ICOT Technical Report: TR-184

TR-154

On Parallel Programming Methodology in GHC
by

k. Takahashi and T. Kanamori
{Mitsubishi Electric Corp.)

May. 1986

C19R6, ICOT

Mita Kokusai Blde, 21F (i) 436-3181~5

|DDT 1-28 Afita 1-Chome Telex 1COT 132954

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

On Parallel Programming Methodalogy in GHC
— Experience in Programmiog of A Prool Frocedure of Temporal Legie —

Kazuks TAKAFASI] Tadashi KANAMORI
Central Hesearch Laboratory, Mitsubishi Electrie Corporation

ABSTRACT

Parallel programmiag metbedelogy in GHEC is dis
engsed based an our experience in programmiog of a proof
procedure of temparal logie. It iy said that GHC can ex-
press batie constructs of parallel processing such as eom-
munizatian and synehronization very sumply, but we have
not vet had enough experiebeed of parallel programming
in GHC. By programming a proof procedure of temporal
logic in Proleg and GIC, we compare the thinking style in
sequential programming and that in parallel programming.
Paralie! programming methodology is discussed haszed an

the experiance,

1. INTRODUCTION

“Guarded Hern Clauzes (GHC)" 12 a language
designed for execution on highly parallel architecture
{Ueda 85) and regarded as the core of the Kernel Language
One {KL1} of the Fifth Geperation Computer System
(FGCS) project in Japao. GHOC 17 a descendant of other
Prolog-like parallel programmiog languages Concurrent
Prolog [Shapiro 84] and PARLOG [Clark and Gregory 54,
It is said tha: GHOC oot only provides us with the basie
funclions lor parallel procesaing such aa comMmurization
and synchronization but also imposes less burdes of im-
plementaticn tian Concurrent Prolog such as multiple en-
virooments. Bul we have pot vet had enpuph sxperienes
of parallel pregeamming in CHC. Eapeeialiy, we don't yet
koow whether GHC gives ux enough sxpressive power in
practice and what transition of programming siyie is neces-
sary for GIIC,

s thus paper, we show our expericnee jn PIOETAIRIRILE
a proul procedure of temporal logie in GHC. The preof
procedure zalled w-graphs refotation, was familiar with os
before programming it in GHC [Pusacka and Takakashi
AL W kad s sequemtial implemestatisp o Prelog,
Fortunatelr or unfortunately, the sequential version cop-
taizs subprecedures whick embody thres typical styles
of programs. The frst coe is general recursive atyle,
the second one is repetitive (tail-recursive) style ard the
third one iy backtracking style. We show what difficulties
we have encountered in programmicg these procedurss in
GHC and disccuss the parallel programming methodnlagy
based o6 the cxperienee.

I, PRELIMINARIES
& GHO program is a Eoite set of Horo clauses of the
follewiag form (m20,n 20}

He-Gyy oG | B, o, Ba
where @;'s and 8,°s are atomic formulas defined ar winal.
The part of the clause before *|" is called a pacsive part or
m guard, and the part afler °|° is ealled an active part.

Informally execution of & clause is done in the fallow-
ing manner : When a goal is ealled, the clauses whose heads
are uniflable are inveked. Execution of the goals in the
pazsive part of these candidate clauvses are triad in paral
lel, and if goals in the passive part of some elause succeed,
then the clause is trusted and the active part of the clause
is exezuted. Any piece of unification invoked in the pamnive

part of a clause cannot instantiate a variable appearing in
the caller,

Temporal Loge Manna and Paoueli 81] is an exten-
tion of fret order logic to inciude a potion of time and
deal with logieal desctiption and reasoming on time. [Tt
is & branch of medal logie [Hoghes and Cresswel] 88), in
which the relation betweez worlds i considered as a Lem-
poral coe. The temporal logie we consider {n this paper
is & propositionel one ealled Prepositional Temporal Logic
(PTL}. Three temporal operators used in PTL have the
faellowing (otuitive meanings @

OF [aiways F) : F is true in all future instants

oF [eventually F) : F is true in some future instact

oF (pext F) : F i true in the next instant
For example, a formula 0o F indicates that & will be froe
izlnme'y oftexn,

Let F be a formola of PTL. A complete assijoment
for # s g funetion which assigee troth value (L or 1) o
every propositiral variable in F. A model M for F s an
ihrite sequeres of comslele aszignments for F

Ko Ky, s
Fisvaid to be troefalse] fn M P F ts aseigeed U by A,
F s gatisfable if thare exisis a mode] I which B i rrpe.
o ovadied iF it i3 trae {2 every modal,

Consider the following praph. Iztuitively, the adges 5
the grach correspend to complete assignments, The sdz:
from the node No to the node Ny corresponds to s coxmplets
wssifnment that gatigny € to P, the edpe from N o A,
corresponds to one that assigns [to P and Lhe erge from

' ta & correaponds S% wov that assignsi oo & Then, the
infnitz path of No—N| Ny N = Ng—=Ny = No— .
curreaponds to 5 medel for Cof where the assigumesnt
for P is the sequence in which ¢ and f appear alterpateiy

(LS N

Figure I Graph Representation for ool

3. w- GRAPHS REFUTATION PROCEDURE

An w-graph is a graph in which each node is labeled
with an expression called nade formula. Whes a formula
of PTL is given, the w-graphs refutation procedure shows
whether the formuola 13 valid or ot as foliows,

{1) Megate the given formuia.

(1) Compute initial zode formula of the zegation of given
formula

(3] Comstruct an w-graph by starting frem the iaitial w-
graph consisting of only one node corresponding o imitial
pede formula and successively expanding nodes in the w-
graph-

4 Check w-loop freensss of the constructed w-graph, I it
it w-loap freethe given formula iz valid.

First, we explain each procedure, eompute_inatfal_node
_Jormuia, erpand_node_formulss, construsi_omegs
_grephs and check_omega_losp freesess and discuss
parallel programming for esch procedure. Then, we show

iie top level implemenatation,

1.1, Computation of [nitial Node Formula

The negation of a given formuia is once cooverted to
its negation mormal form in order to compute toitial pode
formula before constructing the w-graph

Let G be a formula obtaioed from a formuls F by
appiving the rules below as far as possible, Then & is
called a pegation normal form of the formula F,

[Rule NNF 1| remove implization and equivaleace
ADH =2 -AVD

AT H === [ApH YV (-AA-E)
{Rule NNF2| move negation izwards

=4 A B) =0 =Av-3
=AY Bl =% -AA-D
=04 === =4
=34 == O-A
=24 == Oc=A
=4 == A

Fur exampie, ~o0-f" is converted ints SofP by applying
NMF2 Negation pormal forms are unique. Note that the
negation hormal form of a formala 1a vaiid of and only if
the original formula is valid.

Later,wi need to eheek whether we have constructed
an w-graph corresponding to a set of models of PTL in
which the eventualities in & negation normal form are
satisfied. We compute the eventuality set of the formula
Fy in a negation pormai form in order to use it at that
time. The set of all subformulas & such that ¢ is & sub-
formula of Fy is called eventuality set of Fy. For example,
the eveptuality tet of the formula oo P ia {F}

Let F be s formula. An igitial node formula [Folqy
of Fis & formula sufized by {]}, where Fy is in a nega-
tion mormal farm of F. The top level of the procedure
compute_inilial_node_formeula in GHC 12 implemented as
tollows,

compute_initial_node_formula(F NNF EveSet) - true |
cegation_normal_form(F NNF),
compute_cventuality _set{NNF EveSet),
megation_narmal ferm(F G} - trae |
remove_implication_and_eguivalence(F F0),
mave _ n-nt_inwnrd:{Fﬂ,{_:}.

Three subprocedures remeve_implication_and_equivalence,
move_nol_inwards and compute_eventualify_sef were
written in a general recursive atyle in Prolog. They are
easily transformed to GHC programs with a few syotacti-
eal medificationa.

3.1, Expansicn of Node Formulas

An w-graph i a graph whote aodes are labelled with
expressions called node formula.

Let £S5y be the given fized eventuality set. A pode
formula [F|y iz a formula F suffixed by a subset H of ESg,
where F' i3 in a negation normal form and may contain o
iz stead of ¢ and the sufy K |3 called history set. For
example, [BoFfn, [O0P]ey snd [¢"F A D)) are node
formuias. o°& is semantically deotical to oG, ©°G i
called marked formula. A node formula [Fly is logically
equivaleat to the formula F. An initial node farmula is a
special node formuis. The iptuitive meanings of the mark
and the history seis will be explained laler.

Io our procf procedure, we construct the w-graph of
Fa by starting from an initial w-graph and succeszively
expanding nodes in the graph. It is based om the tableau
method [Wolper 1], Suppose we are Lryiog to expand a
aode labeiled with [Fly. Wew node farmuias are ohtained
by converting & to its pext prefx form Fypp aod then
converting Fapp to it disjunctive sormal form Fpyp
and expanding Fppype. Validity of the formulas is kept

throughout these transformations.

Let F be a formula o o gegation oormal form and
G be & formula sbtained from F by applying the rujes
below ai far as possible to subformulas not inside the next
eperator O, then & is called pext prefix form of F,
[Hule NPF1] postpone O

oA = A A oA
[Rule NPF2| pastpone ¢ aad o

oA == AV oA

o'A =2 AV ootA
For example, a formula DoF i» ecoverted inta
(P ooy A oool by applying NPFL frst and then
MHPFI.

Let F be a formula in a next prefx form and & isa
formula in the form

(Ey A OFy) V (Ex A OF3} V . V (E A OF)
where £, Ea, .., Ewm and Fy, Fa, ., Firy are formolas other
than false. E; Es, ... En. do oot contain temporal
operators, and Fy and Fy are ot literally identical if {5,
If & is obtained from F by applying the fallowisg rules to
subfermuias of F as far as pormible, then (5 is said to be
a disjunctive pormal! form of F. (Note that each F,isin a
pegatioa pormal form.)
[Rule DNFI] distribute A over W

AN{BYVC)=PAABIVIAAC

AV B AC =2[AACIVI(BACD
[Rule NF2] eliminate simpie contradictions and duplica-
ticn
[Flule DNF 3] supplement next part

Current formuela 4 is o the form O W Co W .. W C,
where each &, is a conjunction of literals ar the formula
whase outermost aperator is 0.

O, === O A ODfrue where ©; it a conjunction of
literals (ieancluding no o-formulas)
[Rule DNF4) ardering in each confunction

B AA=sAN2B
of oA’
'Hule DMNF3 merge © in each conjunetisn

SA A QB =>0lA A B
{Fuie DNFE| combiuaon by gext past

(A sV (B Al —{ay Bl Aol
Fer exampie, (PV 0o'P) A ocoof i3 convened into
(F AoooP) wole"F AooP) by applring DNFL frst
and then DNFS.

where A isp't in the form

Expangien of node formulas is the bazic operation in
constrocting w-graphs, and defined by weing aext prefis
ferme and disjunetive normal forms as follows.

Let ESy be the piven fixed eventuality set, [F]y bea
zode formula and

[Ey aaF) viE: ARy W IEEm A oFw),

b @ disjunziive normal form of the next prefix form of F.
Thep (Fily, s #a expassica of [Fiy if and only if
ESy— ES; if H = E&;
{tESn = ESMJH otherwise
whare E5; = {J | "G s a subformula of F1

H, =

"7 denotes that the realization of & 12 postponed in that
expansion. Each H, 1a calied history set|h-set, in short)
of Fy. It i3 iotroduced to ensure that eventuality wili
actually be realized in expanding nodes suscesively in the

construction of an w-graph. Each elemesnt of h-set indicates
the history of the realization in a sequecce of expansions.

The expansions of the node formula [DoP]p
where Lhe eventuality set is {F} are [0oP|ipy and
[¢°F A o Ply).

We distuss parallel programming of the procedure
expand_node_formulas. As it is rather complicaled, we
divide it into the following three subprocesses which ron
i parallel : 1) couvertion from WINF ta NPF (2) convert-
inn by unaing DNF1 (3) conversion by using DNF2~DNFS
and compute B-gets, The top level of expansion of node
formulas ir implemented as follows.

expand_node formulna(F M Xn, ES0,NodeFormulas) -
iroe |
next_prefiz_farm{F NPF),
distribute_and_over_or{NFF DNF1},
timplily _formulas{ES3,H Xa DNF1,NodeFormuias),

3.3, Construction of w-Graphs

Let Fy be 3 formula obtained by converting the nega-
tion aof & gives formols to its negatien nermal form and
ES; the eventualivy set of Fy. An w-graph of Fy i the
migimum graph satisfying the following conditions.

{1) Each nnde is labelled =itk different node formuias,

(2) There is & special nade Ny called initial mode labelied
with le]{}.

(3) When Lkere exists a node N labelled with [Fly
and [Filp, (Falage o [Fml. ate all expazzioos of
[Flgr, there exizst m zodes Ny M, ..., Nm labellad with
[Fiiege s [F2itge oo [Fmlir. and m directed edges from
o Ny, Ny, N

la parailel programming of comstsuction of the w-
graph of a {ormuls, each nede i considered as a proc e
and we i7¥ to exesute expantion of vach code fermualia i
parallel, Sizze new node formulas are genecated as ag puie
pul sbream of each node process at the same time, it i 13-
possible for each node process to decide wheiher the node
formula It 23 existing one of not. Ib s necessary the sysem
to introdiuce some granh manager whick controla ali pods
formuiae, It sreated a mode_orocoaz if & aew node forewa
is groeratad and aborts it if the expersion of the nods for-
muia is wver. It alsn atores & eurreat fist of node farmuiae
ans checks wheiher pewly generated node formula is an
existing one or not. If all sode formulas are expaades cnan
graph_maorager terminates,

A grapk ir represested s & list aof
Juadrapler (ModeNmbr, OutSirm, InSlrras, NodeTpre:
where NedéeNmér da the asanciatad pads puo bed,
DuiStrm is the ssaociated stream variabie, snd NodeT yp-
i elihier smego or nol_omega. ImSerma i g list of the
strears vasiables associuied with the node whick has an
edge Bowing icto the node Node Nmbe. Thus, at the end

of comairuel_cmega_graphs procedure, Frnp.ﬁ._munng’gr

generates at output ib this form
Far example, the w-graph of a formula ol is repre
sented a4 :

[{e, X0, [net-omega),
(1, X1, [X0.X: X2 emepal,
2, X2, [%0,X1,X2|, not-omega} |
and it is shown in Figure 1.

Parallel Construction of An w-Graph of Fiy
Let Fp be a given formula in NNF.
(1] Create the processea of graph manager GM, multiplexer
MUX, and pede process N Fp corresponding to the node
formula [Falgy. Initialize Fzdst to {1} and Graph ta { }.
For each process, do the fellowing (2]
{2} WP : For each node process NP, let NF be the car-
responding pode formula. Do the followings
Expand NF. Assumehat NFy, .. N F, are the node
formulas generated from NF .
For each 3, send MUX a pair of (NF,, X)) where X is
the stream variable correspooding to NFL
MUY : Merge the input streams inte MrgdStrm and tend
it Lo M. If every stream gets to the end_of stream, it
terminates.
M : Repeat the following procedure until Mrgedtrm i
{}

Take a node formula NF; from MrgdStrm.

B NF, i+ a member of Ezdst, then send 3 message to
the corresponding N Fy [as w result, X is added to the
Lail of InStrms of NF,]

§ NF. is not a member of Fzist, then register NF;
to Ezist as a mew node formuls, apd create the
carresponding meode process WP (Loe head of the
InStrms of NF, ia X). Add the node to Greph.

This procedure terminates in a fnits steps, since there exist
ooly a finite pumber of node formulas generated from Fa.

The top level of parallel construction of w-graphs is
implemented a5 follaws, while it is 1o a repetitive siyie in

sequential version.

copstrict_omega_graphsJud geStep ES0.F Graph) -
true |
Fxist={[No0,X0,10,F || NewExist],
Graph=/{Nol} X0 [0 not-omegaj|Newl raph],
node_process{ JudgeSiop E50,0,Exist, StrmList],
multiplexer{JudgeStop StrmList, MrgdStra),

graph_manager{Jadgestop ES00.M redSirm, Graph Exist}

34 Check of w -Loop Freeaess

Let Fp be 3 formula in s pegation porimal form and
E8, its eveutuality set. A node N labelled wilh [Flyg in
the w-graph ef Fp is called w-zade when H = ES5p. The
lgop whick starts from an w-pods Woand returns to the
same w-node Wi ealled w-loop of W. (A loop may pasy
through scveral modes), I there is oo w-loop, then the

graph is smid o be w-loop free. For example, in Figure 1,
N, is an w-pode, Ny— N, and N,—Ny—N, are w-loops
of Ny

As we gave an intuitive explanation in example in sec-
tion 2, some infinite paths in the w-graph of Fy correspond
Lo models of Fy. Mereover, we can show that w-graph of Fp
is pot w-loop free if there is a model of Fp. Hence, w-loop
freeness of the w-graph indicates that Fy i not satisfiable.

In Proleg pregramming, for an w-nede, every path
putgning from that nede is cheeked one by one wis hack-
tracideg mechaniam. Becsuse GHC has no backtracking
mechaniam, we bave to change the algorithm for GHT pro-
gram. We use a programming technigque similar to one
in [Shapire 23]. Each pode is considered a3 3 process
sending messages each olher, Moreover, extra argument
*Judgestop’ it added as a termination flag. It can step

other processes as s0OL a8 a0 w-loop is found.

Parallel Cheek of w-Loop Freeness of w-Grapha
{1} For each node, izatantiate the head of X by its node
sutsber N and add TnStrme to the tail of Xy, {Ana
result, InStrms becomes to the list of paths fowing inte
that node. The length may be infinite)
(2} For an w-node whose node nurber is N, imiliafize
CGraph to the set of all nodes in the w-graph and ReeMes
as [], and repeat the following (3).
[(3) If CGraph = { }, thren stop with fallure,
I JudgeStop = #tap,
then stop with the anawer “There exists an w-loog®,
Otherwise, assume that /nStrme is in the form of
[JA|X[|Pathe], then do (3)-1 and (3}-2 iz parallel.
{31 Y N = A, then set JudgeStop to "stap”.
If N7 A, then append [A| to Recies, extract 3
pode from CGraph.
(2}-2 Les [nStrma be Paths and repeat (3]

It all the processes for the nodes stop with failure, then
answer *The graph is w-loop free®

eheck_omepa_loop_{resness{Tudgedtop Craph) - true |
check omegs loop_freeness{JudgeStop, Graph, Grapl}

check_omega_laop_freencas(_,_,[[}
check _omega_lcop_freencss(stop, . _J.
check _omega_loop_freensss(JudgeStop CGrapk,
1N, Xo,INs,cmegaf[Gs]) =
projog{var|JudgeStop]} |
Nn=={N|Xul], Xnl=IMs,
£nd omega_loop(JudgeStop CGraph [1N Xnl),
skeck _omega_lnap_freeness{JudgeStop,CGraph, Gs).
check omega_loop_fresaess|JudgeStop, CGraph,
[N, Xn INs not-omegal [Gaf) o
profog{var{ JudgeStop]] |
¥op=[N[Xa!], Xnl=INs,
eheck_omega_loop_freenessfJudgeStop, CGraph,Gal.

3.5 w-Graphs Refutatinn Procedure

Lastly in this section, we show the top level of the
parallel w-graphs refutaion procedure for checking the
validity of 1h: given formuala. In the program, ‘&' denotes
the sequential execution.

provelF) - troe |
refute(not(F},JudgeStop) &
write_answer(JudgeStop F).

refute(F JudgeStop) - true |
compute_initial_node formula{F,F0,ES0]),
construct_omega_graphs{JodpeStop ESO,(FO,[[),Graph),
check_smega_lzop_freemess{JudgeStap Graph)

write_answer{stop, F) - true |
pretty_print{F), precty_priot('is valid”).
write_znswer{JudgeStop F} - prologivar{JudgeStop))
pretty_print{F), pretty_priot(is oot walid").

Fefute econsists of three parallel processes each
of which again conpsists of many parallel
processes. MNote that comstruet _omega_graphs and

check_omega_loop_freemess have 2 commeo variable
JudgeStop. It i3 set to “stop” in order io terminate
the graph eonstruction if an w-loop i3 found in the
Although the pro-
gram coptains meta-predicate ver and sequential AND “&*

cheek _omega_loop_freeness process

for simplicity, it 13 possible to implement without these
elements, Our program consists of about 500 lines io total

4. PARALLEL PROGRAMMING METHODOLOGY
IN GEC
lp this section, we discoss on parallel programming
mathadalepy in GHO.

4.1. Gepera! Principles for Enhancing Copcurrency

First, we dizeusa general principles for enhancing ean-

cufrensy.

Information shouwld be made publiz 1o other processes

as s000 a3 it i fxed in coe process.

pepation_normal_Torm{F G} - trua |
remove_implication_and egaivalenee{F FoO),
move ot inwards{Fo,G)

remove _implication_aod_equivalence{imply(F G}, A -
remove_implieation_and_equivalence(F F1),
remove_jmplization_and eqnivalence{G,G1) |
A=ar{not(F1),G1).

lp this program, publicatios of A must wait uagtil both
remeve _smplication_ond_sguivalence{ ¥ F1] and

remave_impitcalion_and_sgquivalense G, 1) succeed. Aa
far a2 A 1» oot Tet instantisted to & non-variable term,
the head unification of meve_nof_inwards is suspended.

Without this ‘|', three processes ecan run in parallel o
that A is propagated as soon as A = or(net(F1}, G1)
is executed, which allows the head unification of
moeve_nol_inwards. It gives high concurrency.

Each process should rup independently as far as pos-
sible without being suapended by the delay of another
process, even if they share common variables.

unioa([X[51],52,L1,L2,5) - member(X L2 yee) |
wnien(51,52,L1,L2,5).

urion([X[51],52,1.1 L2,8) :- member(X L2 ze] |
S=[X|NewS|, union{31,52 [XiL1],L2 News).

anion(51,[X]52],L1,L2,5) - member[} L1,yes) |
wnion(81,52 L1,1L25).

umion(S1,[X[52],L1,L2,5) = member(X L1,nc) |
S=[X|New5|, union(31,52 L1, [|L2],NewS).

uwnion(] |52, L1,L2 5} - true | 5=32.

union(51,} |, L1,L25) - true | §=51.

member[X,[Y]5], Answer) =

Xe===Y | Answer=jyes.
member X, [Y|5] Answer) :-

X=Y | member(X,5 Answer].
member(X,] | Answer] = true | Answer=no.

In this program, the third and the fooerth arsuments in
union, which accumuiate the set alements already outpus
sa far, are always enmpletely instaptiated to [ists. Hence,
the unifieation of member in the pasyive part iy never
suspended, In geperal in erder to realize early commitment,
predicates in the passive part should be written go thal the
clause i1 trusted even if the shared variables are postiailv
iraLantiated

Dresizion should be done in the distributed macner as
far as possibie if it does oot igereass the overall communics-
tion cost excessively,

bounded _buffer_rommunication - truc |
produce {0,100, H), bulfer{N H,T), consum e(H,T).

producey ™ Maz, [MIL]) - N < Max |
M=N, Nl:=N-+1, preduce(Ni Max, L],
produce(™ Max, [M!_]) - W >= Max | M="EQS"

buffer(MH T) - N20 |
H=!_{H1], Nl:=N—1, buffar{N1 H1,T).

buffer(N,H,B) - N=:=0 | B=IL.

cosume({1I/Hs].B) - Hy— ‘EOQE" |
B==[_|Ts], write{H}, cozsume(Hs, Ts).
consume((}<[Ha|, B) - H=e'EQS" | B=| [

This ia the beunded buffer problem discussed in [Ueda 85).
Freduce creates a stream of iptergers and puts Lae intoger
to the shot if there i o slobt in the buffer. The process
groduce itaeil oever creates a slot, If the head of the buder

is imstamtiated eromanme reads it and makes a new slotl at
the tali. The head and the tail of the stream are initially
related by the goal buffer. These three procestes run in
pacallel. Asx buffer only manages the relations of slota
and the values put to each slet are decided independeatly.
Conaume does ool have to wait until produce gencrates
the values far slots. This is o typical example which shows
the effectiveness of decision distributian by wsing difference

lists.

Cammurisation network conpecied by shared wari-
ables should be as simple as possible if the cost of devising
simple networks paye.

GHC uses sireams for process commumication
stmilarly to other concurrenl programming languages. We
show below a fair merge of streams in Lhe communication
between several sender processes and one receiver procesa.
The neccesity of interpal merge in “commuoication from
multipie precesses 19 obe process® was alio a problem in
Consurrent Proleg [Shapire 83), Kusalik gave s solution
to this problem [Kusalik 84].

In construct_omega_graph procedure, we vae multi-
plexer to merge multiple node processes the pember of
which changes dynamically bazed oo the Kusalik’s alge-
rithm. Multiplexer manages a stream of stream vasiables,
#ach of which corresponds to output from each sencler
pracess. 1o bebaves as follows.

If the head af & stream variable from a seader process
is instantiated to a pop-variakle term, then it is evectually
received by the receiver pocess. If some sender process
generates some output, a merge process in his selution
receives it, decreases the priority of thia sender process and
check other processes whether ther kave generated output.
If a new soder process is geperated, multiplexer creates a
new changel to communicate Lhat process, if the merge
process receives [| as a sign of end_of stream (rom scme

sender proceas, it abores thal procesa.

Each process shouid have independent and equal op-
portunity to decide whebher it trusts the selected clauses
without being aflected by the resull of other OR-parallel
proceses. Consider the followiog two programs.

Program (A}
umion{[X;51],%2,8) = member[X 52} | union(51,52,5).
union([X151],52,5} - stherwime |

§=X|Naws|, unica(5E 52, New5)

union(| [52,5) - true | 8=52

member(X,Y_]) - K== | true,
member X, Y15]) - X4v=1 | member{¥ 5}

Fragram (d)
union{X;51|,52.8} - member{X 5I.y%s] | union{51,52,5).
union{[¥!51],52,5] - member(X.52,n0} |

S=[¥|New5|, unicn(51,52 News).

unten($,[X|52),5) - member{X 51, yes) | union{5i,52,5),
unmon(S1,[X!52].5) ;- member{X 51,00] |
§=[X|New5|, union(51,52,New5).
union(| |,52,5) - true | 5=52.
unien(51,] j,5) - trae | 5=51.

member(X,[Y15] Answer) - X===7 | Anawer=7yes.
wember X [Y]5] Anawer) - Xo=7 | member|{X,5 Anawer).
member{X,| | Answer] - true | Answer—no,

Program (A} is a direct transiation frem Prolog wersion.
The predicate otherwise succeads when the passive part of
all other OH-parallel processes have failed. It ia harmful
vince the execution depends on the passive part of other
clauses. On the other band, program (B) realizes fair OR-
parallel execution o the passive part. Therefore, we try to
uae the predieaie ofherwise as lexs as possible. To avoid the
wge, we should write passive parts symmetrically, which is
reduced to the equal opportunity of decision,

4.2, Programming Faradigma in GHC
Secondly, we dizenss on programming paradigms,

ie the patterns of representing paralle]l algorithms in
GHC.

Any piece of unification inveked in the passive part
of a clauze cannof instantiate a variable appearing in
the caller. We should not wiolate this synchromaation
mechanism whea we applY some technique suck as partial
evaluation to GUC programs. We consider an example of
remaore_implication_and_rguivalence afain.

remove_implication_and_equivaleace(imply(F, G}, A) =
true |
remove_implicaticn_and_squivalence(not(F),F1],
remove_implication_znd_equivalence(G,G1)
A=or(F1,G1).

In this program, the definition is accarding to the faet that
F 2 G s logically equivalent te ~F W G, remasue
_implication_ond_rquivelencel P, F1) io this clause allows

Lthe commitment of other remove_implication_snd_equivalende

process without inpstagtiating F F'l. Therefore, we ean
apply partial evaiuation. The program showo in 4.1 ia the
result, in which evaluation proceeds one mere step ahead

than that in this program.

In logic programming, communication through shared
varlables provides interesting programming paradigme as
waa i_n'n?sL”;a.:m:i |!a}' S]-.x'piru. Hl:ru, we show a p!ﬂl:ﬂél:[.
eneccuztered [n out programming, termipation-Gag

Termiration-flag JudgeStop is a shared wasiable
among several processes. I it is instantiated to ‘step’
br some process, the message 13 propagated to the other
processes to stop them. It can make some kinds of parallel
programe efficient because it releases the sysiem {rom ex-

ecuting sunerfluous computation: as 3000 &% &0 ADSWEr I8

found. In the w-graphs rofutation procedure, it makes the
system very effective in e way that construct_omega
_groph and chees_omega_dogp freemess Tun in paral-
jel wilh @ commwon variable JudgeStop. When the
prosess check_pmege_loop_freemeas finds az w-loop
easly in the computstion, it setz JudgeStop to “stop’,
wiosk ferminates subprocesses in consiruc_omega_graph.
Thersfore, it does not ceed to ireat a large graph mer
syperfluous expansion of nodes.

Partially specificd data structures are especially useful
for utilizing potential coneurrency. Ibis an impertast cof-
cept to write betier programs together with that of com-
munication through shared varibales.

Az was described above, we can sometimes dnd an
w-lgop before the wegraph is completelr copstracted.
Therefore, we can check w-loop freeness on Lhe current pas-
tial graph white constiucting the w-graph. Twe processes
consfrucl_omega_groph and check gweega lacp freencas
have a shared variable Graph whizh is partislly specifled
during the eomputation.

Difference lizt iz a typical data structure which iz
suited for deeislon distribution. It enables processes io be
distribuied inte each step and decile the output data inde-
pendentiy. Its use provides us with pessibility Lo increase
efficiency of GHO programs, though it might cost muszh in
some Casel.

Ata the paradigms in sequential programming, $uch
as devide acd conquer, dypamic programming and generate
and test, completely of oo use 1o parallel programming ?
Or are they still nzeful with some modification !

Devide aad cerouer is & paradigm o divide the prob-
lem solve eack subprobiems independeztly and symibesize
the whsnlulions to the soluticz of the whale problem,
This peradigm caturally takes the form of general recur-
tive st¥le. Sioqn sequentiazl programs in geoeral recurtive
strle are aimest directly translated to corresponding GHOC
programs with AND-parallel proeesses, this paradigm is
sutted fer OHOC programming. We wed this paradigm in

compute_imitial_formule procedure.

Dynemie programming is 3 techmique used to con-
vert pon-repetitive programs wilk redundant compretation
imio repeditive(tail-recurave) coes with tables Lo riore the
resuity whes thev are cooe computed.

Mo matler how much resnures we =2n asseme in paral-
le] compuiation, we showd £l avoud Lmitless refnndant
eompuiation. In order to uiilizo She reculls computed ia
ooe process before, we must pass the resnits either Lirowgh
shared Tarizbles directly to ctlier processes o thraugh the
cofmaon table sccessible from other processes. [I we ge
shared variables, we need Lo span the commupieation net-
work by the shared variables. The parrdigm of dynamis
programming belp us to figure out the petwork. W ths note

work i too complicated and we nae common tables, mul
tiplexer diseunsed before is & usefu! programming concept,

Geperate and test is & paradipm to find out a solu-
tion by eoumerating cendidates in sequence and testing
each candidate whether it iz the desired one. When the
geoerated candidate solution is not the desired one, Lhe
program muost backirack once and geperate acother can-
didate, Becausze backiracking 13 oot supported in GHC,
the principle *if fail, then redo,” shouwid be changed
to the prineiple “test all candidates at the same time
and if ome succeeds, them stop the other procesyes”
Beiides, we ean sometimes eonsider an algornithm Lhat
iy maore smitakle for parallel exeeution. For example, in
check_omega_loop_freeners, each nede i3 considered as
a process sending messages each other, which is mere
eficient than the algerithm got from modifying sequential
cue,

4.3 Programming Style in GHT

Lastly, we discuas on programming style, i.e.the pat-
terny of the activities in compstructing GHC programs.

We usuzlly start GHC programming by conceiving
s rough and still vague parallel algorithm at an ap-
prapriate [evel of modules and develop it iz two directions,
downwards {refine parallelism within each module) and up-
wards (adjust and modily inter-module pasallelism). lothe
process to reach the final GHC program, we peed several
tools and envircoment devised for parallel programming.

If we harrow the viewpeint by Kewalsio, GHC pro-
grams alao consist of legie part snd coptrel part.

Different from Proiog, the coptral part in GHC pro-
frams contains mors subtle problems and needs more con-
ceiration of programmers, We usually weuld like to
confirm the logic part ar earfier ag poszible balore consider-
ing these subtls coptrol problems in parallel programs. lo
refning the paralleliam within esch module, we somelimes
modifly parailel GHC programs to sequential one and test
therm Srat. The rewson ix two fold @ cemplicated tracing
and scheculer’s overbead [especially under the breadib-

firat seareh seheduling on the sscuential mackine?,

o general, it ir difficuit {2 trzze cthe zamputation pro.
eedure of parallel programs compares with 13at of 32 lez-
tia! progrome, bacause it i3 difficult to know when wari
abica are iosiaatiated o salied are suspended Alrpoggn
eucl prucess, if ezscuted independeatly, bebave as we oa-
peeted, the wholo pregram might bebave quile diffaisc..y
from per expectziion, The more iocreasr? the number of
procestes Wiotl TG0 ok paralici, toe more sarioas this prot-
Iom becomes. As one of the selution: of Lhis problem, we
preoose the proprammipg by incremental paratlehaaliso.
Firzt, wa divide the whooe problems into madules in a proper
sive, 2nd make paraliel programming in each module with

an atieation to interfsce betwesp modules. Nemt, we toy

ta aceomplish parallensio at the upper level, We use
this programming stle in the wpper level parallelism for
making the w-graphs refutaticn and its three modules
compute_smilial_node_formuls, construct_omega_graph

and check_pmega loop_freemean.

Simce the curren: GHC tvstem does pol have an io-
terpreter, it takes quite much time and emergy for pro-
gramming and debugging. Thaugh the interpreter of GHC
might be slow, it is convenient for interactive programming
and debugping with screen editer like feddit in Lisp.

The KLl (Kernel Language Ore}, whick includes
GIIC a1 its core, is stil! under development. Further in-
vestigation of better programming exvironment is needed.

Curcent GHO debugger is rather weak. We need bet-
ter human interface which at least has the fellowing fune-
ticas. {1) show the fgure of Lthe current execution tree and
which process i3 now executed, (2) aztivate the process
degignated interactively hy the programmer. (3] priat out
the cutput of eack prosess ta the designated place on the
screan process by process.

From the different point of view, the algorithmic
debugger of GHE programs is developed|Takeushi 28] It
does not adopt the debuggiog method of tracing the exesu-
tion procedure but the one based on the ~divide and query”™
algorithm, This debugger cannot treat some types of
debnpging currently. The fupctional exteasion car provide
ut more eamfortable parailel programmizg covironment.

In eomstructing GHC programs, we oeed to check
whether the GHC program at band s efficient enough
for parailel execution. There are several measurements of
perfermance e g, CFU time, apace used and *paralleiism”.
We used the compiler develnped co DECIG-Proleg by
Mivazaki[Miyazaki 85, whick translates GHC scurce pro-
gram to Prolog code and compiles it by DECLO-Proieg
Compiler. Because the compiier emplays the breadth-first
scheduling, the system reports the number of cycles in the
execution. We can take the number of cvcles as a rough
hase for evaiuatioo of parallelism.

Amepp thess measturement to judge better GHC pro-
gram, we give higher prionity to time eficieney than less
tpace-contuming because development of parallel execu-
tion maszhine far GHC will solve the space problem. And
we give higher priority to parallelism than time besause
currently executivn time @3 mol slways eguivalect ic the
thearetical one. For example, the wegraphs refutation on
the formula 0P needs 10064ms CPU time, 47 cyeles and
the wsed global stack s 32457,

7. CONCLUDING REMARES
We have shewn our experience 1o programmiag of &
proct progedure of temperal jogie iz GHO and discussed
the paralle! programming methodology in GHC. Threugh
the expericnee, we have found & ot of ioteresting facts

and excountered some difflculties due to the difference of
she thinking style in GHC from that in sequential pro-
gramming. Further researck on the parallel programming
methodelagy and ascumulstion of experiences are necded
to be dome simultanecusly with the development of the
GHC system itsell and parailel machines for execution of
GHC.

ACENOWLEDGMENTS
This research was done as one of the subprojects of
the Fifth Generation Computer Systems (FGCS) project.
Authers would like to thank De K Fuchi, Director of
1COT, for the opportunity of doing this research and
D K. Furukmwa, Chief of the 1st Laboratory of ICOT, for
his advice and encowragement.

REFERENCES
[Clark apd Gregery B4) Clark,K.L. and 35.Gregsry,
“PARLOG. Parallel Pregramming in Logie,” Hesearch
Repart DOC 21716 lmperial Colledge of Secienee and
Technology, 1984,
[Fusanka and Takahashi B5) Fusaoka,A. and K.Takahashi,
“On QFTL and the Refutation Procedure oo w-graphs,”
pp43-54 TGALBS-31 [ECE Japan, [98S.
[Hughes and Cresawell 68) Hughes G E. and Cresswell M.J.,
* An Intreduction to Modal Logic,” Methaen and Co. Ltd,
1568
[Kusalik #4] HKousali® AT, “‘Bounded-Wait Merge
iz Shapira's Coozurrent Proleg® New Genperaticz
Computing, pp.157-169, Vel .2 Ne.2,1984.
[Kripke €9 HripkeS.A., *A Completensss Theorem
iz Meodal Logiz,* The Jourmal of Symbaiic
Logie, Vel 24 Na.] Mareh 1565,
Mazna and Pouell B1| MacnaZ. and APaueli
“Werification of Copcurrent Frograms, Fartl: The
Temparal Framework,” Stanford TH 81-836,1981.
(Mirvaiaid &3] Mivazakd, T, “Guarded Heorn Clause
Compiier User's Gude,” vnpubiished, 1985.
fhapiro 83| Shapiro £.Y ., *A Subuet of Concurrent Prolog
snd [ts Interpreter,” ICOT TH-003, 1983
[Shapira 24] Shapiro,E.Y., "Systems Programming in
Cencurrent Prelog,” Proc 11th Appual ACM Sympesium
oo Priacipies of Programming Languages, pp.93-105 1584,
[Takahashi apd Kanameri 88 TalkahashiK. aad
T Kanamari, *Un Parallel Programming Methodology in
GHC " [CQT Teehnezal Mema, to appear.

[Ueda 65 Uedn K., "Guarded Horn Clawses,” 1COT TR-
1G5, 16ES.

TWolper 810 Wolper F L., *Temperal Logic Can He More
Expresuve,” Froc2ind [EEE Symposium on Fouodation
of Computer Ssiepce, pp.d40-348 1951,

