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ABSTRACT

This paper presents a theorem prover for the first-order predicate logic
using connection graph introduced by Kowalski.

The theoretical basis of the prover is taken from the Sickel's "clause
interconnectivity graph" method, which is one of the connection graph merhod.
The theorem prover has an additional feature about search strategies, namely
static and dynamic. This distinction is made in expectation of increasing the
overall efficiency of the prover.

This paper also shows how the prover has been implemented. The
implementation language of the prover is Prolog, where distinctive features
such as unification and backtracking are fully utilized. The prover consists of
four steps; (1) translation from an input formula to the clausal form, (2)
cenversion from the clausal form to the connection graph, (3) solution
searching using the connection graph, and {(4) execution of the actual
resolutions. In step (1), we need only two sub-steps by using the unification
feature in Pr-ulug, while the ordinary algorithm will require six sub-steps to

realize thiz funcrion. Consequently, step (1) requires less computational time.



1. Introduction

Robinson's resolution principle [Robinson 65] is one of the most impaortant
methods for the automated theorem proving. This method is more efficient
than those which execute the procedures bazed on the Herbrand's theorem
directly, But it is not efficient enough, for the unrestricted applications of it
may generate many irrelevant clauses. Therefore many refinements of the
resolution principle have been proposed to increase the efficiency, such as
semantic resglution, locking resolution, linear resolution, unit resolution, input
resolution, and ser-of-support resolution, etc. (see, e.g. [Chang 73],[Loveland
78]).

There are some refinemencs which use graphs to get some Informations
for planning the resolutions. Kowalski [Kowalski 73] proposed a refinement
using a graph, which is called the connection graph. According to Kowalski, a
graph which is called the initial connection graph is constructed first, and then
in the proof process some new nodes and links are added, and some nodes and
related links are deleted. The process terminactes in two cases. The first one
is the case when the empty clause, the clause which has no links, is created
as a new node, which means the resolution process succeeds. The other one is
the case when no links are left in the graph so that it is impossible for the
process to go further, which means the process fails to find the solution,
Sickel proposed ancther method based on the graph, which she called the
clause interconnectivity graph (CIG). CIG iz basically the same to the
Kowalski's initial connection graph, and it will also be called the connection
graph in this paper. The difference from Kowalski's method is that the
connection graph is created only once. It is used only for the search of the
refutation path, and the tree structure which represents the search paths,
called the sclution tree, is created in the search process. The solution tree

represents the informartion how to execute the resolutions to get the empty



clause by the resolution process.

The purpose of this paper is to develop a resolution-based first-order
theorem prover. The prover takes the Sickel's method as its theoretical basis.
We do not take the Kowalski's method because it seems to require much space
and time to create connection graphs during the search process. The most
important difference of the prover from Sickel's is that it provides two kinds
of strategies. They are called static strategy and dynamic strategy. The
former is the strategy applied in the process making links of the connection
graph, while the latter is the strategy used when the solution search process
traverses the graph.

We also show how to implement the first-order theorem prover based on
the method mentioned above. As the implementation language, Prolog
[Clocksin 81] is used. This language has convenient fearures, such as

unification or backtracking, to the implementation of a theorem prover.

The rest of the paper is organized as follows : In Section 2 we describe
some of the search strategies, which determine the selection of the unifiable
complementary literals. Each strategy has two aspects, namely, static and
dynamic. In Secrion 3 we describe how to implement the theorem prover. [t
consists of four steps, translating an input into the clausal form, generating
the connection graph, solution searching, and the resolution tree printing.

And in Section 4, concluding discussions are made.

2. Search Strategies for Connection Graph Method

Search strategies strongly affect the efficiency of theorem provers. In
this section we will discuss ahoutr search stratcgies, especially about those of

connection graph methods. We call an algorithm which determines how to



search the solution a search strategy. There have been proposed many
strategies (see [Chang 73], [Loveland 78], and [Sato 81]) as the refinements of

the resolution principie, as listed below :

(1} Deletion Strategies
Any straregy which deletes clauses, such as subsumed clauses,
tautologies, and those which contain pure literals, is called deletion
strategy.
{2) Restriction Strategies
Any strategy which restricts the application of resolution
strategies to some fixed forms is called restriction strategy. Linear,
semantic, and locking resolutions are the typical restriction strategies,
{3) Preference Straregies
Any strategy which determines the preference order of the paths
to be searched is called preference strategy. Unit-clause preference

is such a strategy.

There are some other strategies which do net belong to the above classes.

For example, abstraction strategy [Plaisted 81) is such a kind of strategy.

[Note] We can combine some strategies to get a new one. For example, a
combined strategy of deletion and preference strategies is included both in (1)

and (3). Connection graph merthods allow such combinations of strategies.

We, in this paper, note thar a strategy for the connection graph method
has two aspects, namely static and dynamic. The staric aspect is the part of
the strategy which decides which unifiable complementary literals are to be
linked and also decides in what order the links should be arranged in the

process constructing the connection graph for rhe given probiem. These



decisions are made before the search process starts; so it is called staric.
The dynamic aspect is the part of the strategy which decides which links are
to be searched and also decides in what order the links should be searched in
the process which searches the solution of the problem represented by the
connection graph. These decisions are made during the search process of the
solution and the environment is changing during the process; so it is called
dynamic.

As the order of static strategies, we take an inclusion order of the sets
of the allowable links of the strategies. The maximum strategy in this order
has the following property . Any search strategy can be represented by
combining the maximum static strategy and some dynamic strategy. This is
hecause every pair of literals which may be used fer the resolution is
connected in this maximum strategy, therefore the dynamic strategy can select
any such pairs. On the other hand, for any fixed dynamic straregy, it is not
possible to prove every problems by any staric strategies, Therefore, with
respect to descriptive power of the strategies, dynamic strategy is superior to
sraric one.

However when we think about the time-consumption of these two aspects
of strategies, the static one is desirable. This is because the stalic strategy is
invoked only once for each of the unifiable complementary literals of the
clause set which represents the problem, while the dynamic strategy s
invoked every time when the search process has to decide which link is to be
chosen., Therefore the time-consumption of the static strategy is reiatively
small compared with that of the dynamic strategy if the problem is fairly
complicated and the search process takes many steps to get a solution.

By these considerations, it is reasonable to describe a strategy by
combining the static and dynamic strategies :

(i} Find the static aspect of the strategy. This is a part of the strategy

that can be decided by the structure of the clause set. It 18



(i1)

described as the static strategy.

And the rest of the strategy is to be described as the dynamic

strategy.

Now we will see the static and also dynamic aspects of some of the

strategies.

As Kowalski [Kowalski 79-1] pointed out, top-down and borrom-up

search strategies can be expressed by rhe static srrategies. Some parts of the

strategies mentioned earlier in this section can be represented by the static

strategies, and the rest by the dynamic one.

(1}

Deletion strategies can be represented as static strategies to
some extent. When applied to the input clauses, rhese strategies
can he represented by the static strategy. For the clauses created
during the resoiutions, there are no ways to apply the static
strategies. Thar is, the dynamic strategies are required.

For the deletion strategy for the subsumed clauses, when &
clause A subsumes another clause B in the clausal form, we delete
all links connected te B, which is equivalent to deleting clause B
itself, This is the static aspect of the deletion strategy.

A rautalogy link is a link which creates a tautology as the
resolvent corresponding to ic. Some of the links are determined as
tautology links by the form aof the literals. Deletion of such
tautology links is the sratic aspecr and is implemented in the
prover. Some other links, on the other hand, have the possibility to
creare the tautologies when thev are instantiated. These are called
the potential tautology links. A potential rautology link may
create a tautology, which depends on the environment of the value
assignments to the variables, The environment is not known in the

process of generating the connection graph.



(2}

{3}

The strategy which deletes all the pure literals can be
represented completely as the static strategy. It is implemented in
such a way that the clauses which include literais with no links are

deteted,

Restriction and deletion strategies are almost the same in static
and dynamic aspects. This is because a restriction strategy deletes
some search paths, while a deletion strategy deletes clauses, which
is eguivalent to deleting all the paths which connect these clauses.
[n other words, they make some decisions whether a path should be

deleted or not, from the informarion abour the path.

[Note] Some of the strategies, such as locking resolution, require
extra information about links. In this case we have to extend the
representation of the connection graph so that it includes such

information.

Preference strategies, such as unmit-clause preference, can be
represented as static strategies, as far as they use only the staric
information in determination of the preference. Unit-clause
preference is one of such strategies, since whether or not a clause
is unit is decided by a static information, namely the form of the
clause. This strategy is implemented in the current version of the

prover,

[Note] Since the links of a literal of the connection graph are
represented by a list of links, they have natural orders in their
representations. This order can be interpreted as that it represents

the preference of the connection links. Thus any preference



strategy can be represented in our connection graph by making the
order of the links reflecting the preference. However the search
process is free to use this order. Therefore, as the total strategy
about the preference of the links, the dynamic strategy determines

the final preference order of the links.

3. Implementation

We give a description of an implementation of the prover in this section.
The implementation language is Prolog (see, for example, [Clocksin 81k
Prolog has special features such as unification and backtracking, and it is very
suited for implementing theorem provers.

The prover consists of four major steps of processes shown us follows :

(1) Transformation of an input formula to the clausal form.
{2} Create the connection graph from the clausal form.
(3) Find the solution by searching the connection graph.

{4) Print the resuit as rhe resolution tree.
FEach of the steps will be described in the subsections from 3.2 to 3.5

First, in the next subsection, we will show how the data used in the prover

are represented.

3. 1. Data Representations

Data in the prover are represented as follows :



[i} A wvariable is represented by the Prolog wvariable, a constant by the

Prolog constant, and a function by the Prolog functor.

{ii) An atomic formula is represented by the Frolog term of a functor

followed by a parenthesized arguments.

(iii) Logical formulas are represented as follows :

A and B conjunccion

M or B disjunction

A == B implication

M oe= B (equivalent to B =» A)

A <== B logical equivalence

TA negation

all(X,A) universally quantified formula
some( X, A) existentially gquantified formula

{iv) A clause iz represenced by
H1+3.21...-,an = ]:I]+b2”‘.+hm.
This formula has the equivalent meaning to
bl and h.z and ... and bm => @, OF 35 OF .. OF ..
A clausal form {clause ser] is represented by the list of the

representations of the clauses.

(v} A connection graph is representad by a list of linked clauses, where a
linked clause is represenced by the following format :
«clause names: [<linked literals,...] =- [<linked literal=...]
Here a lioked literal is represented by

<literal names: <literals, [=link=,...] ,



and a <links i5 represented by
«clause names - <literal names

which indicates the link to which the literal is connecred.

Here is an example of formulas printed by the prover.
[Example-1]
s=============== Prﬂh]ﬁ'ﬂ s=s====ss=syzzms=
conclusion: X=X
premise: Xs<Y<=sall{Z, elm{Z Xi=:eim{Z,Y))
The premise part of this problem indicates the definition of the set-order,

i.e. inclusion, and the conclusion part Indicates that a set is a subset of itself.

3.2, Translating Input Formula to Clausal Form

This step translates each of the inpur formulas, the premise and the
conclusion, to the clausal form. Before translating the conclusion, it is
changed ro the closed formula, and its negation is translated. This pre-
translation is necessary because the free variables of the conclusion part must
be existentially quantified. The premise part is translated directly. Afrer the
transiation it appends them into a clause set, which would be used by the next
step in sub-section 3.3. If an empry clause is included in the clause set, the
prover does not proceed any further; it terminates successfuliy. This is the
case when the premise does not hoid or when the conclusion holds without the
premise.

Ordinarily the translation consists of several steps, namely translating
the formuia to the closed formuia, expanding the implication or equivalence
and moving the outer negation to internal, renaming the conflicting variable
names, moving the internal quantifiers to the gutermost part of the Tormula,

introducing the Skolem functions, and lastly translating the formula to the

-9 .



clausal form.

In the prover of this paper, we take a new algorithm to implement the
translation. Owing to the unification feature of Prolog, it can be realized in
two steps, namely the transformation and assignment of Skolem funcrions, as

described as follows :

{i} Input formula is translated into the corresponding clausal form. The
arguments for the Skolem-functions in the clausal form can not be
determined during the rranslation. So, the Skolem-functions are
represented by the corresponding variables. These variables are assigned

to the actual Skolem-functions in the next scep.

{ii) After the first step, the free variables in the input formula are obtained.
In this step, the actual forms of the Skolem-functions are created, and
they are assigned to their corresponding variables in the clausal form

obtained in the [irst step,

[MNote] If the inputs are restricted to closed formulas, only the first step

is required to translate them to the clausal form.

Since the method of the prover is different from the ordinary method, it
will be necessary to explain more about the translation algorithm, The
algorithm consists main!y of the translation rules of the formula to the

clausal form. Some of the transiation rules used in the first step (i} are :

(1) If the formula A is an artom, then it is translated to
A =,
If A contains free variables, they are added to the free-variable

list.



{2} Logical constant
true
is translated to the empry set of clauses, while
falze

is translated to the empty clause :

i3} Formulas of the form
alliX,F) and all(X,Cl,

some{X,F} or some(X, G,

A <= B,
A == B,
A e=s B

are translated respectively to the results of the translations of
all(X, F and G},
somel(X, F or G,
B oor A,
“A or B,

(TA or B] and (A or “BL

(4] A formula of the form

A

is translated to the result of the "negative-translation” of "A". Where
negative-translation rules transiate a formula "A" to the clausal form
which represents the negation of "A". TFor example, we get the following
clausal form :

= A

as the result of the negative-translation of an atom "A".

- Il =«



(5} A formula of the form
A and B
is translated as follows :
(i}  Translate A to the clausal form A',
{ii) Translate B to the clausal form B'.
(iii) Make the union of A' and B'. If the same clauses appear in both

A' and B', then one clause is left, and the other is deleted.

Since a clausal form is a ser of clauses, which semanically means
the conjunction of its clauses, the conjunctive operation for clausal forms
is represented by the set-union of the forms. Since a set is represenced
by the list of clauses in the prover, the operation is the set-append of

the lists of clauses.

{8) A formula of the form
Aor B
iz translated as follows :
i}y Transiate A to the clausal form A
{ii) Translate B to the clausal form B.

(iii} Make the "or-union" of A' and B
Here "or-union" is an operation defined as follows :

The or-union of the clauses

A et <= BB and
I n 1 m

C I,...J:p «— D 1,.+.,Dq

is
Ao L CLC «- BB D ...D.
n' p 1 m' 1 g

- 12 =



This is because the clauses above is equivalent to the [ormulas

A] OF wew OF An or E'-1 OF w. OF Bm and
(.21 Or ... OF Cp or D] or ... Or Dq
respectively, so their disjunction is

N C
‘&'1 or ... OF F‘n ar ("i or or o

or E-I or ... Or Bm or D‘1 Or ... or [,
For the clause sets
M = [M]....,Mm] and
N = [N];#--TNH}I
the or-formula
M oor N
represents the formula
{Ml and ... and Mmll or '[NI and ... and Nn} \
which is equivalent to the formula
:rui] or ."ul}l and ... and [M] ar Nn} and
wenenas AN
(M _ or N,} and ... and (M, or Nn?-
That is, this is the conjunction of all or-unions of the combinations of
two clauses one of which is in M and the other in N. Therefore, the
clause zet of "M or WN" iz :
{OriMI,N IJ’J.I'D[iMJ,Nn}l."‘ar{mm!h‘}'.-.’Url:Mm'Nn}}‘

where "DT{M11NJ-]'1' is the or-union of the clauses Mi and Nj'

(7} The universally guantified formula
ail{x, F}
is transiated to the result of the transiation of the subformula "F". In
this translation the bound-variables list for "F" is obrained by adding the

variable "X" to the bound-variables list for "all{X,F)"

- 13 -



The bound-variables list is used to know if a variable is free or is
bounded by a universal guantifier. If a variable is not in the bound-
variables list, then it is considered ro be a free variable, and is added to
the free-variable list. It is also used when translating the formula of

the form "some{X,F1". See the case (&) for this form of translation.

(8) The translation of the form
somel{X,F)

is done as follows :

The translation is applied to the subformula "F" in the following
CONtext;
the wvariable X is added to the rename list, whose member is of the form
"X-XX", where "XX" is the new name for "X". In addition to it, "XX-
AVY iz added to the Skoiem list, which indicaces "XX" is a variable to be
instantiated later wo some Skolem function, and its arguments include the
variable list "AV". "AV" is the bound-variables list, which is the list of
the variables which appear as bound variables of its universal quantifiers.
The final arguments of the Skolem functions consist of the variables in
"AV" and free variables of the input formula. The result of the
translation of "F" in such a context is the result of translating the

formula "somelX,F)".

[Mote] lt is aoted in {4) that we have another set of rules, i.e., negative
translation rules, which correspond one to one to the above rules (1)-(8). The
descriptions, however, are mostly repetitive and thus omitted.

We also note that, in the case of (1), a variable "X" in "A" is, in facr,

renamed to "XX" il "X.XX" appears in the rename list of the translator.

- 14 -



Now we consider the second step (iil. The algorithm of this step is as
foliows :
When step (i) is finished, we obtain three kinds of information;
clausal form which includes variables in the position of Skolem
functions, the list of variables corresponding to the Skolem functions
with the corresponding bound variables, and the list of free variables
used in the clausal form. For each variables corresponding to the
Skolem functions, we make a new funcrion structure. The functor
name of the structure is created as a new name, which is preceded by
"sk" to indicate that it is a name of the Skolem function. The
argument of the structure consists of the member of the bound
variables and by the free variabies. Each of these Skolem functions

are assigned to the corresponding variables in the clausal form.

The following is an example printed in the translation step of the prover.
Megation of conclusion and premise are translated independently.,

[Example-2]

=s====s== translation to clausal form sssss====
clausal form (conclusion): 0.1530002s
[ 1] = skll=zs5kDl
clausal form | premize): 0.650002s
[ 1] X=<Y «- elm({skD2{X,Y},Y)

[ 2] Z=<A,elm{sk02(Z,A),Z) <-
[ 2] elm{B,C) <=- D=<C,eIm|{B,D}

These are the clausal forms obrained from the problem in Example-1 by
applying this step, The conclusion part iz translated to one clause, while the
premise part is translated to three clauses. The function beginning with "sk"
is a Skolem-funccian. Firsr, we will explain the translation process by the
premise part of Example-2. The logical formula "X=<¥Y <=-

alllZ,elm(Z,X)=>eIm(Z,Y))" is given to the translation procedure. The procedure

recognizes thar the formula is of the form "A <= B". From the definition of
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Me=a" "A:=2B" is equivalent to "[CA or B} and (A or “B)". So the prohlem is
to translate the formula "{ (X==<Y) or alllZ,elmlZ,Xl==elm{Z,Y}}) and (X=<Y or
Tall{Z,elmlZ,X)=-elm{Z,¥YN)". This formula is of the form "& and B". In this
case, the transiation rule is: translate both A and B, and join the result. The
first part of the formula is " (X=<Y) or all{Z,elm(ZX)=-elm(Z,Y}}". It is of
the form "A or B". The translation rule of this form is: translate both A and
B, and combine the result. The first part of this formula is "~ X=<Y". This
is translated to the clause "<- X=<Y". The free variables of this formula are
X and Y. The second part of the or-formula is "all{Z,eim({Z,X}=>eimi(Z,Y)]".
This is transtated to "elm{Z,Y) <- elm({Z,X)". By combining "< X=<Y" and
"elm{Z,Y) <« elm{Z,X)", we get the clause "elm{Z,Y} <= X=<Y,elm(Z,X)". This
is the result of the translation of " (X=<Y) or all{Z,elm(Z,X)=>elm{Z,Y))".
This result is the third clause of the premise part of Example-2. The first
and the second clauses for the premise part come from the second part of the
and-formula.

Since the formula given as the conclusion is an atom "X=<X", the
negation of its closure is ""all(X,X=<X)". By applying step (i}, it is translated
to "e- XX=<XX", and we get the variable list "[XX-{]]" for Skolem functions
and the empty list for free variables. By these data, we create a Skolem
function name "sk01", which has no arguments, Then we assign the function
"skOI" to the variable "XX" in the closed formula, and obtain "<- sk0l=<sk01"

as the result of translation of the conclusion.

It should be noted that the decreasing of the number of steps, lLe., [rom
6 steps in ordinary method to 2 steps in this paper, results in the decrease of
translation time. In our experience, the new algorithm is about two times

faster than the ordinary one.
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3.3. Converting the Clausal Form to the Connection Graph

The representation of the connection graph of the prover is different
from Sickel's. All the clauses and literals are uniquely named, and to each
literal a list of links to the unifiable complementary literals is added. A
link is represented by a pair of clause name and literal name. Each clause
with the name and link information is stored separately in the Prolog
database. During the process, for each positive lor negative) literal the links
to the unifiable negative {or respectively positive) literals are also added.
Some of the links are deleted by the static strategy. As the default deletion
strategy, irrelevant clauses, i.e. those including the literal which has no links
to any of the literals which are not included in the clause, are deleted
These clauses are of no use to find the solution, for such a literal mentioned
above has no way to be resolved. TFurthermore if such clauses exist, we may
spend much time in rhe irrelevant searches for the solution of the literals in
the clause. Morecover, the tautology links, which always generate tautology
clauses (i.e. clauses which contain the same literals as both the positive and
the negative literals) are also deleted,

By the bottom-up {or top-down) strategy, the link from the negartive (or
respectively positive) literal to the positive (or respectively negative) one is
deleted. These two strategies have been implemented. Other strategies can
be implemented easily. The most important problem we have now is how to

find the useful strategies.

The following example is the result of generating the connection graph
corresponding to the clausal form shown in Example-2.
[Example-3]

ssz======= C¢reate conneclion graph =s=ssossz==
connection graph @ 1.83333s

clause literal literal_body connection_links

- 17 -



[cO1] 101 skOl=esk0l
==> ¢02-102 c03-104
[cO2] = 102 X=<Y
==> c0l-101 c04-107
103 eim(sk02(X,Y),Y
==» ¢03-105 c04-106
[c03] 104 Z=<A
==> c0I-101 c04-107
105 elmisk02{Z,A),Z)
==> ¢02-103 c04-108
[c04] 106 elm(B,C)
c02-103 c04-108

]
1
W

107 D=<C
c0Z2-102 c02-104

n
"
W

108 elmi{B,D)
s=»  ¢13-105 cO04-106
The bracketed names are the clause-names, while the names beginning
with "1" are the literal names. They are unique in the clause zet, The list
of clause names and literal names connected by "-" followed by the arrow
"=»" indicates the connection link. Note that there zre no indications whether
the literal is positive or negative. This is because only the link information is

used in the search process.

3.4 Solution Search

During the search process of the solution, an environment graph is
constructed, which represencts the state of the value assignments at that time.
When a new instance of a clause is needed, the clause is ohtained from the
Frolog database and iz instantiated by the appropriate value assignments to the
variables. It may be needed to assign values to the variables in the
envircnment graph, at that time. And the instantiated clause is added to the
environment graph to get the new environment of unification. At the same
time, the search tree for the solution is constructed to keep the unificarion
path to the solution. It is used later when the search process succeeds and

the resolution process is called. In the current version, the environment graph
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is used only for the search process. In the resolution step, only the search

tree is used and the unification environment is reconstructed by the acrual

resolution process. The success of the resolurion process is guaranteed since

the search process has been terminated successfully.

Solution search process is organized as follows @

(1)

(2)

(3)

The step selects one clause from the clause set as the start clause.
The list of all literals in the start clause is given to step (2). If
step (2) terminates with failure, then this step selects another
clause. If no clauses are lefr, then whole of the solution search
process terminates with failure. If step (2] terminates with solution
tree, then step (1}, and consequently whole of the search process,
terminates successfully, The solution tree is given to the resclution
process to be described in sub-section 3.5,

A list of literals is given to this step. This step calls step (3
repeatedly to find a solution tree for each of the literals. If one of
the literals has no solutions, then step {2) terminates with failure.
The order of selecting a literal in the list depends on the dynamic
strategy of the prover,

A literal is given to this step., This step searches a solution tree
which represents a refutation process of the literal. More precisely,
a link of the lireral is chosen by the dynamic strategy of the prover.
The link, in effect, indicates a clause and one of its lireral. Then
the clause body is taken from the Prolog database, and appropriately
instantiared by unification. If the unificacion fails [or this link, we
choose another link of rhe literal under consideration by Frolog
backtracking. Here, if no links are left, step (3} terminates with
failure. If the unification succeeds, the step makes a list of the
residual literals of the link. Here a residual literal of the link is a

literal in the clauvse other than the one connected by the link. Step
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(2) is recursively called with the list of the residual literals to
cearch for the solution. Step {(3) successfully terminates in two
cases. The one is when the literal has no residual literals, and the
ather one is the case when the link forms a merge loop (described

below).

As noted, the dynamic strategy is invoked in selecting a link for a new
search. The algorithm which rakes the order of the connection links as the

preference of the links is implemented as the dynamic strategy.

[Note] In the above process, we may encounter two kinds of loops, narﬁe]y
merge loops and tautology loops. A merge loop is a path which begins with a
literal and terminates with the same literal of the same instance of the
clause in which it is included. A tautology loop is a loop which comes back
to the same clause which has been appeared previously, but not to the same
literal of the clause. Merge loops and tautology loops are tested each time
when 2 new link is chosen. A merge loop corresponds to the derivations of
some of the input resoiutions and factoring, and is also considered to be 2
termination of the search in the current path. On the other hand, since
rautology loop does not contribute to the solution search, we simply reject to

use it.

In the next example, we will show how the prover searches the
connection graph given by Examplie-3 and finds a solution. We will also show
the solution tree obtained by this solution search process.

[Example-4]
========== §0iUTion sedrch sssss=s====
------------------- start clause <0l @ 101 -==-----mmmmmmn-
1 cOl-101=>c02-102
new : 102 sk0l=<sk0]

103 elmisk02{sk01, sk01), sk01)
2 c02-103=>c03-105
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new : 104 skQl=<skOl
105 elm{sk02{sk01,sk01),sk01)
3 c03-104=>c01-10!
#**  merge loop **Y
This gutput shows us how the search proceeds in the solution search
process. The search begins at the literal "101" in the clause "c01". First the
search uses the link from the literal 101" to the literal "102". Since no
clauses named "c02" are found in the current environment graph, a new clause
instance is created. Next, it uses the link between "103" and "105", and
creates a new clause. In the last step, the process reaches the literal "101"

The literal is the same as the literal of the same instance in the start clause,

Therefore, a merge loop is derected and the process terminates. In this case

no backrracking occurs,

————————————— solution t(re ===s=we-s=a--
c01-101 => c02-102 ** merge loop (head) **
c02-103 =» c03-105
c03-104 => c01-101 ** merge loop (tail} **

This indicates the tree struccture of the [inal solution. [n this case the

solution is of the form of a single merge loop.

Since we use Prolog, it becomes very easy to implement the selection of

alternatives. Backtracking is essentially required in such processes.

1.5. Resolution

This step displays the result of the solution which was found in the
previous step as the resolution trees. This step is guaranteed ro terminate
since the previous step, which holds the unification environment of the

resolution, terminates successfully.
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The solution tree {or sub-tree} which does not include merge loops

corresponds to the input resolutions. For example, let the solution tree be of

the following form :

(1) Ll =+ L2

(2) L3 == L4

(3} L5 == L&
{4) L7 == L&

The corresponding resolution is as follows :

<= LI
L2, L3 «- L7
_____ -== (1) (L1 and L2 are unified.)
L3 «- L7
L3 «- L4

(2) (L3 and L4 are unified.)

L3 <« L7
<= L&

(3) (L5 and L6 are unified.)
<= L7

LE «-

{4) (L7 and L8 are unified.)

For the merge loops, the next example will show how the corresponding

resolutions are made.

[Example-5]
======= resglution tree print ======

----- resolution tree -----

© [e01] <= 101]sk0l=<sk01]
icoz] 102{X=<Y] <- 103[elmisk02(X,Y),Y}]
[c03] 104{X=<¥],105[eimlsk02{X,Y),X)] «-
—————— unify 103 = 105 ——-ccceeecmmomm o mmmme
{n01] 104[M=eX], 102[X=<X] «-
—————— factoring 102 = 104 --v--v----momm—mm-
[n02] 102[X=<X] <~
—————— unify 101 = |02 -c-c-cccccmcrmmrme oo ====
[m03] €=

resolved : 1.43334s

Following to the solution tree obrained by the previous step, the actual

resolution process is displayed. There are three links in the merge loop.
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Therefore there is only one intermediate link except for the terminal two
links. Corresponding to the intermediate link, there is an input resolution
which unifies the links "103" and "105". After this resclution two literals are
left, namely the literals "104" and "102". These literals correspond to the two
erminal links of the merge loop, namely "c01-101 =» c02-102" and "c03-104 =-
c01-101". By the factoring which unifies these two literals, we get a literal
which is the complementary literal to the terminal literal of the merge loop.
By the resolution corresponding to the terminal link "c01-101 =- eQ2-102" (or it
is equivalent to the resolution corresponding to "c03-104 =» c1-101", since the
factoring unifies the literal "102" and "104"), the literal of the name "I01" is
erased. In this example, since the start clause includes only one clause "101",

the empty clause is created, and the resolution process terminates.

The prover has a feature called the "answer" predicate. By the acrual
resolution displayed by the prover, we can get all the process of the value
assignments to the variables. When we want to know only the values of some
specific variables, the result displayed to us is too complicated. The answer
predicate is provided for such an objecrive. For example :

The problem given by
provelsome (X, p(X} and ans(X)), pla})
makes the following print

-------- value{s} of ans-predicate{s} ------

This indicates that the final solution is found when the value of the
variable X, which appears in the input as an argument of the ans(wer)
predicate, is "a". We can use more than one ans predicates. In this case, if
we use the ans predicare as, for example :

ansfargument_of p=X),

the meaning of the printed value becomes clear.
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4. Conclusions

In this paper we have at first discussed about the strategies of the
iolution search for the first-order predicate logic theorem provers based on the
resolution principle.

The prover which uses the connection graph in the solution search process
has two kinds of strategies, namely static and dynamic. By the static
strategies we can constrain the space to be searched by subsequent dynamic
strategies. To be maore specific, some of the links may be deleted by way of
the static strategies, so thatr these links can never be used during the solution
search process,

For each pairs of unifiable complementary literals, the static strategy
procedure is invoked only once, so that the time consumption is relatively
small in the total process. The dynamic strategies, on the other hand, would
be invoked many times during the search, and the relative contribution to the
total time consumption of the proof process is large. But in principle, any
strategies representable by the static ome can also be represented by the
dynamic one, and the convese iz not true. From this observation about the
static and dynamic strategies, we conclude that the more the stategies are
deseribed as static one, the herrer, provided that it is realizable at all

We also described an implementation method of the prover. Two
formulas representing the problem are given, namely, the conclusion and the
premise, These formulas are translated to the clausal form, and then a
connection graph is generated. Some links between unifiable complementary
literals are deleted by the sraric strategies. After the connecrion graph has
been obtained, the solution search process bhegins. This process searches the
connection graph to obrain a solution tree. During the process, an environment

graph which represents the assignments of the variables in the actual
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resolution process is produced. Such environment graph is used to decide
whether a link of the connection graph actually corresponds to the resolution
if the search process terminates successfully, the resolution process is invoked
and it prints the actual resolution tree In this process, the solution tree (s
used, together with the clausal form saved in the database. The prover also
has the so-called answer-predicate feature, The arguments of the "ans"
predicates are displayed and the final values of their variables are shown to
the user.

Using the special features in Prolog, such as unilication and backrracking,
the implementation became easier, and the program became more efficient.
For example, in translation process, we used a data structure using unification
to improve the efficiency of the process, and search process was easily
implemented by using the backtracking feature of Prolog.

For the further improvement of the prover, the investigations of the
strategies appropriate to problems in some specific domain would be most
important. The followings are some of the problems left for the future
research @

(1} Make some gantitative evaluation of the prover.

(2) Introduce a strategy description language, and let the user to express
the strategies easier.

(3} Introduce "type" to increase the naturalness of the expression of the

formula given to the prover.
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