ICOT Technica! Report: TR-186

TH-1586

A Framework for Debugging GHC
by

1. Lioyd :Melt-u-aurne Liniv.)
and A, Takeuchi (1COT)

June. 1986

T1986, 1007

Mita Rokusal Bdg 21F {3 456-2181~5

|[:D I =28 Alita 1-Chome Telex 1COT J 32964

Muato-ku Tokvo 105 Japan

Institute for New Generation Computer Teéﬁnnlogy

A FRAMEWORK FOR DEBUGGING GHC

J. Lfﬁrd+ and A Takcuchit
{alphabeticsl order)

t Department of Computer Science
University of Melbiourne

Parkville, Victoria 3052, Austraiia

} ICOT Research Center
Institute for New Generation Computer Technolopy
L-4 28 Mita, Minate-ku, Tokyo 108 Japac

Last Revismion: June G, 1086

1. Introduction

Debugging has been important subject of computer scicuce, but hias been put in the sub-
ject of the heuristic expertise. Initiated by the pioneening work of Shapire [Shapiro83]. scv-
eral researchers investigated declarative debugging of legic programs [Ferrand835. Pereira86,
Lloyds€]. It seems that these works have suceeeded in hiting debupging o the scientific
subject with o theoretical foundation.

Generally speaking, a logic program Las twe different aspects, loge and roatrol Logu

aspect of a program directly relates to its declarative gemantics of the program and sonseol
aspect to 1ts procedural semantics, Derlarative debugming enabies to delect s Lhpg uatug oniy
declarative meaning of a program aud ne procedural mcaning.

GHC 1= a purallel programming language derived from zeweral medel of fogie prosrams.
It has primitives for controliipg paraliel computation. Programminge in SHC beavily rolies
on these primitives. Errors of GHC programs such as deadlock also depends on these control
primitives. An algonthmic debugser for a GHO progrwm was mplemented by ETak:fuci]itiE_i.
He defined an mtended jnterpretstion of SHC programs and impieinented the debmoeer
using “divide and query” strategy in GHO. We examine s framework for debuggg GBEO
usged i the above system in more detail. The framework s prosedural, but thie s probahis
unavoidable because of given nature of GIIC.

We give analogous definitions to deciarative debugmug of Proiog such as “mearrecs
clanze instance” axeept hers the meanine 1+ procedural — aii atoms @ ha;‘l}r are “ryeented

correctiy”, bat head atom 12 “not exceuted carrectly”

Readers are assumed to be familiar to declarative debugging and GHO.

2. Termination with incorreclt answer and deadlock

GHC 1= a parallel logic programming language [Ueda85]. A GHC program is a finite
set of guarded clauses. A puarded <lause has a form:

H:=Gy,GolBy, ., Ben.

where H, &}, ... G, and By, ... By, called a head, a guurd part and a body part of the clause,
repectively.

The clanse can be read declaratively as follows:

For all term values of the variable in the clause,
H is irue if both ;... & and By, .. B, are troe.

Deciarative reading regards ruarded clauses as pure Horo clauses by ignoring opera-
tional things suck as guards. In declarative debuggmg of Horn elanse programs, the minimum
models of the programs play a central rale. However, the minimum model of a GHC program
ohtained by declarative reading of guarded clauses s insufficient for debugging errors heavily
depending on control primitives such as suards. Examples are dealock and fallure. In dead-
lock, pieces of a computation suspend, while correctness of suspending computations cannot
be determined by the minimum model. In GHC, » computation fails because of incorrect
choices of clauses even if there can be a successful computation. For heudling these errors,
it is necessary to extend the meaning of guarded clause programs.

Definition 2.1 Given a progam §, Mrue and Maus are defived to he the following two

aets.
Msue = {A : there exists a derivation from — A which succeeds
without further instantiation of A}
Msus = {A - there exists a derivation from — A whick SUSPLLds

without further instantiation of A}

We cail Msue and Maus together, the “intended interpretation” of the program 5. Let
us consider the following program,

[Example 1.1)

ple,¥Y} :- true | ¥Y=b.
p{X.b} - true | X=a
plc.¥) '~ true ' zrue.
plc,Y) .- true | g(¥)

gld) - true i Lrue.

Mywe and Maus of the above program are:

Meuc = {pla.bl, ple.¥2, p{c,d}. qid}}
Maus = {p(X.¥), p(b ¥}, »(X.a). plc. ¥l piX.c}, pld. ¥} p(X.d). g(X)}

2

Note that ple,Y) is included :m bothk Msue and Maus In eeneral, Meaue and Mius
cap bLove pon-empty intersection. This is becanze of the nondeterministic chuice mecha-
nism of GHC. Maus may inciude an unsatisfiable atom, which suspends due to msufficient
instantiation. Elements of Mrus such as pb, ¥} and p{X. &) are such cxamples.

Although there are several kinde of erroncous resuits that a bug may eause, in this
section we concentrate on the two major cmes whick programmers often enrounter, Qoe 1=
termination with incorrect answer and the other 15 deadlock. Handiing of failure e studies

in the next section.

Definition 2.2 Result of compuotation i= called termination witl incorree! answer if the
computation bas terminated with incorrect answer. Result of computation 15 cafled huggy
deardlock 1f the computation deadlocks whern it should wot deadioek.

If — A4 succeeds with 1ncorrect answer, then declarative method can be used. The
probiem ie handling bugey deadiock

When computation falls into an erromecus result there i at ieast ane burg i the
history of the computation. History of computation = modellad by & computation irec io

our framework.

Definition 2.3 A computation tree of a goal + A is a preof tree of the goal

A Computation tree 1@ a Anal ANDetres, to which ali the substitotion:s made dur-
ing the computation bhave beco applied. The advantaze of using 5 final AND trec is that
computations in disjoint substrecs can be rerarded as wdependent computations

A node Im a compuration tree cotresponds to a procedure call, and s immediate
descendants to goals i the nelt band side of the ciause wvoked at the node Let H be a
node in the computation tree, and 1, G« and 8L Om he immediate descondanta of
H | where (51's are guard goals and By’ are hody goals. Ther B —51,. . Gn Bl Bm e
an instance of the cjavse used at that woae

Correctness of each node in computation tres s defined with resuect 12 the iptended
wmterpretation, Aswe and Meus

Definition 2.4 We say a node — A m fae computation irce bas bess execuied correctly

if {al+ A succeeds in the tree, but A & Mruc, or
(B} v A suspends 1o the tree, bt A § Mous.

F] £l 3 - L ® r -—
We assume throughout that guardd goals are cxecuten correctiv. Thus s cese for Fuat
GHC where only system predicates are aflowed to cali in s guard purt

Now we define two types of bugs of GHC programs

i

Definition 2.5 We say a clauss mstance.
H:-Gi, &L, Om.

invoked at some node in the computation free is incorrect if H has been incorrectly executed,
but earh goal B; has been rorrectly executed, for 7= 1,....m.

N.B. Ap incorrect clause instance can be declaratively correct (Example shall be given

later}

Definition 2.6 W say a goal — A iovoked at some node in the computation tree 1s buggy
suspension if «— A immediately suspends, but 4 € Mrua.

Because of our aesumaption that puard eeals are always executed correctly, buggy sus-
pension means that the procedure inveked by the goal = busgy.

We assume that a programmer kunows what literals are included in Msuc and what
Jiterals in Msus, as deciarative debnggers of pure Prolog. Therefore, when it is necessary teo
know whether a node — A in the computation tree has been executed correctly or not, a
query is issued to the programmer. The query is called an oracie query and has two forms
depending ou the ~ontext of the node iv the computation tree

“succeeded{ A" tf «— A succeeds In the computation tree,
Meaning 4 € Maue?
“suspended{ A7 i — A suspends in the computation brec.

Meaning. A € Maua?

From the assumption that svery puard 18 execured ~orrectly, the debugyer only aueries
oracie for nodes not inciuded W any guard computation.

MNow we give the descripton of the debugring algonitbie for two types of errors, toermi-
sation with incorrest apswer and wnggy deadiock

Algorithm 2.1

Input: a computation tree whase root node has been incorrectly excouted
Output: an incorrest clause wstapce or buggy suspension.

Let T be the given compuiation tree

1} Cruery the oracle for 3 root node of T whether the uode bas been exccuted correctly or
pot. (I T is the entirs ~omputstion tree, then this step can be skipped.]

25} If the root hos beon cxcsuted incerrectly and has no descendant, then it s re-
turncd as bugey suspension

2h} Otherwise query the aracle for cach usde of mumediate descendants of the root
pode whether it has been executed correctly or not.

£

3aj If there iz nc node *hat has been sxecuted incorrectiy then the clause
mstance used here i@ returied as as incorrect clause instance.

3b} There 12 at least one node which has been sxecuted incorrectiy. Select ons
such pode arbitrarily and go o 1) with the subtree rooted at the node az
T.

The aiperithm searches for a bug fromw the root of the computation tree using top-down
strategy. It i1z possible to adapt the aigorithm to the “divide and query” strategy.

For this algorithm. the following theorem holds.

Theorem 2.1 Let P be 3 GHC program and (7 he a goal. Let T be the computation iree
farmed by the execution of the goal O, Suppose the execution of & sueceeds or deadiocks
aud G’ is the finai form of G op T. If G' has not been executed correctly, theo the above

algorithm will terminate and returp either ap jucorrect clause Ipstance or 3 bugry suspension

Iu order to prove the theorem, we need the following lemma siating the basic property
of a computation tree.

Lemma 2.1 Let &' be the roor uode of the computation tree T. K &' has nol heen
executed correctly, then there sxists a hug i T feither an incorrect clsuse fustance or bugpy
suspension .

Proof: The proof 15 by {nductioc on the berght of T,

Suppose first that T consists of the single node . If 5 surreeds then, since 7 € Mrus, we
have that the vt clause invoked at & 12 mweorrect. If 7 suspends, *hen. sines & & Maus, we

have that 7 15 a bu SUEICTIS |00
B »

Suppose now tiat T hias height ke + ¢t I ali the aumediaie descendanrs of the roat node 2a
been executed correctly, then the clanse invoked at the root 1= mcorrect. Otnorwise, ope of
the immediate descendants has been exccuted incorrectly and we zan apply the induetion
Lypothesis to the subitree reoted at tws immediate descendant which has bewht < k8

Proof of Theorem 2.1: Sunbar wduction arpument te the proof of the emma 2.1, g

According to the toeorem, the aleontbm caw fiud » bug as fong as *ke fina. form of
the given goal has been executed weorrestly, that 12 the bug is mamidest at the seer of the
computation tree. [u acrual programs, it seems that the bug i mansfest if <ie result of foe
computation differs from the intended one However, there are sirange caszes o winel the
final form of the query is not the intended one. bt hins bieew cxesatod sorrectiy. 3uch strance

examples are discnsacd 1 seclicn 4

3. Handling buggy failura

First we define the bugoy faluse

Definition 3.1 The result of the computation is called buggy failure if the romputation
fails where it shouid not fail.

The framework of debmgging buggy failure 1s same as before, bhut we need a few addi-
tional definitions and a few extensions

Definition 3.2 Given a progam §, Mf is defined to be the following set

Mf = {A - there exists a derivation from — A which fails
without further ipstantiation of A3

Now we call Msus, Msus and M/ together, the “intended interpretation” of a program.

In generai, computation may be known to fail dunng the compuation, but it s pee-
essary to complete the computation even m such cases for debugging buggy failure. The
compritation tree of failing computation must be a completed proof tree.

An immediately failing vede and a failing node in the fawling computation tree are
defined as follows

Definition 3.3 A node iv the computation free is called ap immediately faiiing node

if (a) it is iucompatibie umaecation, or
ibj it does not succeed nor suspend, but Lus we descendant nade.

The casc (b} corresponds to the case where all the guard pacts of the clanses fal,

Definition 8.4 A node in the computstion tree s called a failing node

if {a) it is ap immediately faling pods, or
(b} it has immediately failing node in the subtres rooted at the node.

We say that a node in the computation tree has faiied if and only f the node is a faibng

node. In the sume way, we say that a pode bas immediately failed if and only if the node is
an immediately failing node. The definition of “executed incorrectiy” is extended as foliows

Definition 3.5 [Extension of Definitiou 2 4
We say a pode — A is the compmutation tres has been executed incorrectly

if fa)~ A suspends iu the trez, but A @ Maus, or
(b} — A surceeds in the tree, but 4 € Maue. or
fe} A fails in the tree, but A & MT

A uew type of a bug is defined which -auses computation to faill where it shouid not
Fail.

Definition 2.8 We say a zeal — A inwoked al some vode in the computation free 15 an
uncovered goal if — A immediately fais, bui A 2 ALY

Oracle guerics are extended as foliows

(i}

“succeeded| AT if == A sucreeeds io the computation iroc

Meaming., A4 € Meue?

“suapended{ A} if ~— A suspends in the computation tree.
Meaning: 4 € Meus?
“ fatied{ AVTT il — A fails s the computativn trec.

Meaning: A € M

The description of the aigorithm is almost the same 25 the previous one,

Algoriihim 3.1
Ioput. a computation trec whose root pode has been weorrectly execited
Ountput: an incorrect clause instance, buggy suspeusion oF ag dncovered goal.

Let T be the piven computation tree.

1) Query the oracle for a reot node of T whether the node has been sxecured correctly o
not. {If T is the entire computation wree, ther this step cau be skipped.)

2a) If the root has been exesuted imcurrectly an<d bas po aescocudant, then it i3 re-
turned as a buggy suspension or as an uncovered roal, depending on whether i
suspends or fails,
2b} Otherwise query the aracle for eack pode of mmediste desccpdants of the root
node whether 4 Lae been exscuted correctly or not
3aj If there 12 no node that has besn exernied meorrectly, then the siaise
instanee used hers i returnesd as Ak incoresct cinise instance.
3b} There i ot least one node whien has been execoted ‘mrorrectly Select ome
auch node arbitrarily and 7o te 11 with the suntree rooted at the node as

T
We have the following theorem.

Theorem 3.1 Let F be a GHCO program and G be s goal, Let T be the computation tree
formed by the execution of the gos! G Suppose the raccution = 0 succreds deadiocks or
fails and ' is the final form of G on T I 3° fas not been exe-nted sorrectiv. then the above
algorithm will terminate and returs sither an neorrect clanse tustancs, buggy suspansion o

an uncavered roal

Proof: Froof is almoest the same as that of theorom 0.7, B

Apain what the theorem ensures s that the alpeetim can Sud a b ac lene as the

Anal form of the given goal has been exeruted incorvectly that 15, b bug » manifest at she
root of the computaiion tree. The problem 12 whether 3 bug e atways manifest ai the oot of
the compmtation free or not In the pext, we cxamine strange eases in whick the nnal form

ol the guery 12 not the expeered one, but is ivcluded o the wtended interpretation.

4. Discussion

It 1= assumed so far that the bur will manifest at the root of the final computation
tree when the computation of the given goal fails into the result different from the jntended
one. However, it is not always true We show several strange examples which violate the

assumption.

First we consider the case ip which the goal is expected to suceeed, but instead succeeds
with correct but unexpected answer, suspends or fails. Let «+ A be a goal and «~ A’ be an
instance of — 4 in the final computation tres,

Case 1: + A succeeds with correct but unexperted wnswer.

In this case, A° € Mruz, but the computation where <= A goes «—— A4’ is i ne way
included ip the intended interpretation. Then, cleariy, a bug does not manifest
in the oot of the final romputation sree The foliowing exampie llustraves such

case.

[Example 3 1}

p(X.¥) :- true | X=1, ¥=1. {1}
(2, :~ trua | ¥=IZ. 2)
P

Intension of the program ie that p(1. 1} and p{2.2) € Maruc. The goals «— p{X.¥) and
— p(%.,Y) are also expected to succeed with pi1.1} and p{2,2} ae unique answer, respectively.

Suppose that the clause {1} has heen mcarrectly written as follows.

p{X.¥} - trua ! X=7 Y=2. (1%}

Then the goal « p(X,¥Y sucreeds with p{2.2) while it i expecred to succeed with pf 1.4}
as its umiane auswer, The fnal form of the goal p(2 2} 18 inciuded o Maue. Consequently

the bug does not mac:fest at the root of the computartion tree
Casa 2: — 4 zuspruds

Ciracle states that — A should not suspend. In such rase, it seems umatural to
assmme that ar instance of — A ie, «— A' should not suspend Under this
assumption. 4' & Msue. Then the tug does manifest at root of computation tres,
However, for a sufEriently weird program like the program bolow | the assumption
may not hald.

[Example 5.2]

p(X} :- 4rue ! true
plal - true | G,

cm—
|- EE

where G is assumed to alwavs suspend. Intension i that p(X) € Meue, p(X) & Maus, pled £
Moeue and Aaus.

o

Suppose that the clause (1) has been incorrectly wnitten as foliows.

plX) :- true | X=a, p{X). (11

Then the goal — p(X) suspends while it s expected to succend. The final form of the
coal 15 p(a), which is, however, included in Msue. Consequently the bug does not manifest
at the root of the computation tree.

Case & — A fails.

[Example 3.3]

gesort(Xs,¥s) ;- true | gsort{Xe.¥s, [1). {1}
geort{[XiXs]l.Ye0,Ys2) :- true |

partiXa.X 5.L), geort(5.Ya0,[X|Yel]l). geert{L,¥ei.¥s2}. {2}
geort([].¥Ys,0} :- true | O=Ys. (3
part([XiXs] A, 8,L) :- A<X | L=[XILt], part{Xs, A, 8 L1}. (4)
part([X|Xsl,A,5,L) :- A>=X | S=[Xi51], partiXs,.A,51,L). (5)
part{[],_.8.L) :- true | S=[], L=i]. (6)

The program above is GHC version of the well-known quicksort program. Suppose
that the elause (1) has been incorrectly written as follows

gsert(Xe,Ya) :- true | Ye=[], geort{Xe,¥s, []). {1
Ther the goal — gaert{(3,2,1],Y) fails while 1t is expected to succeed. The finai

form of the goal is geort£{3,2,1].{]), which is, however, included in M. CTonsequentiy
the bug does not manifest at the root of the computation tree,

Note that the clause (1} is declaratively correct. Tlie clause describes the specific case,
ie., Xa = [J. Procedurzlly incorrect usage of declaratively correct zlauszes often invokes

ETTODNE0US TE‘S\J.].t-

It may be able to conciude that the debugging algorithm for buggy faillure probably i
not very useful in practice because we would often expect s bug not to be manifest on the
fiual computation tree.

Next we consider the case in whichi the goal is expected to suspend, but mmstead succeeds

with correct answer,
The following example illustrates the sase,

[Example 3.4]
Apain we use geort program described above.

Here the clavse (1} is incorrectly written as follows,

geert(Xe,Ye) := true | Xs=[2.1], geert(Xs,.Ys.{]J.

——
-

g

Then the goal «— geort{X,¥) succeeds with gqsert{[2.1},11.2]) winle it 12 expected
to sugpend. The finai form of the zoal geort{{2. 1] 11,217 1z, however, included 1m Mauc.

Consequently the bug does not manifest at the root of the computation tree.

These examples are enongh to show the cases where the bug does not manifest at the
root of the computation tree when the computation has falled into the result different from
the expected one, though we have not consider all the cases.

4. Open Problems

We have presented the framework of debugging GHC programs and shown the de-
bugging algorithm. It bas been proved that the algonthm can find a bug as long as a bug
manifests at the root of the zomputation tree. We have noticed the gap between all the bugey
computations and the cases the algonthm can handle using several examples. Reducing tlus
map is the theme of further research. The algorithm for buggy fallure should be imporved
since it seems that a bug does not often manifest when the computation falis where 1t should
not fal.

If the current algoritbm is applied to a computation wciuding a bug in the guard,
then the algorithm ouly detects a bug on the surface of guard computation, i.e., ic the level
of & clause that has invoked the buggy gward computation. Handling of 8 bug in guard
compnutation io oer level 15 ancther theme of furbter researcl

iz order to solve ihese problems, it appears mecessary to look more closely at Ijo
behaviors during execution of a goal.

Acknowledgement

We would fike to thank Kazubire Fuchi, Koichi Furukawa and all the other members
of ICOT, both for heip with this research and for providing a stimulating place im which o
work.

References

iFerrand85| Ferrand, G, Error Diagnosis in Logic Programming: An Adaptation of E/Y/
Skapire’s Methed, Rapport de Recherche 375, INRIA, 1985,

iLlovdg&el Lioyd, 3., Declarative Error Diagnesis, Technical Report 86/3, Dept. of Computer
Scicnce, Univ. of Melbourne, 1986

[Pereiradt| Pereira, . M., “Rationai Debueging in Logic Programming,” In Proc / Third
int. Conf on Logic Programming, Springer-Verlag, 1986,

[$hapiro$3] Shapiro, E., Algorithmic Prograw Debugging, MIT Press, 1983.

10

[Takeuchis6] Takeucki, A., Algorithmic Debugging of GHC programs and Its Implementanion
in (HC 1COT Technical Report TR-185, Institute for New Geperation Oomputer
Technology, 1986.

Uedass] Ueda, K., Guarded Horn Clauses, JCOT Techuical Report TRE.102. Institute for
New Generation Computer Technology, 1956. Also in Logic Programming 83, E. Wada
{ed.}. Lecture Notes in Camputer Scienee 221, Spripger-Verlap, 1986,

