn clause transformation approach", 1COT
Technical Report T'R-183, June 1986.

[Gallaire 84] Gallaire, H., Minker, J., and Nicolas, J.-M., "Logic and Databases: A
deductive approach”, ACM Computer Surveys, Vol. 16. No. 2, June 1984.

[Yokota 86] Yokota,H., Sakai K., and Itoh,H., "Deductive Database Systern Based
on Unit Resolution", Proe. of Data Engineering , pp. 228-235, Feb. 1986. Also
ICOT Technical Report TR-123, 1986.

[Deyi 84] Deyi,L., "A PROLOG Database System",Research Studies Press Lid,,
1984,

Mtoh 871 Itoh, H., Abe, M., Sakama, C., and Mitomo, Y., "Parallel control
techniques for dedicated relational database engines", Proc. of Data Engineering,
Feb. 1987. Also ICOT Technical Report, TR-182, June 1986.

Appendix

This appendix gives a horn clause transformation program written in GHC.
Annotations are preceded by the '%’ symbol , or sandwiched in between V¥ and /.

I* T IR R TR RS S E E E AR L 2 .',l"l

/* Horn Clause Transformation */
f™ wmaphkhhmhk bk bk bRk S

"HCT'(Goal, IDB, TransRule) :- true |
'BFPE’ (Goal, IDB, TempRule,[]. Recursive),
checkingAlreadyObtained(Recursive, Goal, Cont),
nextHCT(Cont. Goal, IDB, TempRule, Recursive, TransRule).

/* check if the result is already obtained ¥/
checkingAlreadyObtained([] ._ .Result) :- true | Result=true.
checkingAlreadyObtained([A],Term,Result) :~ true |

10

unifiable(A,Term,Result).
checkingAlreadyObtained([A|B]._,Result) :- B \=[] | Result= false.

/* Reconstruct form "head :- edb-body " when the goal is only recursive predicate in
the query. ™/
nextHCT(true, Goal,IDB,TempRule RecursivePrd,TransRule) :- true |
reconstructRule(TempRule,TransRule-[]}.
/* reprocess when the query is complex ™/
nextHCT(false,Goal,IDB,TempRule,RecursivePrd,TransRule) : = true |
setUnion([Goal],RecursivePrd,List),
reProcess(List, IDB, RecursivePrd, TransRule-[]).

reconstructRule([{(Head:-Body);EdbBody; ;_}|Rest],TP1-TPn) :- true |
TP1=[(Head:- EdbBody)|TP2].
reconstructRule(Rest, TPZ2-TPn).

reconstructRule([] ,TP1-TP2) :- true |
TP1=TP2.
reProcess([] , TP1-TP2) :- true | TP1=TP2.

reProcess([T|Rest], IDB, Recursive, TP1-1Pn) :- true |
"BFPE"(T.IDB, TempRule, Recursive, IRecursive}),
reconstructRule(TempRule,TP1-TP2),
reProcess{Rest, IDB, IRecursive,TP2-TPn}.

JE EREEAERRRRRRA A AR AR R AR R

/* Breadth First Partial Expansion */

JE EERREAREER R AR R AR R AR R RN A

"BFPE'(Goal, IDB, Temp, InRec, OutRec) :- true |
expansion0fRoot(IDB,Goal,InRec, Templ),
outerLoopProcess(Templ, IDB, InRec, Temp,OutRec).

SE REEEREREREREREREE &

/* expansion of root */

f" EE S R EEE RS E LR L L L] *Jll"

expansion0fRoot([] ,Goal,Recursive,TRule) :- true |
TRule=[].
expansionOfRoot([(H :-Body)|Rest],Goal Recursive,TRule) :- true |
unifiable(H,Goal, Res),
expansionOfRootl(Res,[(H :-Body)|Rest], Goal, Recursive,TRule]).

expans ionOfRootl{true |
[(H :-Body)|Rest],Goal, Recursive,TRule} :- true |
TRule=[{(H:- Body) ; []: [Goal]: Recursive}|Temp].
expansionOfRoot{Rest, Goal,Recursive,Temp).

11

expansionOfRooti(false,[_ |Rest],Goal,Recursive,Temp) :- true |
expansionOfRoot(Rest,Goal,Recursive,Temp}.

f* NN RN Ff

/* Duter Loop */

S * EE L L R &f

outerLoopProcess(Temp, IDB,Recursive,OutTemp,OutRec) :- true
innerLoopProcess(Temp,Recursive, TempList, NewRec),
expandodes(TempList, IDB, NewTemp-[]).
extractEmptyBodyRule(TempList, Q1l-NewTemp),
I* repeat to process "outerLoopProcess” until the bodies of all rules are empty. */
checkingA11EmptyRule(Q1,Result),
checkingOuterFinal(Result,Q1,108,NewRec, OutTemp,OutRec).

checkingOuterFinal({true ,T ,IDB,REC 0T ,OR) - true |
REC=0R, T=0T.
checkingOuterFinal(false,Q1,1DB,Newrec,OutTemp,OutRec) - true |
outerProcess(Q1,IDB,Newrec,OutTemp,OutRec).

FASA S SNy b
/* Inner Loop */
T I Tote Ao

/# repeat to process "innerLoopProcess "until no change occur in Temp. */

innerLoopProcess(Temp,Recursive NewTemp,OutR) :- true
changeBndyﬂ]1Tempﬂu1a[Temp.Hecurs1ve,IntHulE.HR,Dl-L]].
checkingNoChangeBody(Q1,Result},
ﬂheckinglnnerLuoninal{Hesu1t.IntHu1e.HH.UutH,Nngemp}.

checkingNoChangeBody([] , Result) :- true | Result=true,

checkingNoChangeBody([false|Rest], Result) :- true |
checkingNoChangeBody(Rest, Result).

checkingNoChangeBody([True [Rest], Result) :- True \= false |
Result=false.

checkingInnerLoopFinal(true .IntRule,Rec,NR,NewTemp) :- true |
IntRule=NewTemp, Rec=NR.

checkinglnneanﬂpFina1[fa1se.IntRu]e.Hec,HR,NEwTemp} 1~ true |
innerLuinrocess{IntHu]e.Hec.HewTemp.NH],

*

/* Expansion of node other than root
changeﬂndyﬂi1Tempﬂule{[T|Temp1.HecurList,TT,NH.Q1—Qn}1-
T={(TH:-[Lmpb|_]):_:Prede: } |
01=[Result|Q2]. TT=[NewT|NewTemp],
checkingEDBBody(Lmpb, Prede, Recurlist, Result),
execEdbBody(Result,T,NewT AddRecur),

12

append(AddRecur,Recurlist,Recl),
changeEudyA11TempHule{Temp.RecL.NewTamp.HH,QE—Qn}.
changEBndyﬁl1Tempﬂule{[T|Tempj,RacurList.TT.NR+31—Qn}:—
T={(TH:-[]):_:Prede;_} | TT=[T|NewT],
changeﬂndyﬁ1]Tempﬂule(Temp,ﬂecurL1st.HewI.HR*UI-Qn}.
changeBodyA11TempRule([] , R LT NR,Q1-Qn)} :- true |
T=[], Q1=Qn, R=NR.

If the leftmost predicate of the body cannot be expanded, then remove it from the
body, and add to edb-body. ¥/
execEdbBody(true, {(Head:—[meh]Budy]];Edb;Prede:essﬂr:ﬂecursive},
NewT,A) :- true |
A=[], append(Edb,[Lmpb] ,NewEdb}),
NewT={(Head :- Body): NewEdb; Predecessor: Recursive}.
i#* If the leftmost predicate is found to be recursive, then add tf to the list of recursive
predicates. */
execEdbBody(rec .{{Head:—[meh|mudy]);Edh;Predecessur:ﬂecursive}.
NewT,A) :- true |
A=[Lmpb}, append{Edb A Newtdb),
NewRecursive=[Lmpb|Recursive].
NewT={(Head :- Bady);ﬂewEdh:Preﬁecessor:ﬂewﬂecursive}.
execEdbBody(false,T,NewT ,A) :- true | T=NewT, A=[1].

/* the leftmost predicate ts comparison or extenston, or the leftmost predicate can
unify an element of the list of recursive predicates. */
chackingEDBBady{meb,Prede,RecursﬁveList,Eesu?t} ;= true |
isComparison(Lmpb,TF1,H},
isExtension{Lmpb,TF2 H},
isRecursivePredicate(Lmpb,Recursivelist, TF3,H},
isPredecessor{Lmpb,Prede,TF4 H},
eﬁhBﬂdyCheckar‘(TFl,TFE,TFS.TF4,H,'Hesu'It}.

edbBodyChecker(true ,_ ,_ . .H,R) :- true | R=true, H=halt.
sdbBodyChecker(.true ,_ ,_ ,H.,R) :- true | R=true, H=halt.
edhBodyChecker(_ ,_ .true ,_ ,H,R) :- true | R=true, H=halt.
edbBodyChecker{_,_ ,_ ,true ,H,R) :- true | R=rec, H=halt.

edbEndyChacker{faTse.fa]se,false,fa1se.H.R] .- true | R=false.

EXAN SN SN NS
/* Expand nodes */
ISR RS R AT e

expandiodes([T|TempRules],1DB,Q1-Qn) :- true |
oneExpandNodes(IDB,T,01-Q2},
expandNodes(TempRules,IDB,02-Qn).

expandNodes([] ,IDB,Q2-Qn) :- true | Q2=Qn.

13

oneExpandNodes([| LT1.,01-02) :- true | Q1=Q2.
oneExpandNodes([R|Rest],7,Q01-Qn) :- true |
R=(RH :-), T={(_ :- Body):_;_:_},
extractlmpb(Body,Lmpb),
unifiable({Lmph,RH, Result),copyStructure(R,RR},
oneExpandiodel(Result, T ,RR Q1-0Q2},
oneExpandNodes(Rest,T,02-0n).

extractlmpb([A]_],L) :- true | A=L.
extractlmpb([]1 L) :- true | L="$faiifailg".

oneExpandNodeli(false,T,R,01-02) :- true | Q1=Q2.
oneExpandNodel(true ,{(Head ;- [Lmpb|Body]); Edb; Prede; Recur},
(HR :- BR),Q1-Q2) :- true |
Qi=[N|Q2], Lmpb=HR,
append{BR,Body ,NB),
append(Prede,[Lmpb],NewP),
N = {(Head :- NB): Edb; NewP;Recur}.

1* ‘extractEmptyBodyRule'extracts rules of empty bodies. */
extractEmptyBodyRule([] .Q1-Qn) :- true | Q1=Qn.
extractEmptyBodyRule([T|R].Q1-Qn) == T={(H :- []):i_:_:_} |
Q1=[T|Q2], extractEmptyBodyRule(R.Q2-Qn}).
extractEmptyBodyRule([T|R],Q1-Qn) := T={(H :- B);_:_:_}, B\=[] |
extractEmptyBodyRule(R,Q1-0Qn).

checkingAT1EmptyRule([] ,Result) :- true | Result=true.

checkingA11EmptyRule([{{H:-[]) :_:_:_}|Rest],Result) :- true |
checkingAl1EmptyRule(Rest,Result).

checkingAl1EmptyRule([{(H:-Body):_:_:_}|Rest],Result) :- Body\=[] |
Result=false.

14

