ICOT Technical Report; TR-176

TR-176
Argus'v: A System for Verification of Prolog Programs

by
Tadashi Kanamori. Hiroshi Fujita
Kenji Horiuchi. Machi Maeji
(Mitsubishi Electric Corp.)
and
Hirohisa Seki(ICOT!

Mav. 1986

986, 1COT

Mita Wokusat Bidg, 211 {031 456-3191—~2
||| :O | 3-78 Mita 1-Chome Telex ICOT 32964
Minate-ku Tokvo 108 Japan

Institute for New Generation Computer Tta-.t:hm::H:n_:wF

Argus/V : A System for Verifleation of Prolog FPrograms

Tadashi KANAMORI', Hiroshi FUJITA?
Hirohisa SEKI?, Kenji HORIUCHI!, Machi MAEJT!

t Mitsubishi Electric Corporation ! ICOT Research Center
Central Research Lahoratory Institute for New Generation Computer Technology
Tsukaguchi-Honmachi 8-1-1 Mita 1-4-28 Minate-ku
Amagasaki Hyogo JAPAN 661 Tokyo JAPAN 108
Abstract

The verification system Argus/V for proving properties of Prolog programs is outlined
by contrasting verification with testing in logic programming. Specifications in Argus/V are
given by a class of first order formulas, including goals for normal execution. Contrary to
the specifications considered in the uvsual framework of verification, our specification states
a partial property of the program than states what the progrom does az a whole. Though
verification in Argus/V does not guarantee the correctness of the program at a stroke, the
more properties of the program we prove, the closer the program it to what we intend.
Verification in Argus/V is done using inference rules devised for verification, extension of
these for usual execution. Fxecution in Prolog, on which testing is based, is a special case
of the inferences in gur verification. These two features of Argus/V show that both testing
and verification are methods located on a continuous axis to confirm that the program is as
we ictend it.

Keywords : Yerification, Testing, Theorem Proving, Prolog.
Contents

Introduction — Testing and Verifleation —
. Testing of Prolog Programs
. Logic Programming Paradigm Revisited
. Verification of Proleg Programs
4,1. Specification of Prolog Programs
4.2, Inference Rules for Verification
4.3, Extended Execution
4.4, Computational Inducticn
4.5 Argus/V Verification System
5. Discussion — Testing and Verification —
6. Conclusions
Acknowledpements
Refercoces

e L B3 =

1. Introduction — Testing and Verifleatleon —

¢ is said that Prolog is a higher-level programming language than conventional lan-
guages, because operations in Prolog are further diztanced from mochine structure apd
closer to purely svmbelic manipulation. Though such machine-independent human-oriented
eharacteriztics would seem te make programiming easier, we still write ineorrect Prolog pro-
grams quite frequently. For example, we might write the following incorract program to

reverse a list.

reverse({ |,[|}
reverse([X|L],M) :- reverse(L N},append(N X M).

Figure 1. Insorreet Program for Reversing Lists

How can we determine whether the program is what we intend in our mind ? There are
two well-known approaches, which give completely different impressions.

Cune epproach is testing. Appropriate data is supplied to the pregram aznd it is run in
arder to see whother it shows unexpected respenses or behavior, In general, the more data for
the program we test, the better we can determine how cloze the pregram is to what we intend
it to be. But testing is considered a rather naive and informal method, and troublesoime to
the human programmer.

Ancther approach is verification. A specification, that shows what the program does
as a whole, is given and proved logically with respect to the program, that shows how the
desired resuls are computed. Verifieation is considered a rather fermal method, to confirm
the correctness of the program at a stroke, possibly mechanically.

These approaches zeem to be fundamentally separated in conventional pregramming.
How do things stznd in logic programming 1 In order to answer the question and make
the motivation of our verification method understandable, we review what we are doing in
testing in Section 2 and the paradigm of logic programming in Section 3. Then an outline
of our verification system Argus/V is given in Section 4. In particular, we emphasize the
characteristics of specifications and the use of extended execution. In Section 5, we discuss
the similarities between testing and our verification with respect to two features, that is,
both approaches confirm tha correctzess of programs gradually and both approaches are
based on execution.

2. Testing of Prolog Programs

Let us test the reverse program in Figure 1. Tracer, one of the testing toels of DECIOD
Prolog system [23], responds as follows

| 7- reverse([2,1],A1).
(1) 0 Call : reversa([2,1],_40)?
(2} 1 Call : reverse{[1],_105) 7
(3) 2 Call : reverse{[|,_11T7) ?
{3) 2 Exit : reverse(}],|])
(4) 2 Call : append(]],1,_105)?
{4) 2 Call : append([],1,1)

Figure 2.1. Example of A Testing of Prolog Program

A goal in the trace helds, when the goals (with “Call”) below the goal hold. By observing
the behavior in the trace cod finding the goal contradicting the pregrammer’s intention, the
Programmer ¢an correct the program in Figure 1 as foilows,

reverse([L[]).

reverse(X|L| M) :- reverse[L,N),append{N, X M).
Fizure 2.2. Correct Program for Reversing Lists

Alier all, testing is confrmicg wkether there is any difference between the model the
programmer has in his/her mind and the actuzl behavior of the program.

3. Logie Programming Paradizm Revisited

Now, let us recall the paradigm of logic programming, the central idea of the Japaneze
Fifth Geperation Computer Systems project. The execution of a Prolog program is the con-
struction of a logical proef({1],91,i10],]15],{20]). For example, the execution of I-reverse(I2, 1], M)
is the construction of a proof of IMreverse([2,1], M). In general, we have the follewing in-
ference rule for each definite clause 8 - By, Bz,..., Ba", where g is an m gu. of A and B.

{1t is read the formula below the line holds when the formulas above the line hold.)

o(ByABaN---NB,,)
A

execution

Figure 3.1. Inference Rtule for Execution
The procf of a given formula we would like to prove is constructed from the bottom.
(See the Figure 3.2 below.) The tracer in Section 2 shows the proof upside-down from left

to right.

reverze{] |,[[JAappend(]],1,1)

reverse(|1],1)Aappend{1,2,7)

reverse([2,11,Y)
Figure 3.2, Proof Tree Corresponding te Execution
2

According to the paradigm, the behavier on which we focus our attention in testing is
how the proof of formulas of the form 3Y3,Yz, .., ¥m (AyAAaA - AAg) i3 constructed.

4. Verifleation of Prolcg Programs
4.1. Specification of Proleg Programs

The most prominent feature of logic programming languages is, of course, the close
relation to legic, the origin of the nzme. For example, Prolog is very close to, actually a
sublegic of, first order logic, long uzed as one of the most common specification languages.
This clese relation between programming languages and specification languages prompts
reexamination of the nature and the role of specifications and verification.

Specifleation and verifleation are still neecsary.

Some people think that Frelog programs are formulas of first order logic, rendering inde-
pendent specifcation and verification redundant. We agree that in some cases a specification
can be a Prolog program as it is, and we cannot write any cther simpier specifications of
some programs. But, as can be easily seen, Prolog programs are not always specifications.
Many computaticn mechanizm have been devised to inerease effiziency. Moreover, even if 2
Prolog program is a description of our ictention in logical formulas, it is written from ona
point of view, which might be erroneous. Confirmation that the program is what we intend
must be effacted from another point of view by testing or verifcation (7).

Specifications verified might be partizl

It has often been said that specifications are sometimes as large as programs themselves.
The specifications considered so far are usually total, that iz, they must contain all tha
information about what the program does as a whole. Such specificztions zre necessary
for program synthesis, because specifications for synthesis usually have to contain all the
information for the program to be constructed. The close relation between Prolog and
first order logic suggests the possibility of relaxing this restriction on verification. The
specifications in our verification system might be pariial, that is, they are not mecessarily
the total description of what the program does as a whole, becauze the program itsell may
be a part of its own specification. For example, the following property reverse-reverae

¥ XY (reverze(X,Y) Dreverse(Y X))
iz also satizfied by the identity relation 1d defined by

id{X).X).

Hence, even if we have proved the reverse-reverse property with respect lo the program at
band, we can’t conclude that our program is the correct reverse. It is a fortunate situation
when we are able to write down the total specification. But we usually content ourselves
with a set of partial specifications. The more properties of the program we veri’v, the closer
the program is to what we intend. After all, verification is confirming whether there is any
difierence hetween the model the programmer has in his/her mind and the actual propertics
of the program. Our verification is much closer to testing in its nature and funetioning,

Speeifieation Formulas and Goal Formulas
Now we introduce the class of Erst order formulas used for specification in Argus/V.

We generalize the distinctions of positive and negative goals. The positive and negative

3

subformulas of a formula 7 are defined as follows (see [24],]21],{22],[25]).

{a} F iz a positive subformula of 7.

(b) When -G iz a positive (negative) subformula of 7, then § is a negative (positive)
subformula of 7.

(¢} When GAXN or GV¥ is 2 positive (negative) subformula of 7, then § and ¥ are positive
(negative) sublormulas of 7

(d) When GO X is a positive (negative) subformula of 7, then $ is a negstive {positive)
subformula of 7 and ¥ is a positive (negative) subformula of 7.

(e} When VX 5 or 23X § is a positive (negative) subformula of 7, then Gx(t) is a pozitive
(negative) subformula of 7.

Example 4.1.1, Let 7 be

¥ B,UA1LV,A (reverse(B,[UJA, JAappend(Ay,[V1,A) D3 Az (reverse(B,Ax)Aappend(Aq, [V],[UIADD
Then 2Ag(reverse(B, Az)Aappend(Ag, [V], [U|A])) is a positive subformula of 7, while reverse(B, [U]A,})
iz a pegative subformula of 7.

Let 7 be a closed first order formula. When VX § is a positive subformula or 2X 3
is a pegative subformula of 7, X is called a free variable of 7. When VY ¥ is a negative
subformula or 3Y X is a positive subformula of 7, Y iz called an undecided variable of 7. In
other words, free variables are variables quantified universally, and undecided variables are
those quantified existentially woen f is converted to its prenex normal form.

Example 4.1.2. Let 7 be
VB, UAL VA (reverse(B,[U[A]) Aappend(A;,[V],A) D3 Az (reverse(B,Az) Aappend{Az, [V],[UIA]))
Then B, U, A;,V and A are all {ree variables, while A3 is an undecided variable.

A closed frst order formula S is called a specification formula (or S-formula for short)
when

{(a) no free variable in § is quantified in the scope of quantification of an undecided variable
in § and

(b) each undecided variable appears only in some positive conjunction of atoms A; AAzA- - -Ad,
in §.

In other words, S-formulas are formulas convertibie to prenex normal form ¥X,, X3,..., X.
¥y, Yz,...,Ym 7 and none of ¥1,Y3, .., Y. appears only in some positive conjunetisn of
atoms in 7. MNote that 5-formulas include both universal fermulas ¥X,, Xz,..., X.7 and
usual execution goals 37,7, ..., ¥ (A1Ads A AdL).

Example 4.1.3. Let § be

VB,U,A;{, VA (reverse(B, [UjA.[)Aappend{Ay,[V],A) D3 Az (reverze(B,Az)Aappend(Az,[V],[UIAD))
Then 5 is an 5-formula, because free variables B, U, A,, V and A are quantified outside 345,
and A; appears only in the positive corjunction reverse(B, Ag)Aappend(ds, [V, [U{Al). An
execution goal

2 C append([1,2},[3],C)
is also an S-formula.

A formula G obtained from an S5-formula § by leaving free veriable X as it is, replacing
undecided variable ¥ with ?Y and deleting all quantifications is called a goal formuls of
§. Note that § can be uniquely restorable from G. In the following, we use goal formulas
instead of original S-formulas. Goal formulas are denoted by F,G, K.

4

Example 4.1.4. An S-fermula

¥ B,U A1, V,A (reverse(B,[UJA) Aappend(Ay [VI,A) D35 Az (rever se(D, Az)nappend|Aa, [V],[UTA])))
is represented by a gosl fermula

reverse(B,[UlA])Aappend(A, J[V],A) Dreverse(B,7Az)Aappend(tAz JVILIUIAD.

An exccution geal

3 C append([1,2],/3],C)
is represented by a geal formula

append([1,2],[3],7C).

Let S be a specification in an S-formula, My be the minimum Herbrand model [10] of P
and P” be the completion [8] of P. We adopi a formulation as follows : Model-theoretically
speaking, verification of § with respect to Pis showing Mp=5. Proaf-theoretically speaking,
it is proving § from P" using first order inference and some induction. (Of course, the
proof-thecretical fermulation is weaker thac the model-thecretical formulation. Ses Secticn
4.4 for inductien.)

4.2, Inference Rules for Yeriflzation

Though we have pointed out the similarity between testing and our verification, it is
meaningless to just rephrase the definition of verification. The current Preleg interpreter
can’t execute our S-formulas directly. Now we present the method and the mechsnism of
our verification (ef. [2],[13],[14,[28]). Our inferecce rules for verification consiss of extended
execution and computatiopai induction. Extended excution is an extension of ususzl execy-
tion 2nd consisis of case spiittings {A-deletion,v-deletion and Ti-deletion}, definite clause
inference (DCI), “Negation as Failure” infercnce (NFI) and simplification. We omit discus-
sion of the case splitting rules in what follows, because they are not used very freguecily.
See [Kanamori and Selki 1985), [Kanamori 1986] for details.

Using intuitive potations, DCI, NFI and simplification are depicted as inference rules
as follows. In the followings, we nse 7g{¥) for replacement of all cccurrences of a formuia
G in a formula 7 with ¥ and 7g{¥] for replacement of an occurrence of a formuia S ina
formula 7 with . See the following explanation for meanings of cther notations.

DCl c{GalBiABzA- - -ABm])
Gyla]
NFI PG AIA™ Byl - mlGalATY Biil) Galfolse]
G_I[A]
simplification g{G)a(true) o(G)alfalze]
G

Figure 4.2, Main Inference Rules for Verileation
4.3. Fxtended Exzecuticon
The execution of positive goals is generalized using polarity.

Deftnite Clause Inference(DCI)
Let A be a positive atom in a goal formula G and *B == By, Bz, ..., Bn” be any delinite

s

clavse in P. When A is unifiable with B by an m.z.u. o without instantiaticn of free
variables, a new OR-goal o(GalBiABaA- - -ABm)) is generated. (ByABzA---ABm is true
when m = 0.} All new variables introduced are treated as fresh undecided variables.

Example 4.3.1. Let 5 be
¥ AB,CU ((reverse(C,B) Zreverse(B,C)) D(reverse(A,[UB|) Dreverse([U|B],A))).
Then the goal formula of 5 is
(reverze(C B) Dreverse(B,C)) D(reverse(A,[U|B]) Sreverse([U[BLA})
We can apply DCIto reverse([U|Bl, A) and it is replaced with reverse{A, 'D)A append(1D, [U], B).
Note that the variable in the body is treated as an undecided variable 1D,

Example 4.3.2. When S is an existential formula of the form 3 Y3 - - Ym{Ai AdzA- - -AAL),
i.e., of the form of usual execution goais, the goal formula of 5 is -A4;, Az, ..., Ax. (The
juxtaposition delimited by *" denctes: conjunction and -G denctes the goal fermula ob-
tained by replacing every variable ¥ in G with 'Y.) Then usual execution is applied to -
Ar,Az,..., Ax. The figure below shows an exampie, where common and reverse are defined
by

common{X,L M)} - member(X,Lj,member({X,M)}.

member(X, [X|L]).

member(X,[Y|L]) - member{X L).

eommen(1,[1,2],3,1})
memberl{l,|1,2f},;:nemher{l,[3,li)
mamher{ll 13,1
memhell'{l,[ll}
tn::e

Figure 4.3.1. Deflnite Clause Inferenee for Usual Positive Goals
We also generalize the execution of negative goals using polarity.

“Negation as Failure® Inference(NFI)

Let A be a negative atom in a goal farmula G. We generate new AND-goals r{G 4[ByAB2 A - A B
for every definite clause "8 :- By, B;z,..., 8., 1o P, wbose head B i3 unifiable with A4, and an
AND-goal Galfalse]. (ByABaA - -ADm is true when m = 0.) All new variables introduced
are treated as fresh free variables. {Note that A alwars includes only free variables and r
may be any m.g.u. without restriction.)

Exampie 4.3.3. Let § be

¥V AB,C,U ((reverse(A,C) Dreverse(C A)) D (reverze{|UjA] Bl Dreverse(E [U[A]))).
Then the goal formula of S is

(reverze(A C) Dreverse{C,A}) D(reverze{[U]A] B) Dreverse(B,[UJA])
We can apply NFIto reverse([U|A], B). In the first goal,the atom is replaced with reverse(d, D)~
sppend(D, (U], B). Note that the variable in the body is treated as a free variable D. The
last geal obtained by replacing the atom with false is trivially frue.

Example 4.3.4. Let S be a specification of the form —A where A i3 a ground atom. Sunpose

&

there exist k definite clauses whose heads are unifiable with Abym guser, s, .. n. When
NFI iz applied to A, we have k41 AND-goals

—n{BuiABizA-ABim,)y

~ra(Bay ABaah - ABam,),

_rt{H*:I.I"\Ek:.P\' . 'ﬁBkm.},

- falze.
The last goal formula is trivially true. Other goal formulas are of the form VX, Xa,..., Xa
~[Ay Adz A -AAm), because variables introduced {rom the bodies of the definite clauses are
free variables in the generated goal fermulas. We can continue applying NFI by selecting
atems in each body of the geal formula. When a selected atom has oo unifiable head, the
only goal formula generated is the last one, which is always true. When all goai formuias
are reduced to true, A iz proved. This is exactly the “Negation as Failure® rule in the
usual sense [8],{15]. The figure below shows an example.

~ commonii,!1],]3])
= {memberi_l,Iijlhmnmher{l,{.".]j}
- memherl{ljﬂj] :{Eb«eril.[Amember(l,[3]})
= memb:zril,[H | true

true

Figure 4.3.2. *Negation as Failure™ Inference for Usual Negative Goals

We sometimes simplify goal foermulas by assuming that some atom is true or Jalse
(ef [22]).

Simplifieation

Let G be a goal formula. When 4, 43,..., A, are positive atoms and Ama1, A=tz 00din
are negative atoms unifiable to A by an m.gu. ¢ without instantiation of free variables
(0 < m < n), we generate new AND-goals o(G)altrue} and o(Glalfalse).

In the {ollowing examples, beth o are < > and undecided variables are not instagtiated
For more general simplifications with instantiation of undecided variables, see Figure 4.3.3.

Example 435 Let G be a goal ferzula
(add(X,Y,Z) Dadd(Y X,2)) D(add(X,Y,2) Dadd(Y,s(X),s(Z)))

of an S-formula
v X,Y,Z ((add(X,Y,Z) Dadd(Y,X,2)) 2{add(X,Y,Z] Dadd(Y,3(X]),2(2)))}-

Because @ =« ™ is a substitution without instantiation of free variabies and unifies the

positive atom add(X, Y, Z) and the negztive atom odd([X, Y, Z), we generate new AND-goals
{true Dadd(Y,X,2)) D(true Dadd(Y o(X),s(Z)),
(false Dadd(Y,X,Z))} > (falze Dadd(Y (X),(2))) ,

e, addY, X, Z)Dadd(Y, s(X),2(Z)) and true. This inference corresponds to generating

(Y-+-X)+1=Y+{X=+1)

from

XAY=Y+X S{XLY)+Hi=Y(X+1)

in functional programs, i.e., using the equation X +Y = ¥ =X in the premise and throwing
it away. This is cailed cross-fertilisation in the Boyer Moore Theorem Prover (BMTP) [5).

Example 4.3.6. Let & be a goal formula

(reverse(A,C} Dreverse(C,A)) Direverze(A,C) Aappend(C,[U|,B} Zreverse(B,[UJA]})
of an S-formula

VA,BC,U ((reverse{A,C) Dreverse{C,A)) D{{reverse(A,CiAappend(C,[U],B)) Dreverse(B,[UIAD)).
Because &# =< > iz a substitution without instantiation of free variable: and unifies the
positive atom reverse(A, C') and the negative atom reverse{A, C), we generate new AND-
goals

(true Dreverse(C,A)) D(true Aappend(C,{U],B) Dreverse{B,[UJA])),

(false Dreverse(C A)) D(falzse Aappend(C,[U},B) Dreverse(B,[U|A]}},
i.e., reverse(C, A)D(append(C, (U], Bl Dreverse(B, [U|Al)) and true. This inference cor-
responds to generating

reverse{C)=A Treverse(append(C,[U]})=IUAl
from

reverse(reverse{A))=A Dreverse{append(reverse(A),[U]))=IUJA]
in functional programs, i.e., repiacement of the special term reverse{A) with a variable C.
This is called generalization in BMTP [5].

The Figure 4.3.3. below is one of the sequences of the applications of extended execu.
tion. A geal in the sequence holds, when the goals below it hold, like the goais in Figure
2.1

reverse(M,[X|L,|)Aappend{Ly,[Y],L) Dreverse([Y|M],[XIL])
1 DCI with < >
reverse(M,[X|L,|)Aappend{L;,[Y],L) Dreverse(M, La)Aappend(’Ly, Y, XIL])
1 DCI with <!Ly&[X|1Ls] >
reverse{M,[X'L}}Aappend{L,[Y],L) Dreverse(M,[X|'Ls}) Aappend(TL,,[Y] L}
| simplification with <1L;&=L, >
append(Ly,[Y],L} Sappend(L,,[¥].L)
L sunpiification with < >
true

Figure 4.2.3. Exampie of Verifleatlon of Prolog Programs
4.4. Computational Induetion

Because we have adopted the model-theoretical formuiation in 4.1, we need to use same
kind of induction in order to make our proof system as strong as possible to approximate
the model-theoretic formulation.

The followirg induction scheme is used for induction on natural numbers [6].

Qo) VX (QUX)2QMX+1))
VX {oumber () ZQ{X))

Figure 4.4.1. Induetion Scheme for Natural Number

INote that the number predicate is defined in Prolog as in Figure 4.4.2 and the induezion
formulas above the line iz Figure 4.4.1 is exactly what are obtained by replacing number in
Figure 4.4.2 with @.

pumber{d)}.
number(X{<41) :- number(X).

Fizure 4.4.2. Prolog Fregrams Deflning Natural Numoer

Similarly, the induction scheme for reverse is obtained by repiacing reverse in Figure
9.2, with Q. This is de Bakker and Scott's computational induction for Proleg ([23,9],112], [12],[29]).
QL] vL,M,N X (Q(L,N)Aappend(N, X, M} SQ([X
VLM (reverze(L M) DQ(L Mj)

L], M))

Fizure 4.4.3. Inductlon Scheme for reverse

Example 4.4, When the induction scheme above is applied to reverss-reverae, ie.,
reverse(L M) Treverse(M,L)

the following two induction formulas are generated.
reversef| |,[|}
reverse(N L)Aappend(N,[X|,M) Tireversel/ M. [XIL]).

I general, the goals we are going to prove are not necessarily of the form a(X,, Xa,..,Xa)
= Q(Xy,Xa,...,Xn). Morecver, more than two induction schemes might be sugrested. In
order to manage such situations, we have a device to generate and manipulate induction
schemes based on ap equivalence-preserving program transiormation [27]. See [I{anameri
and Fujita 1986) for details,

4.5. Argus/Y Verifleation Systzm
The Argus/V verification system has the module structure depicted below. A given

specification is first converted to its goal formula, then passed through the four meodules in
Figure 4.5. -

Exztended
—_— Ezxecution /
J—
-
T ~ /
‘4 Interface : r Control
[| e
.n-.'.t-.',_-';__ \—/’/r _// \ #f’_\
= [— /‘(\/}tr“'
Computational

Loduction

Figure 4.5. Argus/V Module Strueiure

Because we have additional and generalized inference rules for verifization, we aeed a
procedure to sclect the inference rules to be applied. YWhen and how extended execution ard
computational induction are spplied is controlled by many BMTP-like heuristics [§]. This
can be considered a kind of meta-inference [4],126]. See [Kanamori and Horiuchi 1985] for
the use of type inference in Argus/V.

5. Discussion — Testlng acd Verifeation —

As shown in Section 4, verification iz Argus/V {s very ciose to testing not only in its

nature and the role it playe but alzo in the metbodelogy and its mechapism. In fact, testing
is a special caze of verification in Argus/V in which the specifications are grourd goals or
existentially quantified atoms. The difference is that verification in Argus/V is more general
than testicg. For example, testing can confirm reverse-reverse for oniy lists with specifie
lengths, while verification in Argus/V proves it for lists of any length. [o a sense, testing deals
with the superficial observable direcély, while verification peneirate the intericr observable
ouly indirectly. In other words,®our prover is a prober.”

6. Conclusions

We have given an outline of the Argus/V verification system for proving properties of

Proleg programs by contrasting verification with testing in logic programming. The first
version of Argus/V was developed between April 1984 and Mareh 1985, It consists of about
7000 lines in DEC-10 Prolog and takes about 9.5 seconds {CFPU time of DEC2080 with 384
low main memory) to prove reverse-reverse automatically. More than 50 theorems hawve
already been proved automatically and the number is increasing.

Actknowledzements

The Argus/V verification system is a subproject of the Fifth Generation Computer

System(FGCS) “Intelligent Programming System”. The authors would like to thank Dr K.Fuehi
(Director of ICOT) for the cpportunity of doing this research and Dr. K Furukawa {Chuef of
ICOT 1st Laboratery) and Dr.T . Yokei (Chief of ICOT 2nd Lateratory) for their advice and
encouragement,

References

[1)

(5]
[6]

[7]

(8]

(9}

10}

[11]

Apt K.R. and M. H.van Emden, "Contribution to the Theory of Logic Programming”,
3.ACM, Vol.29, No.3, pp.841-862, 1982

| de Bakker J.W. and D.Scott, A Theory of Programs®, Unpublished Notes, IBM Seminar,

Vienna, 1869.
Bowen, K. A., “Programming with Full First-Order Logic®, Machine Inteiligence 10 {J.E Hages,
D Michie and ¥-H.Pac Eds), pp.421-440, 1982,
Bowen, K.A. and R.A Kowalski, “Amalgamating Language and Metalanguage in Legic
Programming®, in Logic Programming (K.L.Clark and S-A.Tirnlund Eds), Academic
Press, 1980,
Boyer R.5. and J.5.Moore, *Computational Logic®, Academic Press, 1979,
Burstall R., “Froving Properties of Programs by Structurzl Induction®, Comput.d.,
Voi.l2, No.l., pp.41-48, 196%.
ClarkK.L.. and S-A.T'a'.rn]und, *A First Order Theory of Data apd Programs®, in
Information Processing 77 (B.Gilchrist Ed), pp.039-944, 1877.

lark,K.L., "Nezation as Failure”, in Logic and Databaze (H.Gallaire and J.Mizcker
Eds),pp.293-302,1973.
Clark K L., “Predicate Logic as a Computational Formalism®, Chap.4, Research Monograph
1 79/59, TOC, Imperial College, 1979,
van Emden, M.H. and R.A Kowalski, *The Semantics of Predicate Logic as a Prograniag
Language”, JJACM, Vol 23, No.4, pp.T35-T42, 1976,
Gordoa,M.J. A.J Milger and C.P.Wadsworth, “Edinburgh LCF —— A Mechanized Legie
of Computation™, Lecture Notes in Computer Science T8, Springer, 1972,

10

[12] Hagiya, M. and T.Sakurai, *Foundation of Logie Programming Based on Inductive Dednition”,
New Generation Computing, Vol 2, pp.58-77, 1984,

13) Hansson,A. and S5-A.Térnlund, "A Naturcl Programming Calewlus”, Proe.of 8th Internaticnal
Joint Confereace on Artificial Intelligence, pp.348-355,1979.

[14] Harii,$. and D.Sablin, "Zvaluation of Logic Programs Based on Natural Deduction”,
Proc.of 2nd Workshop oo Logic Programming, 1983

[15] Jaffar,J. J-L.Lassez and J.Lloyd, “Ccmpieteness of the Negation as Failure Rule”, Proc.of
gth International Joint Conference en Artificial Intelligence, Vol.1, pp.300-306, 1883,

[16] Kanameri,T.and H.Seld, “Verification of Prolog Programs Using An Extension of Executicn”,
1COT Technical Report, TR-096, 1984, Also Proc.of of 3rd International Caonfercnee on
Logic Programming, 1986,

[17] Kanamori,T.and H.Fujita, “Formulation of Induction Formulas in Verification of Prelog
Programs®, [COT Technical RHeport, TR-004 1954, Also Proc.of Conference cn Automated
Deduction, 1986.

[18] Kanamori, T.and K Heriuehi, "Type Inference in Prolog and Itz Appiicatiens”, 1COT
Technica! Report, TR-095, 1684, Also Proc.of Gth Interaaticzal Joint Conferemce on
Artificiz! Intellizence, pp.704-707, Los Angeles, 1985

[16] Kanamori,T., “Soundness 2nd Completeness of Extended Execution for Proving Properties
of Prolog Programs”, ICOT Technical Report, to appear, 1988,

[20] Kowaiski, R A., “Logic for Problem Solving®, Chap.10-12, North Helland, 1280.

[21] Marna,Z.and R.Waldinger, "A Deductive Approach to Program Synthesis®, ACM Trans.
on Programming Languages and Systems, Vol.2, No.l, pp.50-121, 1980,

122] Murray N.V,, “Completely Non-Clausal Theorem Proving®, Artificial lntellizence, Vol 1B,
pp-67-83, 1882,

(23] Pereira,L M. F.C.N Pereira and D.H.D Warren, “User's Guide to DECsystem-10 Prelog”®,
Occasional Paper 15, Dept.of Artificial Intelligence, Edinburgh, 1979

124] Prawitz,D., "Natural Deduction,A Proof Theoretical Studs”, Almqvist & Wiksell, Stoekholm,
1985,

[25) Schiitte, K., “Procl Thecry”, (translated by J.N.Croscley), Springer Veriag, 1977.

[26] Stering,L. and A Bundy, “Meta-Level Inference and Program Verilleatien”, in 6th Autemated
Deduetion (W .Bitel Ed), Lecture Notes in Computer Sciepce 138, pp.144-150, 1952,

[27] Tamaki,H. and T.Sate, *Uznfold/Fold Transformation of Logic Programs”, Proc.of 2nd
International Legic Programming Conierence, pp-127-138, 1984,

[28] Tarolund,S-A., “Logic Programming Language Based on A Natural Deduction System”,
UPMAIL Technical Report, Na.B, 1981,

128] Weyrauch,l.W. and R.Milzer, “Program Correctness in A Mechanized Logic™, Proc.of
15t USA-Japan Computer Conference, 1972

11

