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Abstract

One way to construct a deductive database system is to combine a deductive
camponent with a relational database management system, The deductive component
accepts Horn clause queries and compiles them into relational operations. A
method to compile gqueries is proposed in  this paper.  The method first
transforms gueries to their eguivalent normal forms by partial evaluation and
then compiles them into iterative relational operaticns. By transforming
queries, we eliminate intermediate predicates and we can handle gueries more
eificiently in subsequent processing. This transformation is called Horn Clause
Transformation (HCT). HCT may be used as a preprocessing for any other query
processing methods. After HCT, gueries are processed by simultansons least
fixed point operations, We show that complex mitual recursions as well as
simple recursions can be reduced to simple iterations. The compilation
algorithm for queries that use "not" predicate to express negation as failure,
termination conditicn of compiled programs, and some ways to improve the
performance of resulted programs are also presented,
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1. Introduction

Deductive database system has first-order logic as its theoretical basis,
The database consists of a finite set of constants and a set of first-order
clauses [GallaireB4]. We discuss here conly definite deductive databases whose
claugses are restricted to definite clauses (Horn clauses). It is easily shown
that deductive database systems are relationally complete if they are augmented
with negation as failure capability under the closed world assumption [Coddizl,
[Clark78], [Reiter78a}, [RunufuiiB2]. A deductive Gatabase system is one of the
candidates for the kernel of large scale knowledge base system in the Fifth
Generation Computer Systems Project. We have investigated this subject fram the
beginning of the project [KunufujiB2], [MivazakiB2], [YokotaB4], [MurakamiKB4},
[YokotaB6a], and the work reported here is a part of the efforts to develop a
distributed knowledge base system [Ttch86).

Reiter [Reiter78b] proposed a method to design deductive database systems
by combining deductive components with relaticnal database management systems
(ROBMS). If the databases are large, this method provides a way to construct an
efficient system, because we can use existing systems or apply known technigues
to manage fast access paths to data and to optimize the query processing. 1In
this approach, deductive components first process the gueries and generate
programs of relational cperations. If the generation of these programs are
separated their execution, this process is called compilation. The compilation
is fairly straightforward for non-recursive queries, but handling recursive
gqueries is more difficult because of the termination condition preblem, i.e.,
the processing may result in an infinite loop., If the query involves oniy one
recursion, the answer can be obtained by computing the least fixed points (or
transitive closure) of the recursive expression [Bho79], and we can easily
design the deductive component using theorem provers. One example of such
Systems based on deferred evaluation method is reported in  [Yokotaf4]
[MurakamikB4]. Similar methods are discussed in [Chakravarthy82],
[ToannidisBe], [ValduriezBe).

Several methods have been proposed *to handle more complex queries.
Henschen and Nagvi [HenscenBd] proposed a method using connection graghs. This
method can handle compléx gueries in principle, but compiled programs are
rutually recursive programs which are difficult to implement if queries have
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mutual recursion in them. A setting evaluation methed was proposed to handle
recursions by converting queries to iterative instance emumeration [Yokotagfa].
Handling complex recursive gueries is ezsier in this method because the
enumeration process is not recursive. The advantage of this methed is that
compilation is easy because detection of the recursion is not necessary.
However, this fact is also a disadvantage because even non-recursive gueries
require iterative enumeration. The evaluation of extensional database is also
not efficient becavse it has to compute unnecessary intermediate results.
Related topics are also discussed in [Chakravarthy81], {McKay8l), [Lozinski8s],
[Ullmanss], [Han8ea].

Another important problem to Cesign deductive database systems is how to
realize the negation as failure capability [Clark78], [Chandra8s]. although the
system reported in [Yokotag4] has this capability for come special cases, the
way to design compilation method feor complex gueries is not knewn. Vielle
[VielleB6] proposed a method to handle Horn clause queries not using
compilation, and discussed the way to handle "not™ in complex gueries.

In this paper, we propose & method to compile deductive queries to progrens
of relational operations. Our apprcach 1is to transform complex gueries to
simpler equivalent forms before actual compilation. By doing this, queries can
be processed more easily and efficlently in subsequent procescing, fThis
transformation process can be used as a preprocess of any query covaluation
method proposed in other literatures.

After simplification of gqueries, we convert queries to  relaticnal
operations. We can handle any recursive gueries by reducing the problem to
simultaneous least fixed point operation, which can be realized by sinple
iterative programs. We also discuss the way to handle negation as failurc as
well as its termination condition. The characteristics of the methed are
summarized as follows,

{1} It reduces complex recursions to simple recursions and then handles them by
iteration,

(2) It converts nen-recursive guerics to non-iterative programs of relational

operations.
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{3) Evaluatiocn of non-recursive intemediate expressions is not necessary.

(4) It can handle necation as failure {"not" predicates).

Following topics are presented in subseguent sections. Section 2 shows the
cutline of the methcd., Trancsformation methcd of Horn clause gueries to simpler
forms is discussed in section 3. The conversion of a gquery to reletional
operations and executicn of the converted result are described in section 4.
The way to improve efficiency of the algorithm is discussed in section 5.

Z. OQutline of the compilation

2 doductive database consists of a set of forn clauses. A set of ground
unit clauses is called as extensional database (EDE) and stored in a relational
database. The mapping between these clauses and relations is a well known
one-to—one correspondence between a fact and a tuple based on first=order logic
(GallaireB84]. For instance, & fact parent(taro,jiro) corresponds to a tuple
¢taro,jiro> in parent relation. Other clauses (rules) belong to intentional
database {IDB). A query consists of & goal clause and & set of rules, Thus, we
pse rules given in a gquery and those in IIB to answer the guery. These rules
are combined together during or before compilation. Because IDB includes rules
that are not related to a guery, rules necessary for the query must be eytracted
first., Once the extraction is done, we @0 not have to distinguich these two set
of rules, Therefore, these two rule scts are not distinguished in most part of
thig paper. Horn clause queries may be ad hoc gueries asked by human users or
embedded in a program [MivazakiB2] [Miyazakige].

Tn cur model, a deductive database system consists of a deductive component
and a relational database maragement system (RIBMS). These two components are
somesimes called &= an imtentional procecsor and an extensional processcr. The
deductive compeonent accepts a query and compiles it into & program that includes
= set of relational queries. Then, it computes the result of the query by

executing the complled program using ROBNS,
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The query processing aleorithm is divided into three stages.

(1) Horn clause transformation (HCT):

The system analyses & given guery and detects recursive predicates, It
also transforms the query to an eguivalent extensional normal form, The
extensional normal form is defined as a set of clauses whose body  contain  only
recursive predicates, extensional predicates, and comparisons., Extensional
predicates are special predicates that indicate that corresponding  facts are
stored in an extensional database. Extraction of necessary clauses are also
done by HCT.

(2) Generation of a program containing relational dueries:

Ine resulted program is iterative if the guery includes recursive
predicates, and it is non-iterative if the query does not involve recureion,

(3) Execution of the compiled program,

The basic algorithm of HCT and its extension to more general cases ars
discussed in Section 3. Generation of the program of relational operations is
similar to that in [YokotaB6a), and we diccuss its basic algorithm and the
termination condition of the resulted program in following sections.

3 Horn Clause Transformation

3.1 Basic ideas

We assume that the rules given in a query and IDB are combined togetner
before transformation begins. In other word, rules are treated as if all of
them are given in a query. Horn clause transformation (HCT) is  an algorithm
that detects recursions in a Horn clauce query and transforms the query to an
equivalent extensional nommal form that contains only certain types of clauses,
HCT is done by deferring the evalustion of predicates that reguire the
extensional database or that are recursive during the evalvatien of the query by
theorem provers such as Prolog., HCT can be done either cepth first like Prolog
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or breadth first 1like retrieval by unification proposed in  [Yokotageb)
[MurakamiMgs] [MoritaBe]. Tf there are rules not related to the guery, HCT
extracts only necessary rules from the rule set.

We illustrate the principle of HCT first by an example,

[Examplel ]
:— ancestor (X, Y¥).
ancestor (¥,Y) :- parent (¥,Y).
ancestor (¥,Y) :— parent (¥,2),ancestor (I,Y).
parent (X, Y) := father (¥, Y).
parent (¥,Y) := mother (X,Y).
father (X,¥) - edb(father (X,Y}).
mother (X,Y} := edb (mother (X, Y} ).

Here, edb is an extensional predicate t indicates that the corresponding
facke are stored in EDE. An AND/OR graph expansion of the query is shown in
Figure 1. It is a partial AND/OR tree expansion, and is an MND/OR graph because
there is an implicit edge between "ancestor™ nodes to express recursion.
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ancestor (X,¥)

parent (X,Y)
y
father (¥, Y) mother (X,¥) parent (¥, %) ancestor (Z,Y)
/
J.-"
edb (father (X,Y)) edb (nother (X,Y)) |
/
/

father (¥,2) mother (X,2)

|
edb (father (¥,2)) edb(mother (X,2))

Figure 1 ANMND/OR expansion of ancestor

If we find a predicate that is same as one of its ancestors during the
expansion, we do not expand it further but wemcrize it as a recursive predicate,
Extensional predicates and camparison are not evaluated too. Other predicates

are expanded. Thus, AND/OR expansion of Figure 1 is equivalent to that in
Figure 2.



ancestor (X, Y)

sstor o
//f ‘“xh

T
“N\
edb (father (X,Y)) / \ mtm (2,Y)
Edh{mther X, ¥)) /{[ edb (mother (X,Z))

|

edb (father (¥,2}) l

ancestor (Z,Y}

Figure 2 Eguivalent AND/OR graph to Figure 1,

A set of Horn clauses which corresponds to Figure 2 is as follows,
the result of HCI, and ancestor is detected as a recurcive predicate,

[Result of HCT]
= ancestor (X,Y).
ancestor (X,Y) :— edb{father (X,¥)).
ancestor (¥,¥) :— edb(mother (X,¥)).
ancestor (X,Y) :- edb(father (X,2)),ancestor (4,Y).
ancestor (X,Y) - edb(mother (X,%)),ancestor (Z,Y).

Fage B

This is
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We can consider above set of clauses as a query egquivalent to the original
guery. Because the transfommed query does not include intermedizte predicate
such as "parent” and we know whether the query is recursive or not, it is easy
to convert it to a program with relational operations as discussed in Section 4.

BCT handles gueries by rpartial evaluation and can be regarded as a
variation of deferred evaluation algorithm. It detects ard stops the expansion
of recursive predicates during the AND/OR expansion of a query. If a predicate
that corresponds to an OR node is expanded, its parent node becomes an OR node
instead of the expanded (eliminated) noda. Therelore, it is an &lgorithm that
moves OR nodes nearer to the root. It handles A nodes in similar WEY .

3.2 Basic Algorithm of Horn Clavuse Transformation

The realization of HCT can ke done by depth first way or breadth first way.
Because we can use backtrack capability of a logic programing language, the
implementation by depth first would be easier than the one by breadth first,
However, the depth first way is not suitable to explain the zlgorithm because of
backtracking., Therefore, we show here the besic breadth first algorithm.

To simplify the basic algorithm we restrict the syntax of clauses as
follows. The expansion of HCT to relax these restrictions is discussed in
Section 3.3,

(1) Predicates that appear in bodies and the goal are either extensional,
comparison, or those which appear in heads of clauses.

(2) Extensional predicate has only one argument that is a function to indicate
corresponding relation. The argurents of this funchion must be variables,
Further, the arguments of predicates other than comparizon are alsc variables.

(3) Each variable in arquments of head predicate must appear as arguments in the
body of the save clause.

{4) There are no clauses without body part, i.e., all unit clauses are assimed
to be in Foa,
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The first restriction is introduced to simplify the discussicn. We later
discuss the way to handle a second-order predicate "not" for negation as failure
capability. The second restriction 1s to guarantee that all related clzauses are
inspected when the AND/OR tree expansion is halted by the detection of recursive
predicates. Because this restriction is too strong, the way to relax it is also
discussed in later section. The third and fourth restrictions prevent (part of
the ) result being obtained without referring ELE,

The syntax of clauses is similar to the one in DEC-10 Prclog. We use &
kind of pseudo-clauses in the form [head := body| edb-body | predecessors |
recursive-prd.] to express temporary result in the process of computation,
Here, "head” and "body" correspond to ordinary head and body respectively,
redb-body™ is a transformed expression to be eveluated using EDB, "predecessors’
is a set of predicates that have been deleted from the body during RMD/CR tree
expansion, and "recursive-prd" is a set of predicates that are recursive.

First, we introduce a partial evaluation algorithm for breadth first
expansion. More detailed description is found in Appendix A.

Procedure BFFE (goal, ILE, Temp-rules, Subgoals);
/* Breadth First Partial Expansion */
/* Input: goal, IDB(a set of rules in the guery) */
/* Output: Temp-rules */
/* Input & Output: Subgoals */
begin;
recursive—prd := Subgoals;
/* Expansion of the root */
Find rules in IDB that unify to goal and
construct 2 set of pseudo—clauses;
/* expansicn of nodes other than root */
repeat until no change GCCurs;
for all pseudo—clauses do;
change body of pseude-clause by moving
predicate not to be expanded to edb-body;
/* edn, comparison and recursive ones are not expanded. %/
if predicate is found recursive add it to recursive-prd:



/* It is recursive if it is found in predecessors. */
end for:
J* expand nodes ®/
for every pair of T in the set of pseudo-clauses
and R in IB do;
if the left most predicate of the body in T
unifies head of R then construct
new pseudo-clause from them;
end fors
end repeat;
Subgeals := recursive-prd;
end BFPE;

The Horn clause transformation is done by using BFPE as follows.

Procedure HCT (geal, IDB, Transformed-rules);
begin;
/* detects the recursive predicates */
recursive-prd := {};
call BFPE(goal, IDB, Temp-rules, recursive-prd);
/* check if the resut is already obtained */
if recursive-prd = {} or gozl is the only element
of it then d&o;
Transformed-rules := {[head :- edbbodv] of Temp-rules!l:
end else do;
/* reprocess if the query is camplex */
for goal and every element of recursive-prd R do;
cail BFFE(R, TIB, Temp-rules, recursive-prd);
Transfomed-rules := ++ {{head :- edb-body] of Temp-rules};
¥ "H" peans add new elements %/
end £or:
end else;
end HCT:

Fage 11



Page 12

Because the basic algorithm for Horn clause transformation stops expansion
when it detects recursive predicates, and because the number of the clauses in
I0B (guery) is finite, the algorithm alwayes halts for any query. The algorithm
just simulates the breadth first way of first-order theorem provers except that
it defers the evaluation of recursive predicates and other special predicates.
Therefore, the result of the Horn clause transformation is eguivalent to the
criginal gquerv.

The basic algorithm consists of recursion detective phase and
transformaticn phase. The reascen for this configuration is that the first phase
itself is not sufficient if there are recursive predicates other than the goal.
If the geal is only recursive predicate in the guery, the first phase generates
required result.

An example that reguires both phases iz shown below. The arguments of
predicates are not shown because it is not essential in this example,

[Example?]

i= a.
- edb(g).
= b, edbic).
:= edb(h).
= 4, edb(e).
= edo (£) ,b,a.

o O T obpow

There are three motually recursive predicates "a", "b"™ and "d". The result
of the first BFEE call is as follows.

- A,

a := edh(g).

a = edbih),edb(c).

a == edh(f),b,a,edole),ednic).

Two recursive predicatez "a" and "b" is found, and "d" is eliminated.
Recursive predicates that are not self recursive may be eliminated by
transformation. Self recursive predicate is defined as a predicate that
includes itself in clauses defining it. The above result is almost eguivalent
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to the original query, but it is not evaluable with ETR because the definition
of "b" is not shown in the transformed form. Therefore, we use procedure BFEED
again for the goal "a® and subgoal "b". bNote that recursive-prd is set to {a,b]
when BFPE is called. Tne result of the second phase is azo follows.

= a,.

a :— edb{g).

a2 :— byedaic),.

B o= edb(h).

b ;= edb(f),b,a,ed(e).

Thus, we cbtain an extensionzl normal form for the query.

3.3 The Property of Horn Clause Transformation

Main features of HCT are as follews.

(1) HCT extracts necessary rules to answer a guery fram rules in the query and
ile. IIB may be very large and only a fracticn of it is used to answer a query.
The extraction should be done at early stage for efficiency reasons, and HOT
does it during transformation process.

(2} ECT transforms a rule set ol @ guery to an eguivalent extensional normal
form. This means elimination of non-recursive predicates that define virtual
relations.

(3) HCT eliminates scme of the recursive predicates that are not self recursive
in original form,

The processing of a camplex guery is a lot more tine consuming than the
simple one, although we can handle any recursions as shown in Section 4 and
[YokotaB6a] [VielleB6]. Therefore, transforming a query into an extensional
normal  form and eliminating same of the recursive predicates reduce the time “o
evaluate a query. The time saving effect is very larye when nutually recursive
query is transformed to a simple recursive one, because the latter can be
evaluated efficiently as discussed in section 5.
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It is interesting to see the effect of HCT in tems of connection graph
() used in [HenscenB84]. A G of a guery is a directed grapgh where each node
represents a clause and each edoe represents unifiability between a pair of
clauses. 2n edge ic directed from a predicate in body to a unifiable predicate
in head. A potential recursive loop (PRL) 1s a cycle in CG.  An edge leading
from a cycle out of it is called exit edge. The AND/CR expansion of the query
corresponds to traversing its OG. Roughly speaking, HCT transforms a PRL of any
length to the one with length 1 unless it intersects another FRL. An existing
edge leading to 2 node that defines non-recursive intermediate predicate is
transformed to the one or more edges leading to extensional predicates,

3.4 T™e Extension of Horn Clause Transformation

The restriction of the query form introduced in the previous section is teco
strong if we want a deductive database system that is truely improvement over
the relational database system. Therefore, we discuss how to relax these
restrictions in this section. First we discuss the way to handle negation as
failure capability, and then we allow the use of constants in arguments of
predicates, There are ways to relax other restrictions, but these two
capabilities sufficiently broaden the function of the systen.

{1) Introducing second-order predicate "not”

To realize negation as failure capability, we introduce a second-order
predicate "mot". The "not" roughly has same meaning as DEC-10 Prolog. II we
allow "ot" in a deductive database system, it is relationaily complete
[Codd72], [Hunufuji8l).

The handling of "not" is similar to recursive predicates. The cvaluation
elgoritim moves "not" from the body to edo-body in a pseudc-clause. At the same
time, it memorizes content of "not" as a subgoal that must be expanded later. A
recursive predicate is already expanded when the algorithm detects it, because
the detection is done by finding same predicate to its ancestor node during
expansion. On the other hand, the content of "not"™ is not expanced when the
algorithm finds it. Therefore, the content of "not" must be expanded later.
™e detection phase of the HCT must call BFPE repeatedly if there are "not”
predicates in the guery.
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An exanmple of the use of "not" is shown below.

[Example 3]

= a.

a = edb(h).

a 1= edb(c),a,not(d).
d - e.

e =~ f.

e := f,a,

f = edb(f).

We find that "a" is recursive and "d" is in "not" by the first call of
BFPE.  Therefore, we expand "d" by calling BFPE, and find "e" is recursive,
Thus, we expand "a", "d", and "e" in transformation phase and get the following
result.

- a.

a: = edbib}.

- edb(c),a,not (d).
- e,

= edb(f).

:— edbif),e.

1]

m @

The algorithm with the above extension halts because there are orly finite
numzer of clauses,

(2} Use of constants in arguments

By allowing constants or instantiated variables in the arquments of a geal,
we can improve the capability of the system. We can also simplify the clauses
by allowing conslants as arquments of usual predicates, although we can specify
e eguivalent query without this capability., The clause (2, Y] 3=
D(X,%,Jire), c(Z,taro).] is more elegant than [a(X,¥) :- b(X,2,21), c(2,22},
Zl=jiro, Z2=taro).]. The use of constants in heads is also scoretimes
comvenient.
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Constants in a goal can be handled by converting it to variables before the
HCT and reconverting it to constants after transformation. Constants in other
predicates can be handled by similar way. But this method may expand clauses
that are not really used in the usual theorem prover, and generate unnecessary
clauses that do not produce ary answer.

Thne other method to handle constants is to change the detection phase, If
a recursive predicate is found then we call BFPE repeatedly until its most
general form is found.

The following is an example of constants in guery.

[Example 4]
1= ancestor (taro,X).
ancestor (X,¥Y) :- parent(¥,Y).
ancestor (X,¥) :- parent (¥,Z),ancestor (Z,Y).
parent (2,Y) - father (X,Y).
parent (X, ¥) = mother (¥, ¥).
father (X, Y) i~ edb(father (X, Y)).
mother {3, Y) - eds mother (X, Y)).

[Result of HCT]
1= ancestor (taro,Y).
ancestor (X,Y) :- edb{father (¥,Y).
ancestor (X,Y} :— edb{mother (X,Y¥).
ancestor (X,Y) :- edb{father (X,2)),ancestor (Z,Y).
ancestor (¥,¥) :~ edb(mother (X,2)),ancestor (Z,Y).

The head of resulted clauses 1s ancestor (X,¥) rather than ancestor (taro,X)
because the latter is not the most general form in the expansion.

4 Compiling Queries into Relationa! Operations
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The transformed queries are compiled into programs of  relational
cperations, and they are evaluated using E'B. The conversion process is similar
to the one used in [YokotaB6a]. te that we have detected recursions and
eliminated intemediate predicates before conversion, although most of the
discussions in Section 4 and 5 can be appiied to original queries. Unit
resolution is used in [Yokota8fa] to prove the eguivalence of the iterative
instance enuweration to the original query. Similar proof can be given for our
algorithm. But we use relational calculus to explain the conversicn go as to
show the correspondence of two expressions. We assume at first that there zre
no constants in geal and head predicake.

4.1 Seni-Domain-Relational-Calculus and Semi-Relational-zlgebra
4.1.1 Semi-ERelational-Calculus

If the bodies of clauses consist only of extensional predicates and
comparisons, the heads are predicates that match the goal. Therefore, there is
the follewing correspondence between & Forn clause and Gomain relational
calculus,

r o= gl,g2, ... .40,
=3
V(variables not in gi)
F(variables of gi)(r v "gl vye...,v “gn}
L2
{r(tl,...,tk} |3 {variables in I NG PPIIL LR

O is a conditional expression for the variablee
and constants,

If there are more than one clause with same head predicate, the
corresponding expression ir relational calcwlus is "OR"ed. In usual domain
calculus, all relations that appear in expression must be real relations in FoR.
In our semi-domain-relational-calculus, the expression may include not only rezl
relations but alseo virtual relations that are defined in other expressions.
Tus, a query is expressed by a set of expressions that define virtus®
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relations. 1If these expressions involve no recursions, the difference between
vepal calculus and semi-calewlus is nothing but mere notation. We allow
recursive expressions in semi-relaticnal-calculus.

4.1.2 Semi-Relational-Algebra and Comversion Rules

A guery in cemi-relational-calculus has an equivalent
semi-reiational-zlgebra expressions. Semi-relational-algebra expressions can be
oovzined by expressing each calculus expression by relational algebraic way. It

iz ewtended algebia because we &llow recursive expressions in semi-algebra.

n  query expressed in  Horn  clauses can be converted to
semi-relational-azlgebra by following conwersicn rules, These ruies are used to
covert each clause to semi-algebraic expression. The expression corresponding
5 a query is obtained by union of conwerted expressions that correspond same
head, Constants and instantiated variables in goal are regarded as a selection
coperator over the result in this subsection.

(2} Conwversion of clauses without "not”

The conversion of clauses that do not involve "not" predicate 1s done Dy
following conversion rules.

e I - Y. £ 1 = B + S+ 8
—>
= 70 (G (gl*gZ*...*qn) ] (1)

bere, pl,c2,...,p] are comparison operators, dl,gZ,....qgn are either
extensional predicates or recursive predicates. They are also used to express
relations corresponding to rredicates with same names. "o 1s a selection
operator that corresponds comparison predicates and equivalent variables in the
arguments of predicates. "x" is a projectivn operator which corresponcs  the
~arping of arguments in bodv to those in head. "*" denotes Cartesian product of

5

relations,
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The wonversion rule (I} is a general formula, and the converted expression
is not in efficient form if it is Girectly evaluated because of Cartesian
product. Therefore, we should distribute corditions in selection operator over
reiations and use join operations to evaluate the result,

(2) Corwersion of Mot" predicate.

We have to restrict the syntax of Hern clause if we allow "not" in it. The
reascn of this restriction is that some of the clauzes such as r{t) = notig(t))
is not convertible to safe expressions in relaticnal calculus and do not  have
cerresponding algebraic expressions. The restriction is ros very strong in
practice, because most expressions excluded by the restriction can not be used
to produce values in theorem provers such as Prolog.

[restriction of syntax for "not" predicate]
(a) Each of variable arguments of the predicate in "not" appears in other (not
in "not") predicates, or it iz comnected to arguments in other predicates by

"equal"™ condition.

{b) The arguments of predicates in "not" tha: & not satisfy (a) are nci
arguments of oredicate in head.

¢} Those arguments of predicate in "not" that do not satisfy (z2) nor (B) must
te instantiated to constant at run time,

The restriction {a) and (b) can be checked before Program  containing the
query runs, but (¢} is known only when the guery is cxecuted. The claise
containing "not" is converted to semi-relztional-zlgebra expressions as follows.

[Definition] Semi-difference: - 2

A semi-difference R =«4; S5 of relations R and 5 is cefincd with & conditir=

f on attributes of R and £ being gciven.

R-¢, S§=R-RbECS
=R - Tg (R pf< ),
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where "-" iz difference operator, "bf4" is join, and "PE<" is semi-join.
[conversion rule]

r - plyp2y...,pilnotigl),notig2), ... motigjl.
—_—

J
T(p- Ulppfi<gl))

r =
w2
A .-":'I Y
=T inp=,, 49ij)
4=7 it
=T leen (o =y Q) =y 92)eer =gy @)y, (1)

where p is an expression given by converting pl,p2s...,pd by rule (I) and
eliminating projection, Kany clauses can be converted to algebraic expressions
involving difference rather than semi-difference in practical cases.

4.2 Evaluation of queries without negation as failure capability

I1f the original guery is not recursive, the converted guery in
semi-relational-algebra is not recursive. Morecver, it does not include virtual
relations in the right hand side of the expression, because corresponding
clavszes zre eliminsted by BCT Therefore, it is just an expression in
relational algebra and can be evaluated by & relational database management
system, Even if expressions include virtual relations, they can be evaluated
ohe by one, or resultant set of expressions can be reduced to a single
expression by substituting expressions of virtual relations.

Cn the other nand, the result of corwersion can not be reduced to ordinary
relational aleebra if the original guery is recursive., The evaluaticn of a
recureive query L8 Giscussel in this section, Suppese a guery 1s expressed by a

set of semi=relzsicnal-aloebra expressions as follows.

where ri's are virtual relatiens +that correspond to the goal or recursive
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predicates, and gi's are real relations corresponding to extensional predicates.
We use an iterative algorithm to evaluate the query. The algorithm calculates
simul tanecus least fixed points (SLFP) of above virtual relations., Usual
algorithm to compute least fixed point (LFP) is just a special case of our
algorithm as shown in Section 5.

Let us consider following seguence of relations,

&)
I

B £ ,
M —f;_{q;” 'qi:-““'qf:,-'rr-{,’riz r---rr{ﬂ} (1=1l;¢..,n)
r? = {1, g

Then, SLFP are given by,
l.".. = l.i.'l'l‘l r_,‘R M {i‘l;E;---;n} TR {N}

[Theorem 1]

The alogorithm (IV) converges in finite times of iteration, and the result
of (IV) satisfies {III),

This Theorem is an extention of LFP operation discussed in  [2ho79]. The
proof is given in Appendix B. The principal reason why SLFP exist is that
cperators of relational algebra is monotone except for difference. Thus, we can
evaluate a recursive guery by SLFP operation, and the problem is reduced to
simple iterative program. Note that the algorithm gives least fixed points, but
not every possible answers for the query. For instance, any relations satisfy
(r=r], but the LFF of r is {}. This algorithm is slichtly different fram the
one in [YokotaB6a], which is given as (IV') below.

H1 ¥ 4 a
L. =r, \ fi{qi.’q;;""’qﬂ'rm’riz""'r*m]'

n

;) {1
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L= = lj-.m rj‘. . {_‘:.:1;2;..4;1'[} {Ivij

1(_ =0
It iz easily shown that (IV') always converges and if (IV) conwverces both
give the same result. The evalustion by (IV) 1s more efficient than by (IV').

4.3 Bvaduation of gueries with negation as failure capability

A guery that includes ™not" predicate can be converted to a set of
semi-relationsl-algebra expressicns as shown in previous sections. HBowever, the
algorithin (IV) may not «comverge 1in  this case because difference
(semi-difference) operation 1is not monotone, We discuss the condition for the
conwercence, and give & sufficlent condition.

Consider an AND/OR graph that corresponds to a query in extensional normal
form. Mot" predicate is expressed as a node whose content (predicate) is a
goal of subgraph that corresponds to the AND/OR expansion of the predicate. The
edges of the graph are directed frun parents nodes to child nodes in MD/CR
expansion. We may decampose the graph into a graph of subgraphs. A subgragh is
said evaluable if it does not have cutgoing edces nor nodes corresponding to
"not" predicates. Any predicates in evaluable subgraph can be evaluated using
the algorithm discussed in the previcus sections.

We introduce a concept of decomposably evaluable as follows,
(1) Bn evaluable subgraph is decomposably evaluable.

{2) A subgraph is decomposably evaluable if all of its ocubtgoing edges point to
decanposably evalpable subgraphs.

Thus, there is a class of gqueries whose eguivalent AND/OR graph is
gecanposed  inco a grapn of decanposably evaluable subgraphs. These graphs are
sald decomposably evaleable, We can check the decomoossbility of an END/CR

graph corresponding te a guery as follows,

(1) Belect & head predicate,
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(2) Expand it by BFFE in secticer 3.2, If it stops without finding "not"
precicates, then add it to the set of decomposably evaluable predicates, If it
cetects "not" predicates check the content of it whether or not its content is
in the set of Jdecomposably evaluable predicates, If all the content of "not"
are found in the zet, add the expanded predicate to the =et. Otherwise, go to
(1)

{3) Stop if there are no hezd predicates not included in the set of decemposably
evaluable predicates or there are no changes in the set while checking zll the
remaining head predicates,

The number of predicates ina set of dlauses for a gquery is finite.
Therefore, the checking of decoampesability can be done in finite time. It is
clear that we can evaluate decompesably evaluable query by evaluating subgraghs
one by one starting fram evzluable subgraphs, It is alse clear that SLFE
operation of the whele guery converges if evaluation of subgragh Ly suhgragh
conwverges, Thus, we obtain the following theorem,

[Theorem 2]

The algorithm (IV) corwverges in finite mumber of iteraticons if the 2ND/CE
gragh corresponding to a given guery in extensional normal form is decomposably
evaluabie. The result of the algorithm gives the answer of the guery. ‘The
other way t¢ handle gueries with "not" is to use (LV'} instead of (IV). Because
{Iv') always conwerges, we do not have to worry sbout infinite loops, But we
have to check if the result satisfies (TII) after computing it by (TV').

S, Efficiency Consideraticns

We have discuss=ed the general algorithm for query evaluation in previous
sections. However, this has fwo msjor drawbacks. Onc iz the iteratien irmvelves
cerlain redundancy. The other is the treatment of constants in the geal. 1=*
us consider improvement of the algorithm ir this section,

5.1 Redundancy elimination

A corverted query expressed by (III) can be refarmilated as chown below.
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r. =limrh
]

rf =1}

%

r"".'?'; = fiv‘ {th 'qLLr*.'qu‘:’-}

8

b .
U f. {qéllqiirim-rqﬁirr{_l ’ILE ;-.-,f‘ﬂ}

2
{i=]j‘2!!-!rn] t--{III?]

where [; corresponds those rules that do not contain recursive predicates and
f;z corresponds other rules. Then,

lim . = rf (N is an integer: see Appendix B)
fp o0

-
n

£ (g iy reeenqy)

o
U £ (g . N
L 4

3
- - .. .'L' r LR I' -
-qu- -qu P, ’ )

L[] Ly

2

Therefore, we find followings,
{1) We do not have to evaluate repeatedly, It can be evaluated at the
beginning and is & part of the final result.

(2] We can start iteration fram r; = I
for :E = {} (i=1,2,+..,0}.

., instead of ¢ = {}, because £ = {}

(3) The goal can be evaluated after the iteration if it is not recursive itself.

Next, let us assume that there is only one recursive predicate in & query
and the recursive predicate appear at most only once in the body of a clause.
Then, r = fl{{a}) v £2(igl,r}, where {g} is & short hand notation for
gl, g2 e rg]s

E . >
ot S El(gh U £2 (il

* b ¥~ 'E-"
= fitfel) v f2(igh'valr ")) )
£ . -
= f1({4)) v L200gh, ™' )y f£2(ighd })

=ty o2iighac®
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4 f-'-" N i
where we pot d(r ) =™ =",

ALk 5 T — -
Thus, we obtain r =1 ud(r") if we put a(r") £2(al,...,q3,d01 ).
Tnerefore, we can get sinple elgorithm for this case as follows., Consider the

sequence d{r"!} such that,

dir’) = £1({{q}) r
ar: ) = £2({q},de ™).

Then,
[+ 1
r=U aihy =y au™y. e (V)
1= fi=g

Thus, we obtain usual transitive closure operaticn used to compute  least
fixed point [Rho78]. Algorithm (V) can be &lso used for a query that inwvclves
more than one recursive predicate and all of themn are independent,

5.2 The trestment of constants

The constant or instantiated varizbles in the goal (or in rules) cap be
regarced as coenditions of the guery. The simglest way to handle constants is
apoly a selection operator after the evaluation williout constants, However,
Uils results in unnecessary coarputation because we have o comppute whole
recursive relations before applying the selection. 'fhis problem was  discussed
in [AhoT75] [Henscen84] [UlimanB5] [Vielle28). [Ahc78] anzlyses cammutabilivy of
selection operator and LFP operation. [Vielle86) proposes a method that can be
regarded as an extention of nested-loop jein or tuple substitution method of
relational database query processing, Others proposed rnethods that can  be
applied tc special cases., We wouwld like £o preserve sebt oriented nature of
relational operations because we are able to apoly technigues  developsd fo:
relational operation such as merge -oin and those used in database machines for
cet oriented cperations. Rlihwugh we have not obtained an efficient algorithm
for general class of queries yet, we believe that preserving set oriented nzture
is essential in distributed enwironment o reduce interactions anong  related
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gites,

Let s consider algorithm (V) again.

C =ﬁd{rﬂj

aC

=U £2({gi, f2{{gi,-.. £20a}, 1 {igin i},
#=8

-

Let "o" be the selection operator that corresponds constants in the goal.
It cof2{{a},R) = £2({a},cR), then ">" is commutative with LFP. That means, we
can campute CR instead of R directly in the algoritim (V). This camuutability
can be checked during HCT. Applving the extended HCT discussed in 3.3, if the
head predicate (recursive predicate) is as cgeneral as  (or nore ceneral than)
itself in body the selection is commutative. For instance, if the goal is
ancestor (X, taro] instead of ancestor (X,Y) we can get a clause [ancestor (¥,taro)
= edb(father (X,%)), ancestor!{Z,taro}] and another one in the ssme form,
Because the head predicate is same as itself in the body, 7ancestor (¥,taro) can
be directly evaluated by &lgorithm (V). The evaluation is efficient because we
can apply selection first strategy and the i+ith step of computation can ke done
using the resiit of the i-th step.

Lext, we discuss the opposite case of the asbove, i.e., the case & £2({gl,r)
= f2(cigl,r) where ofg] means "0" applies to scme carbination of ¢ 's in the
expression f2. In this case, algorithm (V) results in ¢ R =y £2(gl,
f2({gl,..orf200Qt £10{Gl))). Tt is not efficient to use this eguation to
compute the result. It is not efficient because we cannot use selection first
strategy and reuse of the previcus result at the same time. This redundancy can
be sometimes avoided by storing the form of the subssquent steps and checks the
redundancy as in [Yokota&4], but this kind of checking is time consuming itszlf
and sametines fails to detect the redundancy. The other problem of (V) for this

case ls the difficulty o Getermine termination of the iteration,

This class of gueries can be processed efficiently if they salisly certain
conditions discussed hbelow. rirst, we assume that £2({q},R) = £2(0,R) where Q
ic a relation expressed by Q=g({g}). Queries that have only one cdlause
corresponding Lo f2 always satisfies thic condition. The "ancestor™ evample

satisfies this aithough it has two clauses for f2. Second, we assure that there
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exists £' such that £2(A,£2(8,C)) = £2(f' (8,B),C).

With these conditions, let
E'q..‘l" = fl {SLIQJ

SE =0

then, we can easily prove that
a(r™'') = £2(Q,6(r"))
= f2(s* ,d({r'"™*)). vens (VIa)

Let j=i and we get
de') = £2(s ¢ ,a0%)
= £2(s* ,£1({g})). ees (VIB)

Therefore, we can campute "r" by computing d{r;"} by (VIa) and (VID). Note that
the termination condition is s*'c U s but not d(r‘)cr".

g~k

Now, we return to the case ¢f2(Q,r) = £2(Q,r). Because & £2(R,£2(B,C)) =
£2(on, £2(B,C)) = f£2(f'{A,B),C), we can compute "Ar" by replacing s =0 with
s =pQ in (VIa). This algorithm is efficient because it is selection first ang
uses previous result in subsequent processing. Similar algorithm for & specizl
case of queriez having only one recursive clause and its variaticns are

discussed in [HanB6] with comparisen ef performance.

We have discussed algorithm for two extreme cases. In more aeneral  case,
i.e., of2({gl,r) = £2(r, {q},0:r), we apply either algorithm (VI) using £1({&ql}
instead of f1({g}) in (VIb) or algorithm (V). In algorithm (VI), we bhave to
find whether necessary two oonditions hold for a given query, It is usually
¢agy to find whether there exists Q = g(lgl) for a given £2, For the sercnd
conditien, f£2(R,£2(B,C)) = f£2(f'(A,B),C), we can usually find £' by comparing
two alternative expressions (corresponding to z:-(4g>,<g>),r and Li=<g>, (<go,r))
for a clause obtained by substituting r by its expression,

{Examples]
Query for "ancestor's friend"> [VielleB6]
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:= ancfr (X,Y}.

ancfr(X,¥) - edo(friend (X,Y)}).

ancfr (X,¥) :— parent{(¥,2), ancfr(Z,Y).

"Parent” is defined in terms of father and mother.

<Ihe resul: of HOTS

= ancfr (X, Y).

ancfr (X,Y) :~ edo(friend(X,Y)).

ancfr (X, ¥) :— edb({father (X,Z)), ancfr(Z,¥).
ancfr (X,¥) :- edb(mother(¥,2)), ancfr(Z,Y).

<Semi-Relational-Algebra>
ancfr = friend U TT, q{Iather W ancfr)y T, ,(motherpd ancir)
' 3=y z=1

= friend U T, y{ (father U mother) p{ ancfr)
2=

Thus,

fl = friendg

£2 =, [0 2$__-:‘|[ ancfr)

0 = father v mether

f' =T,y (A M B).

21y
In the above example, possible gquery forms  are  "i-ancfr (¥,Y).",

"e—anefr(cl,Y). ", Me—ancfr (K, c2). ", ard "r—ancfricl,c2).". Corresponding
"gelection operators" are "all®, “¢T=c.“' n (}‘_:c.:, and "q:c.nz.-c,"' respectively.
Algorithm (V) can be used for condition "all™. "Gy is camutative with LEFP
cperation and aigerithm (V) is applied. "',-::: c.h iz not commutative with IFP, and
algorithm (VI) is applied. Because "(_, ,,.c, " is partially camutative with

LFP, we can apply either (V) or {(VI} for this guery,

6. Conclusicns

We have presentec 2 method to complle Horn clause gqueries in deductive
databases. Most methods so far proposed in this field directly compile or
interpret gueries a= they are given. In these methods, optimization is

considered as selection of execution strategy. Conplex gueries would be
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difficult to handle or result in redundancy in these methods. In our aporoach,
gueries are transformed to simple eguivalent forms before actual cempilation,
This transformation, HCT, is a powerful tool to reduce the complexity of
gueries, and much of the work reguired to evaluate queries in subsequent steps
is saved by it. HCT can be used as preprocessing of any algorithms which handle
recursive queries, because it preserve syntax of queries.

The latter half of this paper discusses the generalization and improvement
of the compilation method proposed in [YokotaB8a]. We have shown thas any
queries can be converted to simple iterative programs of relaticnal dakabase
cperations, and have given a sufficient condition for the terminaticn of the
programs. Some ways to improve the efficiency of resulted programs are also
discussed, although their applicability is limited.

We implemented a small prototvpe system that realizes HOT and  simultaneous
LFP. A depth-first partial evaluation instead of breadth-first is used in the
prototype, because we implemented it in Dec-10 Prolog using meta-programuing
technique proposed by Bowen and Kowalski, The svsten uses 2 relational algebra
simdator (also in Prolog) reported in  [Yokota&al. Inplementing optimization
and handling "not" predicate are planned as the next step.
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Bppendix A: PBreadth First Partial Expansion Algorithm in HCT

The following is the detail of the algorithm BFPE in Section 3.2,

Procedure BEPE (goal, IMB, Temp-rules, Subgoals):
/* Input: goal, IDB(a set of rules in the guery) */
/* Output: Temp~rules  */
/* Input & Output: Subgoals */
begin;
recursive-prd := Subgoals;
/* Expansion of the root */
Temp-rules := {};
for every rule in I00 do;
if goal <> head{rule) then do;
/* "™ means unifiable */
construct a pseudc—clause T such that
T := [goal := body-with-sub<i>| {}]| goal<0>|



recursive-prd.);

J* bodv-with-sub<n» corresponds the body of the
clause with every predicate subscript
by >, */

Temo—rules 1= 4=+ T;
/* ++ means add new elements */
end if;
end for;

/* expansicn of nodes other than root */
repeat until no change occurs in Temp-rules;
/* change bodv of pseudo—clause by moving predicate
nct to be expanded, */
repeat until no change occurs in Temp-rules:
New-terp := {};
for every T in Temp-sules do;
if lmpb (T) is camparison or extensional or
Impi (T) <> an element of recursive-prd(T)
then do;
edb-body = + lmgb (T}
body (T) = rbil);
J* Impb(T) = left most predicate of body of T,
rb(T) = body (T) = 1lmpbi(T). */
end if;
i1f lrpb (T) <> an element of predecessor (T)
then do;
edb-body := + lmpb (T);
body (T} := rb(T);
recursive-predicate := ++ Impb(T);
end if;
eliminate elements of predecessors(T) with

subscript not less than the subscript of lmph (T);
end fer;

end inner repeai;
/* expand nodes */

£ Tin Temp-ruies and B in IDE do;
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if Impb(T) <> head(R) then do;
N := [head(T) :~ body(R)<+l>,rb(T)| edb—body (T) |
predecessors + lmpb(T) | recursive-prd(T).];
New-temp := ++ N;
end if;
end for;
Temp-rules := {pseudo-clauses with empty body in
Temp-rules} + New-temp;
end outer repeat;

Subgoales := 4+ set of recursive-prd in Temp-rule;
end BFFE;

2ppendix B: Proof of Theorem 1

[Theorem 1]

The algorithm (IV) conwverges in finite times of iteration, and the result
of (IV) satisfies (III).

[Leamma]

For any h,

[i“rl -:J [f“ {i"l;z,;--;ﬂ]

[Proof of Lemmal

N . +
rit = figlgh £
rs ={] ,
where {g} and E’?“} are short bhand notation for q. ,...,q; and r@*“‘*rii
& d | [

respectively.
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We prove the Lemma by mathematical inducticn.

(1) For h=1:

Because r? = {}, r =i £t
LR 4 A
(2] For h>l:

Let vs assume Lemma holds for b=, i.e., r =  r‘. Because relational
operations other than difference are monotone,

r‘é” = fi{{qlrir’;’*I]]}
> fi H':j}r {rd}}

= patt
i

W-E.D,

[Broof of Theorem 1)

Let D be the set of all constants in EDE. Thnen, each r, (for i=1,2,..,n)
iz a s_h..,et of finite ({Cartesian) products of D. By Lawa, r”‘ r“'t. Tnerefore,
each r “(k=1,2,...) is a bound and monotone sequence of rﬂat-_mns. This means
each rl; comverges for any i and ite limit r. exists.

Let us assume that there exists the mirimum N such that r = :'" {for any

i}.  Then, w, *"’ for any 3»0 by the definition of r ; and 11m rf = r¥
N T
Eecause such ll.'l‘lt is f:.mtc zet, there always exists such M. 'Ihls means,

Vo= fidigh r
besmia oo,
I~ A £ &

Therefore, algorithm (IV) gives fixed points, Moreover, it is easy to show
that (IV) gives the least fixed points, because the algorithm starts from {}.

Q.E.D.



