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1. Iniroduction

As parallel computers become to be widely used, the debugging of programs running
in parallel will become important technology for software development. Even in sequential
computers, debugging of programs which are written in parallel lanzuages or lauguages with
extended control such as coroutine is large obstacle for software development. In fact, it
has been said that debugging of these programs is very hard task, compared with debugring
of sequential programs. The reasons why it is difficult are that 1) coneceptually several
computations are executed in parallel, 2) these computations may interact with each other
and 3) there are new types of hurs such as deadiack.

In conventional debugging methed. a pragrammer tries to find a bug by observing
execution trace. If incorrect behavior is found at some place, then the bug is detected in its
" peighborhood. For this style of debugging, it is assumed that a programmer has complete
knowledge of program behavior, and it is required that the executinn trace is displaved in
structural way in order for the programmer to recognize easily flow of computation and to
compare trace with Lis knowledge. The Haw of this sryle of debugring i its omplexity, whickh
Increases as a program becomes complieated. As the compiexity of the program increases,
both the amount of the execution trace and the amount of knowledge a programmer must
bave increases, so that the programmer gets into dauger of misjudeing. Concernine with
parallel programs, in the ressons mentioned in the first paracraph, the complexity of a
program is surmised to increase. Therefore we suspect that debugsing paralle]l programs

using execution trace will face to seriows problems,

In general. we snould distinguish between debugmng and understanding of a program
behavior. It is essential to clearly display what are happening in computer in order for a
programmer to understand data and eontrol Sows of a program. Monitoring of a program
behavior will help finding a bug, but it forces a programmer to understand a program behave
tor. It is better if 2 programmer could debug = program only with more abstract knowladas

such as input and cutput specification of component modules.

Generally speaking, a logic program has two different sspects. logic and zontrol. Lagic

aspect of a program directly relates to its declarative semautics of the prosram and conteol
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aspect to its procedural semantics. Owing to these double aspects, a program can be read
declaratively and procedurally. This is also true for debugming, that is, debugging can be
done declaratively and /or precedurally. Conventionai debugging corresponds to debugging
using precedural meaning of a program. Debugging using declarative meaning 15 known ay
algorithmic debugging first investigated by Shapiro [Shapire83al. In algorithmic debugging,
a bug is detected by observing the result of computation such as mput /output history, rather
static information than dynamic behavior of the program. There are severai algoritluns for
locating the bug. Each algorithm guarantees that the debuprer can find a bug within finite
question-answering. Each question issued by the debugger is isolated. that is, it concerns
with the correctness of the result of a procedure. Therefore answering each question is easy
Do matter how a program is complicated, although the pumber of questions depends on the
complexity of the program. Therefore the algorithmic debugging 15 a steady and efficient
way of debugging, and is a promising method of debugzing paralle]l programs.

The ploneening work of algorithmic debugging is due to Shapiro [Shapiro83al. Sev-
eral researchers investigated algorithmic debugging of logic programs further [Ferrandss,
Pereira86, Lloyd86]. Algorithmic debugging of functional languages are investigated in [Taka-
hashi85].

In this paper, we present an algorithmic debugger for a parailel logic programming
language, GHC [Uedad5]. Tke debuggers with different debugging strategies, “single step-
ping” and “divide and query”, are shown with their impiementation in GHC. The formal
framework of our debugger is investigated in the subsequent paper [Lloydd: Takeuchigs).

Readers are assumed to be familiar to parallel logic programming and algorithmie
debugging.

2. GHC

A GHC program = a finite set of guarded clauses. A gnarded clause has form:
H: =Gy, . Gh By, ., By,

where H, Gy,...,Gy and By, ..., By are called the head, the guard part and the body part
of the clause, respectively,

For the simplicity. the algorithm developed in this paper only deals with body parts
of GHC clanzes. Therefore we will restrict GHC programs to be Flat CHC programs. which
are ouly allowed to have system predicates in guard parts,

3. Framework for algorithmic debugging of GHC programs

We summarize the framework of algonthmic debugging of GHC programs following
[Lloyd& Takenchise).
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In order to debug a buggy program, the abstract meaning of a program, which is called
the intended interpretation of the program, is required. Shapiro’s system uses the minimum
model obtained from the program as its intended interpretation. In our syetem, the intended

imterpretation of a program has the following definition.

Definition 1  Given a program §, Msue and Msus are defined to be the following two sets.

Msue = A : there exists a derivation frem «— A which succesds
without further instantiation of 4}

Maus

{A : there exists a derivation from — A which suspends

without further instantiation of A}
We call Msue and Maus together, the “intended interpretation” of the program 5.
The debugging algorithms are applied to a computation tree of a given goal — A.
The computation tree is a proof tree of the goal and is also a fnal AND-tree, to which ail
the substitutions made during the computation Lave been applied. The advantage of using
a final AND-tree is that computations in disjoint subtrees can be regarded as independent
computations,

Definition 2  We say a node — A in the computation tree has been executed incorrectly

if  {a) =~ A succeeds in the tree, but A € Myuc. or
(b) +— A suspends in the tree, hut A & Msus.

Two major errors of GHC programs considered in this paper are defined as {ollows.

Definition 3  Result of computation is called termination with incorrect answer if the
computation has terminated with incorrect answer. Result of computation is called buggy
deadlock if the computation deadlocks where it should not deadlock.

Two major bugs corresponding to the two major errors are jneorrect clause instance
and bugzy suspension.

Definition 4 We say a ciause instance,
H:-G ....Ga'B, B

invoked at some node in the computation tree is incorrect if H has heen incorrectly executed,
but each goal B; has been correctly executed, for 7 = 1,...,m. We say a goal — A invoked

at some node in the computation tree is buggy suspension if — A immediately suspends, but

A& Maua,

Buggy suspension indicates that there is a missing clause in the definition cailed by the
goal. The correlation between errors and hura are shown in the table 1.

We assume that a programmer knows what literals are included in Msue and what
literals in Mosus, as declarative debugpers of pure Proles. Therefore, when it is necessary
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Table 1 Relation between errors and bugs

{  Errors\Bugs | Incorrect Clause Buggy Suspension |
i Imeorrect Answer o i w |
i Buggy Deadlock | o i o |

o indicates that an error is invoked by a bug.

® indicates that an error i3 not invoked by a bur.

to know whether a node ~— A in a computation tree has been exeented correctly or not, a
query 1s issued to the programmer. The query is called an oracle query and has two forms
depending on the context of the node In the computation tree,

“succeeded( A)T” if — A succeeds in the computation tree.
Mean:ing: A & Mawe?
“suspended(A)T” if — A suspends in the computation tree.

Meanineg: 4 £ Marus?

4. Implementation

There are several strategies for locating a bug. Shapiro proposed two strategies, “sin-
gle stepping” and “divide and query” [Shapiro83a). Pereira proposed dependency directed
strategy [Pereira8€]. In [Lloyd86, Lloydd& Takeuchi86], the top-down stratesy was adopted.
In this paper, we present GHC implementation of the debuggers based on “single stepping”
and “divide and query” strategies. In sectionm 4.1, the debugzer for termination with incor-
rect answer adopting the “single stepping” strategy is presented. Section 4.2 presents the
debugger for the same error based on the “divide and query” strategy. In section 4.3, the
debugger handling both termination with incorrect answer and bupey deadlock based oo the

“divide and query” strategy is presented.

4.1 “Single Stepping” algorithm for termination with incorrect answer

When a program terminates with incorrect answer, it can be concluded that there is

at least one mmcorrect clause instance.

The algorithm to find such clause is specified as follows:

Algorithm 1
Input: A goal (7 that terminates with incorrect answer substitution.

Output: An incorrect clause instance.

Simulate the execution of (7 whenever a subgoal § terminates with Q. check. using an
oracle query, whether §" has heen executed correctly. If not, return the clavse invoked there

as an incorrect clause instance.



The point of this algorithm is that by confirming the result of computation whenever a
goal terminates, we can find such clause lustance invoked at some node in the computation
tree that generates an incorrect answer, but all its hody zoals have been exeeuted eorreerly. 1t
is clear that such clause is an incorrect clause instance. The query complexity {the maximum
number of queries issued by the debupger) of this algorithm is proportional to the aumber
of zoal reductions. GHC implementation of this alzorithm 12 shown below,

% single_stepping(Coal,IncClslns) :-
Given Gowl, It returns ap incorrect clause instance at IneClalna.

single_stepping(Goals,IncClelns) :- true | tree(Goals,IncClelzns..).

%L tree(Goals,IncClalne,Cox) :-
(Given Goals, It returns an iocorrect clause lostance at ImeClsIns. Ctr is used
to abort irrelevant computation.

tree(_,_.abor%t) :- true | true.
tree{true,X,_) '~ true | Z=ok.
tree(A X, _)} :- ghcaystem{A) | X=ok, call(A).
tree((A, B} ,X,C) :- true |
treel{A,Xa,Ca), tree(B,Xb,Cb), mnd(Xa,Ca,Xb,Chb,X.C).
tree(A,X,C} :- reduce(A, Bedy) |
treel{Body,X1,L), reduction(Xl,(A:-B0dy) X, C).

ghcsystem(A) is a system predicate checking whether A is a system predicate or not. re-
duce(A, Body) is also a system predicate which, miven a goal A, returns & body part of the
clause, the head and the guard of which have been successfully solved. tree simulates execu-
tion of the goal, at the same time it forms a computation tree as the network of reducsion

and and,

¥ reductien(Xl,Clause X, Ctr) :=
reduction corresponds to reduction of a gnal to a hody part. Clause is au in-
stance of the clause used for the reduction. X and X1 are used to send an incorrect
clause instance to the head and to receive it from the body part. respectively.

reductionlok, (P:-Q).X,.) :- true |
query(P,Ans), react{Ans,(P:-3).X).
reduction{{P:-Q),_.X,_) := true | X=(P:-Q).

reducticni.,...,abors) - true | toue.
and(_,Ca,_,Ch,_.abors) :- true | Casabort, Ch=abort.
and((P:-0Q),_,..Ch,X,_} :- true | Ch=abort, X=(F:-0J).

and(_,Ca,{P:-GJ),..X..) :- true | Ca=aber:, X=(P:-Q).
and(ak, . X&,_ K, .} :- true | Xb=X.
and{Xa,.,ck,_.X,_) - true | Xa=X.

react{yes,_ Ane) :- true | Ans=ok.
rencti{no, (P:-0),Ans) :- true | Ana={P:-3).
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When reduction{X1,(P:-3),X,Ctr) received ok at X1 from the body part, it means the
body goals § Lave been executed correctly. Then it asks a programmer whether P has heen
executed correctly or not by the predicate query(P,Ans). If answer is yes, then it returns
ok to X. If the answer is na, it means that P:-Q is an incorrect clause instance. Hence it is
returned to X. When X1 is already instantiated to some ciause, it means that an incorrect
clause instance has been already found. Such clause is passed to X.

ands make the iutellicent communication network for reductiens in the form of the
binary tree. They carry the information about correctness of reductions to their parent
reductions. At the same time, they send abort messages to appropriate reductions in order
to kill irrelevant computation.

Conceptually the “single stepping” debugger has two phases. Ip the first phase, it
forms the computation tree as a tree of reducsion’s inter-connected by and. In the second
phase, for each reduction from leaves to the root, the result of reduction is confirmed using
oracle queries. In actual execution, these twe phases are appropriately overlapped.

Example 1: Debugging of a program terminating with incorrect answer by “3 ingle stepping”
alzorithm

Source of buzey quick sort which returns [] with [3,1,2] as input.
gsert(Xs, Ys) :- gesert(Xs, ¥s, [1).

qsort{[X|Xs], Ys0, Ysl2) :-

% part(Xs, X, 5, L), gsort(S, Ya®, [X|Ysil}. geort(L, Yai, Yal).
rart{Xs, X, 5, L}, gsort(S, Ys0, Yst), gsors{L, Yasi, ¥sl}.

geors([]. Ya, 0) :=- true | O=Ya.

pars([XIXel, 4, 8, L) := A< X | L=[xIL1), part({Xs., A, 8, L1).
pars([X|Xel, A, §, L) :- A >= X | 8=[XIs1], parc(Xs, A, Bi, LJ.
part([], _. 8, L) :- true | 5=[1. L=[].

Log:

| 7- ghc single.stepping(qsert([2.1,2],P}.L).
succeeded(part([1,3.[1,(12) 7 (yes/mo} y.
succeudud{pnrt{[ﬂ].ﬂ,[ﬂ].[]}} ? (yes/ne) ¥.
succeeded(part({1,2]1,3,[1,21,010) 7 (yea/ne) 7.
succeeded (part (1,1, 11,0133 7 (yes/mol 3.
succended(part{[2],1,0],{2]133 7 (yes/mo)} y.
succeeded(geors{[], .57, 6733 7 {yes/nsl} ¥.
succeeded(part({1,2,[1.01)) 7 (yes/no) ¥y.
succeeded(gsort([]. _67,.57)) 7 (yes/zo) y.
succeeded(gsort{[],_57,_67)) 7 {yea/mo) 7.
succeeded(qsart([2],.67,.57)) ? (yes/no} n.
succeeded(geert{[],[1,[1)) 7 (yes/mo) y.

6



L = geext({2],[],[3):-paxrt(1},2,[2.[1) ,aeert{[1.01. [}, as0rcC{). [],F12.
P =[]

yes

4.2 “Divide and Query™ algorithm for termination with incorrect answer

Using the “divide and query” strategy, we can improve the query complexity of the
algorithm. The basic idea is the binary search for an incorrect clavse instance over the
computation tree spawned by “reduction”s. Before specifying the algorithm, first we define
the weight of reduction in the computation tree.

Definition 5 Let G be a zoal reduced in a reduction K.

{al weight(R)=0 if G is a system predicate,
(b) weight(R) =1+ T weight| R} if R invokes N reductions, Ry. ... R

s

The weight of a reduction refiects size of the subtree rooted at that reduction.

Algorithm 2

Tuput: A geal G that terminates with incorrect answer substitution and a {possibly empty)
subset M of Meue U Maus,

Cutput: An incorrect elanse instance.

Simulate the execution of G, compute w, the weirht of the reduction of & module M. If w
iz 1, then the clause invoked at the root is returned. Otherwize, it finds the heaviest node
Q in the compntation tree whose weight is less than or equal to [w/2] and queries oracle
whether the goal Gy reduced at @ has been executed correctly or not. If the oracle answers
“yes™, then the algorithm is applied to the same computation tree with M' U {Ga} as new
M*. If the oracle answers ©
at Q with the same M’

no”, then the aizorithm iz applied to the computation tree rooted

It ia known that the maximum number of the queries of this algorithm is Olog( N))

where N i3 the number of reductions.

GHC implementation of this algorithm is shown helow. The predicates similar to those
in the single stepping algoritbm have the same names.
dividebguery(Goal,IneClaIne) :-
true |
tree(Coal W, 1/00,
curser{[down|In],Out,.top(_,. ), mid{0, 1)),
ezacle{dut,In, [J,IncClslns).

divide&query(Goal,IncClalns) is a tap level procedure, which invokes three subgoals.
tree, cursor and oracle. Roughly speaking, tree simulates the compusation of the zoal
Goal and forms the computation tree by spawninr reductions which correspond to reduc-

tions. curser points two important nodes in the tree, the root and the middle uodes, and can
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comimunicate with them. curser i3 also an interiace between these two wodes and sracie.

eracle is the manager of oracle queties.

% tree(Goals, Weights, Ioput/Jutput) :-
Given Goals, tTee simulates the computation of Goals and forms the compu-
tation tree as network of reductions, Weighta is the sum of the initial weirhts
of reductions of Goals., Input and OJutput are streams from and to outside,
respectively,

tree{(4,B) . Wab, I/0) -
true |
traalA, Wa, I/0a, trea(B. Wb I/0b),
¥ab := Wa+¥b, omerge(0a.0b.0).
tree(d Wa,1/0) :-
gheaystem{A) |
Wa=0, call{A), 0=[].
tree{d Wa, I/f0} :-
reduce(4,Body) |
tree{Bedy, Wb, 0b/Ib),
Wa = Wh+1,
reduction(I,0,Ib,0b,Wa, (A:-Bedy)).

cmerge{[middle{{Ra,Wa) ,Ca)!X], [middle({Rb, Wb}, 2id(I, 033 17].2) :-
HWar=Wb | Z=[middle({Ra.Wa),Ca)!ZZ]. 0=[1, omerge(X,Y,ZZ).

omerge({[middle((Ra,Wa) mid(I.03)(X], [middle({Rb,Wb),Cb)|Y] 2} :-
Wa<wb | Z=[middle((Rb,Wb),Cb)IZZ], 0=[], omerge(X,Y,ZZ).

omerge([AIX],Y.I) :- A\=middle(.,_.) | Z=[A[ZI], omerge(X,¥,21).

omerge(X, [A1¥],2) :- A\=aiddle{.,.) | Z=[A]2Z], omerge(X,Y.ZZ}.

emerge{[].Y,Z) :~ true | Y=Z.

emerge(X,[]1,Z) :- true | X=Z.

omerges wakes the intelligent communication neiwork for reductions in the form of the
binary tree.

The tree formed by the network of reduction and omerge is responsibie to computing
the weights, finding the middle point of the tree and updating the tree and the weights

according to oracles.

¥ reduction(I,0,Ib,.0b,W,Clauae) :-

It represents a reduction in the computation tree. Clauee js an instaoce of che
clause invoked there. I and O are streams from and to the preceding reduction,
respectively. I'v and Qb are streams from and to the reductions of the body goais.
W is the weight. Initial weights are computed when the computation iree are

formed by tree.



reduction{[].0p...0c,.,.) :-

true |
dc=[1. op=[I. Q)
reductien([dewniMil Mo, Ic,0c,1,Clause) -~
true |
Mo=[enewer{Clause)}, Oc=[]. (2)

reduction([dewnIMi] Mo, Ic,0c,Wa, Clavse) :-
NED := (Wa+1}/2, Was\=1 |
Oc=[new(HNBD} [0c2],
reduction2(Mi, Mo, Tc,0cZ Wa, Clausa). (3}
reduction([new(N¥BD]} |Ip]l.Cp,Ic.0c. ¥ Clause) :-
WasNED |
Oe=[new(MBD} {0c2],
reduction(Ip,0p.Ic,0c2,Wa, Clause). (4)
reduction{[new(NBD) |Ipl.0p,Ic,0c, Wa, Clazse) :-
Wa=<HBD |
Op=[middle((Clause,Wa) mid(Mo,Ni))|10p2],
middle(Mi, Mo, Ip.0p2.1c,0c,Wa Clause). (5}
reduction(Ip,.Op, [update(wd, ) iIc].Oc,Wa,Clause) :-
true |
Wal := Wa-Wb, Op=[update(¥b, Wall)|0Opi],
reduetion(Ip,0p2,Ic,0c,Wal, Clause). (6)
reduction2(Ip,0p, [middle(¥,C)|Icl,0c,Wa, Clanea) :-
true |
Op=i{middle(M,C) [0p2].
reduetion{Ip, 0p2, Ie,0c,Wa, Cloumel. (7!

L middle(Mi Mo, Ip,0p,Ib,0b, Weight,Clause) :-
piddle(Mi Mo, Ip,0p,Ib,0b Weight, K Clauee) 15 a variant of raductienfIp,
Cp,Ib,0b,Weighs, Clause) which lncates in the middle point of the computatiou
tree, M3 and Ma are streams from and fo enrser.

piddle((terminall Mo, Ip,0p.Ic,0c,Wa, Clause) ;-

true |
Op=Tupdate(Wa, 0) |0p2], Me=[Z. Oe=[],
reduction(Ip.0p2,.,..0.Clause). (8}
middle([dowr|Mi] Ma,Ip,0p,Ic,0c,1 Claueel :-
true |
Mo=lanawer({Clause)] 0c=[],0p=11. (9}

middle{ [down|Mi] Me.Ip,.Op,Ic,Cc, Wa, Clanse) :-
NBD := (We+1)/2, Wa==1 |
De={new(NBD)|0c2], Op=[],

reduction2{di Mo, Ic,0cl, Wa, Clausel, {10}
middle{[] Mo, Ip,0p,1c,0c, Na, Clause) -
Tue |
Mo=1], reduction{Ip,0p,Jc,0c,Wa,Clanse). {11)

The middle puiut of the computation tree is determined o the following way: First reduezion
at the root of the computation tree receives down messzage. Let w be the current weizht of
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the root. Then it computes the [w/?], sends it downward as new message and waits for the
reply (3). On recciviug new message, Teduction sends it downward further if its current
weight is greater than the value (4). Otherwise reducsion chauges to middle and returns
the clause invoked there, its current weight and input/output streams as middle message
(5). Ou receiving middle message, reductions waiting for reply pass it upward (7). In this
alzorichm, more than one middles are created, however, omerges select one which has the
reatest weight and the rest of middles change back to reductions (11}.

% cursor{In,Out,tep(Ti, To), mid(Mi Mel)) :-
curser points twe important reductions in the computation tree, the root
and the middle nodes, and can communicate with them. Ti and To are streams
from and to the root, and Mi and Mo are streams from and te the middle point,
respectively.

curser([dewn|In],Out,top{Ti, Tol, mid(Ni Mod] @~

trae |
Mo=[down|Ma2], Te=I[],
cursor2(In,Out, top(Mi Me2l). (12}
curser{[up|Ial,Ous,Top,pid(Mi Mel) :-
true |
Mp=[terninal],
cursor2(Ia,Out,Topl}. (13)
cursor2{In,Out,top([answer(Clause} {Ti]l, Ta)) :-
true | :
Out=[enswer{Clanae)], Te=[]. (14)
curser2(In,Out,top([middle(Mid ,MChan)} |Ti],Tel) :-
true |
Out=[=iddle(¥id} iCut2],
curser(In,Out2,tep(Ti, To) ,MChan) . (15}
cursor2(In,Ous,topl[update(_.¥)|Ti]l, Te}) :-
MBD:={W+1}/2 |
To=[nex(NBD) | Tal],
cursor2(In,Out,top(Ti, Tol)). {18)

curser is an interface between the root and the middle point of the tree and crucle. Initially
eurser only points the root of the tree as the middle point and has received the down message
(see the definition of dividekguesy). The message initiates the computation of the middle
point.

Whenever carser receives the new middle point of the tree, it sends the goal reduced
in the middle point to oracle. oracle replies down or up to cursor, depending on whether
the goul has been executed correctly or not. Oun receiving the down message from oracle,
curaor sends the down messaze to the middle point in order to examine the subtree rooted at
the middle poiut and to discard the rest of the tree. The message iniliates the computation
of the new middle point of the new tree. On receiving the up message, cursor sends the
termizal message to the middle point in oder to discard the subtree rooted at the middle
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poiat acd to examine the rest of the tree. The meszapge initates the computation of the new
middle point of the updated tree.

¥ oracle(In,Out,GDB,IncClelns} :-
oracle receives a goal from the foput stream In aod gueries the programmer
whether the goal has been executed correctly or not. If reply from the nrogrammer
is yes, then the message up is sent through the output stream Out. Ctherwise the
message dewn is sent. The queries already asked and their answers are stored in
GD3. QDB is used to suppress to jssue the same gquery,

oracle{[middle{({P:-G).W})!Ia] Out,5,IncClslas) :-
true |
merber {P,5,8), branchenr{R,Out,In,?.5,IncClslzs’.
oracle{[answer{(P:-G)J)].0ut.5,.IncClelns} :-
true |
IncClelns=({P:=3).
branchonr{yes, Jut,In,Query, S, IneClalna) :-
true |
Cut=[up|0ut2], orzele(In,Out2,5,TncClalna).
branchenr(ne,Out,In,Query,S, IncClalns) :-
true |
Dut=[down|Out2], oracle{In,Out2,S,IncClalns).
branchonr{uaknown,lut,In, Query,S,Incllalns} -
query(Query, Ana) |
branchenr2{Ans,0ut,In, [Zact{Query . Ans) 8] . IncClslns ).
branchonr2{yes,0ut,In,S5, Inctlalna) :-
true |
Dut=[up|0ut2], oracle{In,DutZ,3,IncClalns).
branchonr2{no,0ut,In,S, IncClelna)} :-
true |
ODuz={downiOutd], oracle(In,Out2,5,IncClslas]}.

4.3 “Divide and Query”™ algorithm for both errors

The debugging algorithm for a program which deadlocks can be obtained by slichtly
extending the debugger above.

First the top level procedure is changed to dividekguery{Goal,BUG, DL} where DL is
deadlock Azg which is uninataptiated during the computation of the Goal and is instantiated
externally to deadlock when the computation deadlocks. It is impossible to implement
such deadlock detecting mechanism in GHC itself. Discussion of the implementation of such
mechanism is beyond the scope of this paper and we assume that there is such mechanism.
dividekquery invokes three subgonls, tree, curser and oracle, where tres and sracle
are extended and curser iz unchanged. '

The basic idea of extension is to make the computation tree include suspended goals
upon deadlocking. Once the computation tree including suspended goals is formed, the
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debugging algorithm used so far can be applied as before.

% divide&query(Geal BUG,DL) :-
Given Goal. it returns an incorrect clause instaure or bugey suspension at 3UG.

dividedguery(Goal ,BUG,DL) :-
true |
tree{Goal W, I/0,H-[3,DL],
cursor( {downlIni,Out,tep(...).2id(0,1)),
oracle{0ut, In,[],BUG).

% tree(Goals,¥eights, Input/Cutpus.H-T,DL) :-

Given Gonls, trea simulates the computation of Geals and forms the com-
putation tree as network of reductions. If the simulation deadlocks, owing to
external instantiation of DL. it makes the computation tree including suspended
goals. Weights is the sum of the initial weights of reductions of Goals. Input and
Qutput are streams from and to outside, respectively. B-T is the differsnce list of
the zoals which are included in Goals and have pot terminated upon deadlocking.

tree is completely redefined as follows.

trea{(A B}, Wab, I/0,H-T,DL} :-
true |
tree{A.Wa,I/0a,H-T1,DL), tree(B,.Wb,1/0b,T1-T,DL),
Wab := Wa+Wb, omerge{0a,Ob,0).
tree(A, Wa, I/0, H-T,DL) :-
ghesysten{d) |
call(A,Res,Ctr), filter{Rea A, 8-T,DL,Ctr},
0=[1. Wa=0,
tree(A Wa I/0,B-T,DL) :-
reduce(A,Bedy) |
tree{Body, Wb, 0b/Ib,HL-[],DL],
Wa -= Wb+, switah{H1,H-T.AJ,
check_termination(Ht,I,0,Ib,0b,Wa,(L:-Bedy)).
tree(A, We,l/0,B-T,deadlock) :~-
true |
B=[susp(A)]1T], Wa=1, reduction(I.0,....1.susp(A}).

The last clause defining tree handles the suspended goal when the entire computation dead-
locks. It creates reduction with susp(A) instead of the clause nsed in the reduction.

% filter(Res A, E-I,DL.Ctr) :-
filter examines the result Res of the evaluation of the system predicate and uni-
fies M with T if 1t iz success. Otherwise, upon deadlocking, susp(A) is registerad
in the difference list B-T.



filter{success,_  B-T,.,.) :-
trae |
H=T.
filte:fﬂea,L.H'T.dlldlﬂtk.ﬂtr} o=
true |
Ctr=atep, H=i{amuap(A)IT].

% ewitch{HL H-T,A) :-
switch examines the difference list B1-[] and registers epea(A) in B-T if there
is at least one element. Otherwise it unifies § with T.

gwitch{[},B-T,.) -

true |
E=T.
pwiteh({[_|1_],E-T,A) :-
true |

H=lopen{A}{T].

In order to distinguish between the reduction at least one of descendants of which
suspends and the reduction all of descendants of which terminate, check_termination is
introduced. It creates reducticn with open(Clause) for the former and reduction with
Clause for the latter.
check_terminatien([],Ip,0p,Ie¢,0c, Weight, Clause) :-

true |
reductien(Ip,0p,Ic,0c, Weight Clause).
check_terminatien([A[B],Ip.0p.Ic,0e, Weight Clause) :-

true |

reductien(Ip,0p,Ic,0c, Weight, cpen(Clausel).

orecle is extended to handle the new terms such as susp(P) and open(C). The new
definition of erecle iz shown below.
urn:le{[middls((ﬁuup(?},ﬂ}}[In],Uut.s.BUG} -
wrue |
mexber{suspended(P),5,R), brancheonr(R,Out,In, suspendedi{P},5, BUG).
oracle{[middle((open((P:-G)),W})1Inl, Ous, §.BUG) .-
true |
mexber{openi{PF},5,R), brancheont{},0ut,In.open(P),5,30G).
eraclel {middle(({P:-G).W)}]Inl, Out,S,BUG) :-
true |
mezber(P,S,R), branchear(R,0Out,In,P, 5, BUG).
eraclel anaver(Cleuse)] Qut, 3, BUG) :-
trae |
BUC=rnawer{Claucel.

Example 2: Debugging of « program terminating with incorrect answer by the “Divide and
Cuery” algorithm

Buggy quick sort which terminates with incorrect answer [| for given mput {3.1,2].

i3



gsort{Xs, Ys) :- geort{Xs, Ys, [1J.

gsort([X|Xsl, YsO, Ysl} :-

r part(Xs, X, §, L), gesort(S, Ys0, [XiYs1]), gsort(L, Ysl, Ya2).
part(Xs, X, 5. L), gsort(5, Ys0, Ysl), gsort{L, Yel, YsZ).

gesert{[]. Yg, 0) :- true | 0=Ya.

part([XiXs], A, 5, L) :- A< X | L=[xIL1], part(Xs, A, §, Li}.
part([X|Xsl, A, §, L) := A>=X | S5=[X|51], pars{Xs, A, Si, L}.
pars([], _, S8, L) :- tmue | 8=(], L=].

Log:

| ?- ghc divideaquery(gsers{[3.1,22,P),DL}.
succeeded({qsort{[2],[],[1)} ? (yes/mo) n.
succeeded{pars([].2,.[1.(1)) 7 (yes/mo) y.
uuccaededfqaurt[[],{];E]}} ? {yea/no) 7.

anewer ({gsort({2],[1, [1):-pars({],2. [0, (3).asors{ 1, (1,030, qeexs{02. [, [1232

DL = .78,
P =[]
yes

Sipce the simulation of the goal does not deadlock in the above case, it is not necessary
to instantiate externally DL.

Example 3: Debugging of buggy deadlock by the “Divide and Query” algorithm

Bueey quick sort which deadlocks for given mput 3,12,
2 (=] ! s

gsort{Xs, Ys) :- gsert(Xs, Ys, [13.

gsert([X|Xs]l, Ys0, Ys2) :-
part(Xs, X, §, L). georu{3, ¥Ys0Q, [Xive1l), geort(L, Ysil, Yel).
geert([], Ys, 0) :- true | O0=Ya.

% part([X|Xs], A. S. L) :- A < X | L={XIL1], part(Xs, A, 5, L1).
Pnrt[[I11&], A, 5, [XIL1]) :- A < X | part(Xe, A, S, L1).
part([X|Xal, A, §, L) := A >= X | s=fx!51], pars{Xs, A, 51, L}.
part{[], _. 8, LY :- true | 8=[1, L=[].

Log:
| 7- ghe dividekguery(gsert{I3,1,2],F),DL).

0% It is asswmed that DL is instantiated externally to
9% deadlock upon deadlocking of the simulatiou of the goal.
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suspended{geort([1,2],_.67,[3]12} 7 {(ves/ns) n.
suﬂp&ﬂdad{p.’ﬂ.‘t{[i].1.-1452,-1453}} 7 {]ren,."no} .

answer{suap{part({2],1, 1452, _1453}}}

DL = demdlock,
P = _BT

yes

The answer indicates that pezt{[2],1,.1452,_14B3) is the hugey suspeusion azd
that there is a missing clause in the definition of pars.

5. Concluding Remarks

We have presented the debugging algorithms for two major errors of GHC programs,
termination with incorrect answer and buggy deadlock together with its GHC implementa-

tion.

The subsequent paper [Lloyd& Takeuchi86] gives the formal framework of the algorith-
mic debugging of GHC. It is proved there that the debugger can always Gnd a bug under
certain condition. The handling of buggy fallure is also presented in that paper.

Although we concentrate on the debugger of GHC programs, the technique devel.
oped here will be applicable to other parallel logic programming languages such PARLOG
[Clark&Gregory84] and Concurrent Proloz [Shapiro83b].

Following types of bugs can be treated by our debugger with appropriate augmentation.

Infinite loop

Bugs in the puard parts.

Following types of bugs are difficult to handle in our framewark.

Dugs withont reappearance because of pondeterminism

- EHE‘& cansed b}r unfaiiness of z«rhndu]ing -uch as starvation
» Termination with correct answer hut incorrect behavior
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