ICOT Technical Report: TR-160

TR-160

The Architecture and Preliminary Evaluation Results
of the Expenimental Parallel Inference Machine PIM-D

by
Eiji Kuno, Neriyvoshi Ito
(Qki Electric Industry)
Masatoshi Sato and Kazuaki Rokusawa
(1COT)

March, 1986

(1986, 1COT

Mita Kokusai Bldg. 21F i03) 456-3191~5

|G DT 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ku Tokve 108 Japan

Institute for New Generation Computer Technology



. ameE BAmEE LEaE
ALTROR NUMBEZE PAGES 4ERS

ey B :\" s200M0 anc ELI‘:;_'L"I,‘I:.NE i'lagE! H'BFE
I

FINALEIZZ 27 ¥ 11

I )
| Start secaned soivmn sezong ang sucteeding pagas he-g

THE ARCHITECTURE AND PHRELIMINARY EVALUATION RESULTS
OF THE EXPERIMENTAL PARRLLEL INFERENCE MACHINE PIM-D

i Woriyoshi Ite*, Masatcshi Sato
Inztitute for New Generaticn Computer Technology.
Minato-ku,

1-4-28 Mita,
Eiji Kuno,

4-10-12

and Fazuaki Hokusawa*w
Oki Electrie Industry Co.,
Shibaura, Minato-ku, Tokyeo, Japan

Tokyo, Japan :

re= midnEE 3D W
- k. FOTAaT ewew

o f tEmT

A parallel inference machipe based on the
dataflow model and the mechanisms to support two
types of logic programming languages are presented.
The machine is constructed from multiple processing
elements and structure memories  interconnected
through a low-latency hierarchical network. The
preliminary evaluation results of the experimental
machine are also presented. The evaluation results
shiw that the machine can exploit parallelism  in
programs.

1. INTROCUCTTON

The authors are irvestigating the Farallel
Inference Machine based on the DEtaflow model
(FIM-D] and the mechaniem= to support the parallel
logic progreaming languages, The main features of
the PIM-D are listed below.

- dataflow-based architecture: The
dataflow model assures the independence of
operaticons being executed in parallel [7]  [3]

[9]- There are o side effects among the
cperations. Thus, the parallelism in  the
programs (OR-parallelism, AND-parailelism, and
paralleli=n  inclueded in  the unification
oparaticon) can bte easily exploited by the
machine.

= hierarchical petwork confiquraticn: The
machine is constructed from multiple processing
elements and multiple structure memoCies
interconnected throvah a hierarchical network.
Comunicaticon among these units is performed
via the hierarchical common busses. Each bus
provides high-bandwidth, low-latency packet
transmission facility; a packet can be
transferred from one unit to another in cne bus
transmission cycle.

= support of two types of logic
programiung languages: The machine can support
two types of logic programming languages,
OR-parallel and AND-parailel Prolog, in a
uniform manner; inter-process communication is

* MN.Ito is currently with OXI Electric Indus-
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performed by streams, that are representad by
nor=strict structured data in order to  provige
&n asynchronous communicaticn among processes.

There are several approaches to  inmplement
highly parallel inference machines. Conventicnal
processors based on the ven Neumann model, in which
both program codes and data are stored in & memory

enit, fetch and interpret progran codes
seguentially., If such processors are used as the
processing elaments of the distributed, parallel

inference machine, context switching of processes
or packet communication overhead caused by freguent
remote acoesses of shared structures or shared
variahles will significantly reduce systen
rfomance (2] [5]. The data flow machine
assures independence of the operations being
executed in parallel., ‘The machine can easily
exploit parallelism in  soch &  distributed
processing environment.

As the authors adopted the  hierarchical
network  architecture, where all the processors are
on the leaves of the n—ary tree hierarchy, the
machine is easily expandable to arny scale and can
rake u=e of the locality of the programs while
exploiting parallelism, The main didea in
implesenting such process allocation i te wvary the
process distribution factor according to the
computation lead of the system as descrited in
Secticon 4.

GHC {Cuarded Horn Clauses) was chosen as the
tasic languase of KLl (Kernel Languace 1): a
parallel version of the kernel language of the

fifth ceneration computers in ICOT [16], It is an
AND-parallel logic programning language
implementing stream AND-parallelism. On the other

hand, a class of all soluticn searching preblems is
easily described by OR-parallel logic procramming
language by using its nondeterminacy. The authors
introdoced the stream commenication scheme for the
CR-parailel languace as well as the AND-parallel
language [13]. Therefore, two twpes of logic
proaramming languages and their interface ecan be
supported on the machine in a unifomm manner.

A detafled software simulator for FPIM-D was
developed to estimate the performance of the
machine from & single-processor system o &

The results showed that

large-scale system [14].
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the machine can exploit parallelism and that the
performance is significantly increased when the
mmser of the processing elements iz increased.
The authors have alse developed an experimental
PTM=D constructed with transistor-transistor-logic
(TTL) ICs.

In this paper, the detailed architecture of
FIM-D is described, The brief description of the
target languages and their execution models are
given in Sectiom 2 and 3, respectively. The
machipe architecture is presented in Secticn 4.
The preliminary evaluation results of the machine
are discussed in Section 5.

2, TRRGET LANGIAGRS

The languages to be supported on PIM-D include
AND-parallel and OR-parallel  Prolog. Both
langquages are based on Hotn logic, a subset of
first-order predicate logic. BAND-parallel Prolog
provides an inter-process communication facility by
sharing logical wvariables among AND processes
(zoals), while OR-parallel  Prolog provides
independent solution search among (R processes,

GHC is one of AMD-parallel Prolog, such as
Concurrent Prolog [15] or PARLOS [B], and was
chosen as the basic language of fifth generation
computers  in ICOT because it has clearer semantics
and provides more efficient implementation than
Concurrent  Prolog and because it has more powerful
descriptive power than PARLOE [16].

FC provides process synchronization among
producer and coonsumer processes using the guard
mechanisn based on Dijkstra's guarded comand  [8].
GHC programs consist of gquarded Horn clauses. Each
clause has the following formak:

- Gl, G2, ..., G0 | B1, B2, ..., Bn.

The gymbol *|' is called a comit operater, and the
left and right sides of the comit operator are
called a guard and body, respectively, H is called
a bead literal, Gl, G2, ..., Gmo are called gquard
licerals, and Bl, B2, ..., Bn are called body
literals, Each «clause is inveoked when a goal
literal is given. Unification is attempted between
the head literal and the given goal literal and if
it succeeds then the guard literals are irmroked as
the new goal literals. Only one clause whose guard
{i.e., head unification and imvocation of all the
cuard literals) succeeds proceeds its body
imvocation. That is, ome clause is exclusively
selected for a given ogoal from all the clauses
whose guards succeed,  The selected oclanse nay
imroke its body literals as the new goals.

The guard or body literals can be imvoked in
parallel, and a synchronization functicn of the
processes invoked  from  these  literals is
irplemented by the cuard mechanism. That is, these
literals can have shared variables and the imvoked
clauses may communicate messages via these shared
variables. In the guards of the inwoked clauses,
if unification beteeen a goal variable and &
nor=variable term i= attempred, it is suspended
mtil the ooal variable is instantiated to & tem
{megsage), Thus, these clauses act as the Cconsumer
processes. In the bodies of the imvoked clauses,
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however, unification between & goal variable and a
term instantiates the goal variable to the term and
will activate the suspended unification operations.
Thus, these clapses play the role of producer
pProCesses.

n the other hand, a class of all-sclution
sesrching problems is  easily descrited in
OR-parallel Prolog by using its nondeterminacy.
The COR-parallsl Prolog programs consist of Horn
clauses with no guard mechanizm, The emphasis of
OR-parailel Prolog is on OR-parallelism rather than
o AMD-parallelism. If a goal is giwven, the
clauses are irwoked and the created (R-processes
will search for independent sclutions in parallel,
The resulting sclutions are merged into streams bw

stresn merging primitives and then returned to  the
goal [12].
3. EXEQUTION MODELS
It will be necessary to manipulate laroe

stroctured data in the knowledge information system
to wnich the fifth generation computers are aiming.
Such  structured data should be shared among the
processing elements rather than being lecally
copied from a processing element to cthers because
the machire performance may extremely be degraced
for the heaw network traffic and because the large
redundant storage for the local copies will be
reguired. When the sharing methoed iz adopted,
however, the process context switching overhead
cansed by the freguent remote data accesses will
also degrade the performance, if conventicnal
processors were used as the processing elements,
The dataflow model assures the independence of the
primitive operators and is suitable in such a
distributed, parallel processing system.

The machire i= based on fthe tagged btoken
arcnitecture, in which a unigue identifier is
located to each procedure imstance [3] [9].
Every procedure instance, therefore, is executed
independantly as well as the execotable nodes in
the procedures. ‘Thus parallelism in the programs
ecan eagily be exploited by the machine.

Two types of logic proaramming languacss are
supperted in a uniform manner;  inoer-process
camunication iz performed via streams, which are
monestrict data structures to facilitate
asynchronous comunication between consumer and
producer procasces,

In OR-parallel Prolog, each goal literal
exscution will produce a set of sclutions. These
splutions may be returned to the goal in  a
rondeterminate manper. CR processes will retorn
the solubions to the goal in the order in which the
solutions are ocbtained. These solutions are mecged
into a stream by stream merging primitives. The
stream here is called an inwisible stream, Decause
the structure of the streem is "not visikle' to the
programmer directly. Figure 1 (a) shows an example
of & goal where the instances of wariable X
cbtained by the execution of the literal p(X) are
gsent to the next literal g{X).
the

In AMT-parsllel Prolog, however, strears



are ‘'yizible' to the programmers, The programmers
may code the programs that explicitly generate or
consime  the streams, which are inplewvented as
etructured data containing unbound variables as
their elements. Such Streams are called visible
streamz, Figure 1 [b) shows an example, where a
producer invoked by the literal p(X} generates a
yigikle stream represented by a list and a consumer
invoked by the literal g(X) reads its elements, In
contrast to OF-parallel Prolog, at  most  one
instance is bound to the variable X and it may be a
structure repressnting a visible stream.

invisible stream

ess X3 %2 21

7= plL) 1 g(x)

{a) Copmunieation oo an Iovisible Stresm

viaible stresm .

[x1,22,x3,...]
.

7= plX) qflX}

(b} Communicetion on & Visikle Stream

Fig.1 Inter-process Communicaticn via Streacs

The programs written in Of-parallel or
ENT~parallel Proleg are corpiled inte dataflow
graphs. A dataflew greaph is representsd by nodes
cornected by directed arcs. Fach node corresponds
to an operator and each directed arc Corresponds to
a data path along which a token carrying the
operand for the destined operator is sent. All the

nodes whnose operands ere ready by arrivals of the
tokens to thelr input ares can be executed in
parallel. Each node, when executed, may put new

tokens on its output arcs, and thus
next nooss,

ectivete the

Figure 2 shows a sangle program wroitten in GEHC
and its ommpilcsd cetsflow orEph oote,  The oodaran
iz a list-azpend program which apgpenss 2 list
specified by the second arqueent of e ead
literal o the end of the list specifisd By the
firer arsument. The appencsd list is wnmified with
the third eramment, In the quards of the clausas,
the first ool argument 45 unified with
nor—darisahle tesse (A3l oF  lise), if the goal
argument is an uninstantizted var:zzble, unification
is suspended.  If  instantiated, the succesding
clagse will proceed  to its body and will
instantizce the third coel argument o the second
apal argurent (the firet clause) or a mewly created
list (the second clayse).

=i

The first statement of the complled code
specifies the procedure name and arguments of
'append’ procedure, The procedure body L5 enclosed
by ‘'bagin' and 'end' statements. Each body
staterent corresponds to a node in the dataflow

-
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graph, and the left side of the '=' operator
specifies destination paths for the results of the
instruction specified by the right side of the '=
operator. The ‘<<¢=' operator specifies a procedure
invocation MACTo. The dataflow graph
representation of the carpiled code is shown in
Fig., 3.

/% GHC source programs %/

appl(l)s¥.2} -
apol [HIX],Y,2)

true | =Y.
1= true | T=[H|21], apwiX,¥,Zl}.

/¥ conpiled code */

ret<=app 3 laral jarg2,argld).

begin,

£a

vargl=wait_instance{argl).
jargl_1,_,argl 3, )=swi teh_ by type{uargl,uargl).
{arg? 1,_,arg2_3,_ )=switch by type{arg,ua rgll.
{argi_1,_,argd 3, )=s~itch by typelarg3,uvar gl).
{ret_},_,ret 3, )=switch by type (ret,uargl).
dec_prefe by _type((1,0,1,0) ,uargl).
of the first clause.
e3=write instance(argd 1,argd 1).
return (el ret_1).
& body of the second clause.
(pd,p5) =0ecompose 1 ist(argl_3).
precreate_global var [argl_3).
pll=cons listipd,27).
ell=write_instance (arg3_3,pl0).
gl2<<=app 3 (p5,arg2 3,p7).
eli=check consistency (ell,el2).
return (eld, et 3.
end.

Fig. ? The GHC Frogram and the Compiled Code,

The procedure performs clause indexing at

firee; & subset of the clauses may be selected by
their bhead or guard information  instead of
wastefully imvoking EVETY clapses. The

'wait_instance' instruction reads the instance of

the first goal argument which is passed along the
path 'argl'. If the goal arqueent is an  unbound
variable, it is suspended until the variable is
instantiated. ‘This operation will need remcte
access  if the variable cells are distributed over
the memory units in the sysbom. Then, the
'gwitch byv_type' instructions switch all the goal

grguments according to the first arqument;  they
pat their left operands on their first destinations
if the first goal argument is 'nil', and on the
third destinaticns if the first goal argument is a
liet. Thus, cne of the clavse bodies 15 irwoked
exclusively, Because mutual exclusive selecticn is
performed by clause indexing, there is no need to
execute the commit cperaticn (i.e., to execute the
'test_and set' operstion on @ semaphore f{lag shared
among the clauses) in thiz exarple.

The 'write instance' vruction tries to
unify its two operands and if one of them is a

variable, it will instantiate the wvariable to

another operand  {i,e., the temm is written to the

variable cell). In the second clause, there i& a

variable '21' in the body which does not appesr in

the guard. For  such a wariable, thie

‘ereate gloebal var” instruction creates a new
WiLLEE L =

.2



variable cell and initialize it. Two body literals
in the body will be executed in parallel (one is
the 'write instance' instruction and the other i=
the recursive invocation of the predicate). The
" eheck consistency' instruction tests their results
whether they terminated successfully or mot.

goal asgucents

f T
argl argd argi

walt=
instanee
-
b v
Switch= sWitch- o ltoo=

by=-type by-type by=-type

e
q

Wwrite-
ipstance

decompose=
li=t

processor (VAX-11/730), which is used to initialize
or moniter the system. The system can easily be
extended to eny level of super clusters. The
hardware specifications for these interconnection
busses are the same, and they are called T-busses.
Facket transmission via & T-Bus is controlled by a
Network Node [1@), which has a nine—to—one arbiter
to arpitrate the reguests from  its lower level
units (eight units at & maximm) and from its
higher level bus,

4.1 Packet Pormats

clauze

indexing Each PE has sceveral stages in
order  te  implement pipelined  or
parallel execution. Fackets
transferred bemween  these stages

include result packets and exscutable
instruction packets, as shown in Fig.
5. A result packet, or & token which
i=s sent along the directed arc in the
detafiow graph, consists of  three
fielde: an activity identifier, a
destination, and a data field. The
activity identifier (16 bits) specifies
the invoked procedure instance name to
which the result packet belongs. The

Y destination field (24 bits) specifies

\ return \\ the adéress of the destinaticn
instruction (@ node in the dataflow

g ] | gragh) of the result packet, It alzo
l inclode two  bits for additional

bcdy of 12t clause imfomation; one specifies whether the
geptined instruction receives ong OF

two operands (i.,e., whether the

instroction is  ewecutable on the

arrival of @& single operand or of two
operands}, and the other is the port
mmmber  of the destined instruction
{i.e., it specifies whether the cperand
iz a left or a rignt operand). The
data field (32 bits) containg the
operand data 0 be sent W the
J instruction,

—

body of 2nd clause

Fig. 3 Dataflew Graph Represcptaticn of the Ccopiled Code

4, BYTDE ARSSITOOT o

e experimentsl machine is constructed from
mirinle Procecsing Elstent modules (FEs) and
midtizle Strucmrre Memory modul es (sMs)
inceroomnected through a2 hierarchical network as
showm in Fig, 4 {11}, There are several hierarchy
leyels in the interconnection network. E=ch PE has
its local bus. Four PEs and four SMs are
interconnectsd oy &n inter-module network bus. A
set of these modoles is called a cluster.  Several
clusters are further interconmected v an
inter—-cluster network bus,

The implemented experimental system consists
of two clusters and is currently being expanded to
four clusters. ©Of these clusters, one  is
specialized whose one SM is replaced Iy a host

ALLYVaTERa) T

The data fleld is further divided
into a tag subfield (7 bits), which
specifies the data type such  as
integer, symbol, list, and s0 ¢n, and &
data vatue subfield (25 bits}. IE the
data is structured data, the data velue
field contains a pointer to the structure MmEMADY,
which consists of a G5-bit module mumber and a
20-bit local address in memocy. Thus, the
experimental rachine can be expanded to 32 modul es
{PEs or BMg) with each module able to have up to &
one million (20-bit} word memory space.

An executable instruction pscket consists of a
current  instruction address, activity identifier,
operation code, left operand, richt operand, and
destination specifier fields. Of thess, the
current  instructicn  address indicates the
instruction address ko be ewecuted and ic used to
cbbain  the destination addresses fram  the
gestination specifier field as described below.
The cperation code field (B bits) specifies the
operation to be executed and the destination
specifier field (4B bits) specifies the destinaticon
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addresses  of the results.
specify the destination addresses in the
destination specifier filed; in the full
destination mode the specifier field containe up to
two  gdestinations (each of them iz of 24=-hit
length), and in the short destination mode the
gpecifier fileld contains up to four destinations,
where each destination is of 1J-bit length and
contains the relative address from the current
instruction. These relative addresses are added to
the current instruction address to obtain the
ghsolute agdresses,

4.2 Cenfiguration of Processing Element Module

The stages in & FE include & Facket Quece Unit
("0}, &an Imstruction Control Unit (ICU), several
Atomic Processing Units (AFUs), and a Network MHode
(M), as shown in Fig, 4. These functicnal wnits
have their own controllers and are operative in a
pipelined manner., ‘The PE has a Local Memory Unit
(LMU), which is used to store local data such as

There are two modes to

B oaie TaEEs .

..
d
m
L]
o
Ta
[}
LL1)
L]
L
m
X
m

activity management information, and is shared and
accessible from ARUe,

The POU consists of a
First=Cut) quess memory to
([tokens) temporarily.
controlled and has

FIFO  (First-In
ELore result packets
The I is microprogram—
an Qperand Memory (0M],
Instruction Memory (IM), and hardware hashing
logic. 'The I receives the result packet frem the
FOU and detects the readimess of the instruction
operands specified by the arriving result packet,
if the instruction receives two cocrands; if the

ingtruction receives one operand, the instruetion
is executable and the IV constructs an executacle
instruction packet as described below, n  a
bwo—operand instruction, the I0D0 searches
agssociatively the OM, which i=s used to store the
operands whose partner operands are nob ready, with
the packet's activity identifier and destinaticn
fields as a key using the hardears hash., On a
successiul search, the I0J fetches the partner
cperand from the (M as well as the instruction code

4

T-suR

=

I Rl S R - S
" ECTE) :
1
I<_ T=BUS > :
I-':.*“' e . : FE: Troccazming Flement
P e T ._:_] | HJU: Packel Queue tnik
by = 1 IQ: Imetroction Control Unit
Ir: L] . AP): Atomic Procesging Undt
: 1 LM): Local Memory Unit
By T=au
1 <—J——"-> | iz 51:.1‘1.1:!::.1“ MEmory
| T Sy proceetog e
il ___[ i KN Hebwork Node
: | _— | BA: Bus Arbitor
! : ! FIFD:First-In Firgt-Out Memory
Al e - - o
Fig. 4 Configquration of the Expecimental Machine
| activity |destination| I
ligentifier | address | data [
a1 o | (22 |
{a) Pormat of a Result Packet
| current | activity |  left right | destinaticn '
| address |igentifier| operand operand ! specifier |
| (32) (32} | 148) |

20y 1 Qs |

(b) Pormat of an Executable Instructicon Packet

Fig. 5 Packet Formats



from the IM, amd  constructs an  executable
instruction packet, which is then sent to the next
stage; one of the APUs; otherwise, the 10U stores
the arriving operand into the OM until its partner
cperand arrives.

The execotable instruction packet is sent to
cne of the APUs, which are also microprogram

controlled with — AM=2500 geries bit-eliced
microprocessors as the arithmetic logic units. The
cwele time of the ARPUs ig 333 nano seconds. The
AP erforms computation specified kry e

instruction code and cenerates new
to be sent to the PQU or other PEs,
If strycture accesses are
recessary, the structure
manipulation camands are
sent to the SMs pointed to

result packets

values indicate the data type of the data written
into the word.

Garbage oollection of structure memory is
performed by the reference counting method (11 [Z].
10-bit reference count fields are appended to every
wo word cells, because the basic cell in PIM-D is
the list cell, which consists of two contiguous
words. The reference count has the mmber of
pointers which point to the oell, and if the
reference count reaches to zero the cell is
el aimed,

The specification of the warious units is
chosm in Table 1.

Table 1. Specification of the Units

by the structure pointer L :
Tlelas in the Fﬁfm | unit | specification |
i g -y | | FQU | FIFO size: 16 K words X B6 bits (16 K tokens) |
e : | | | cycle time: 167 nano seconds |
NI | | ICU [ IM size: 96 K words X 59 bits (96 E instructions) [
data et e aeneh | | O¥ size: 32 K words X 64 bits (32 K tokens) |
£or mp.:miﬂr_im between I I | gycle time: 333 nano seconds |
vhe funccional wnits M | FE | AR ] micro stere:l K words X 32 bits Read Only Memory |
shown in Fig. 5 'thE'E"ze | I 7 ¥ words X 32 bite Random Access Memory |
of & resdit E:acket e I | I cycle time: 333 nano seconds |
?2[_15*24_‘_32}' bits The | [ 1M0 | momory sizes512 K words X 32 bite |
E;nb;ﬂma ;:sugidemcﬁzzu{'ﬂf:ra | | 57 | micro store:l K words X 32 bits Read Ondy Memory H
one unit to another in one | =4 | I 7 E words X 32 bits Random Access Memory |
. - N | | | oycle time: 333 nano seconds ]
E?ss n::ﬂ éeziﬁ] qr.cﬁ":: | | 5MJ | memory size:1024 K words X 34 bits (for data and tags) |
bus comnecting the IEI.T and | ] | 517 K worcs X 10 bits {(for reference <ount) |
. P oot i '
The B, whh s edlled | | FIFO size: 64 words X BE bits (64 tokens) 1
widths ' an executable | | oycle time: 167 nann seconds |
instruckion packet is sent ' : '
By four I-bus coycles
(l6E.7T X 4 = 887 nano
seconds) . Two versions of the fimmware interpreters are

4.3 fConfiguration of the Structure Memory

3

Eachi SM oonsists of an  SPD (Structure
Proceseing Unit) and Struckure Memory Unic (SMD)
fur storing the structured data., The SPUs receive
the structure manipulation comands from the ATs
and interpret them, If the ocomands need the
responses, new result packebs are created and sent
back to the PEs. © Such commands include ead
comrands, memory &llocation comands, and 5o on.

Synchronization via shared variables are done
by asditicnal tag fields in the structure memory
[4]. Each memory cell word in memory has a tag
field specifying whether the contents of the momory
word are valid er not, The ® ¥" wvalue indicates
that the word is empty [l.e., no write eperation to
the word has been performed yet), Te “pending®
value indicates that some read operations have been
performed to the empty word (the fead operations
are suspended and the sespended read reguests are
chaired inte the menory word until the write
operiticn to the word is perfomed). Cther tag

being implemented; one is an SM-distribution
system and the other is an SM-integration system.
In the SW-distribotion svstem the structured data
is digtrimuted to and stored in the SMs, Each APU,
therefore, sends  the ucturs manipulation
oomanss the SMs, accage  is
TBCESBAIY .

=0

In e SMintegration syatem, however, the

structured data ig gistmibuted to end stored in the
locz] memories of the PEs. In £his syetem, the
anounT of hesdwere lomic iz oredaped o about

owo-third of the SM-digtributicn syetem because o
SMe Are necessary., Each AP0 can accoess its local
meEmery Lf the structured d&ata is stored in the
local memory, rather than sending the structure
accees coemond to other moddes, In this cose, the
lecality of structure acsess snould be necessary in
order that many structure accesses may not  cause
the EFJS to send the structure commands to other

PEs. T there are mary remobte structure  accesses,
the load of the APUs become heavier than the
SM=-distribetion sysbem, becavse the AMs must

process these commands as well as their instruction
execution.



4.4 Process Allocation

We nave chosen a process allocation stratedy,
which can expleit parallelism by distribubing the
active processes, or procedures, among clusters oo
PEs while making use of the locality of the
programs. Process allocation is performed by a
procedure irwocation instruction. The AP, if it
receives this instruction &s an  exgcutable
instruction, &llocates one of the PEs to the new
procedure iy testing the process distribution
factor. The process distribution factor is decided
by the load status of all the FEs; according to
the nebwork hierarchy levels of the system
configuraticn, there are roughly three levels of
distribution facter. It is assured that the
programs 0 be executed have large amount of
parallelisn  and that the degree of parallelism may
dynamically be changed. IE the system load is
light [i.e., if the degree of parallelism is low as
in the initial execution stage), the distribotion
factor is  high and the new procedures are
distributed ower the clesters, if the load DEcones
intermediate, the new procedures may be allocated
to one of four PEs in the cluster, amd if the load
is heavy, the distribution factor is low and the
new procedures may be allocated to their own PEs.

In order Lo maintain the distribution facter,
each FE may transfer the lcad status such 23 the
packet gueuws length to other DPEs, when  some
specific time pericd has expired, or when the queue
lenoth exceeds same threshold  level. This
transmission mey be perfommed at first between the
four PEs in the cluster and if a drastic change of
the cluster's load status occurs from the previous
one, then the status may be transmitted to  the
other clusters.

This load balancing scheme iz like that of
EMPS [10] except  that the user or progranmmet Can
specify the proecess allecation strategy., There are
thres types of procedure invecation instructions
agcording  to the hierarchy levels: an
inter=cluster call, intra-cluster call, and
internal call instructions. The inter—cluster call
instruction £ollows to the abowe scheme; this
irstruction is used for distribution of
loosely-coupled processes, The intra-cluster call
instruction allocates one of the PBs in the cluster
to the new procedure when the distribution factor
iz high; otherwisge, it allocates the own PE.  The
last ope, internal call instroction, always
allocates the own PE to the new procedure, thus the
local computation 15 ascured. This instroction,
for example, 15 us=d for the tail recursive calls
or for allocarion of the tightly-coupled processee.

5. RMALUATION RESULTS

Tre first wversion of the Se-distribokion
gystem  was  microcodsd and wvarious evaluation
results have been cotained, The evalusted sample
programs include:

- B=gueens program to find all sclutions
to place the N queens on the N X N chess board
s0 that no gueen captures any other gueen
{written in OF-parallel Frolog and GHO),

= BUP (Bottom Up Parser) program that
analyzes a cimple Japanese sentence (written in
Or-parallel Prolog),

- gquick—-sort program that sorts a list of
255 elements in escending order (writbten in
GHC) .

They are compiled into the dataflow graphs as shown

in
the
are

to

Fig. 2 and initially loaded into the I00s of
machine from the host processor. The TPrograms
duplicated in all PEs,

Figure § shows the total machine ¢ycles needed
exscute the programs and the performance of the

exper imental machine when the number of modules
{FEs and 5Ms) is increased, The pecfomance of the
machine with single PE and SM is about 2.5 or 3,2 K

RFEs

(Feductions Per Second), where the mumber of

redections means the mumber of successfully
terminated goals. It is not =0 high becauss

Exeention Tine (M Cyeles)

- the vertical microprogram formabt is
adopted rather than & horizontal format to
simplify the hardware,

- the interral bee of the RPU or SMU is of
17—pit width, hence geveral nmicro steps are
neeged £o create a packet,

- no microprogram optimization has been
done yet,

T-gqueens (GHC)
quick-sort {GHC)
T-gueens (OR parallel)
EUP (OR parailel}

P4

Ferformance

—
[=]
|

Ezecurico

Peclovimanee (I ILPS)

Mumber of Modules

Fig.f Perforinance of the Experfinental Machine



™e performance, nowever, is  increased
linearly when the number of modules is increased
even if the structured data iz distributed over the
=M, and will be improved by firmware optimizaticn
and hardware refinement. In order o extend the
machine to the prototype system constructed from
hundreds of  processors,  the authors are
irvestigating a VISI version of PIM-D and estimated
the amproved performance of the npew PIN-D, 'The
main bottle-neck in the current experimental
machine is in the APU as described above, and the
EFI's machine oycles needed to interpret the
instructions may be reduced to  one-third or
cne-fourth by extending the internal bus bandwidth.
The cycle time will be improved to half or
cne-third by uosing the VIST technology. Finally,
the mmber of AFUs in a FE is extended to six or
eight from two. Thus, the improved performance is
potentizally in the range from 1B to 48 times faEter
than the experimental machine {it is in the range
from 54 to 144 FRPSY, A= described in Section 3,
it is necessary that the large structured data
should be distributed and shared among processing
elaments, It was shown that the d&taflow machine
iz suitable for such a distributed, parailel
processing system.

£, QORCLUSICHN

Execution models on  the dataflow=hased
parallel inference machine for OR-parallel and
IND-parallel Prolog and the experimental machine
architecture were oescribed. It was shown that two
types of logic programming languaces with different
aims can be supported on this maching, The
prograns are  edrpiled  inte  dataflow graphs
corresponding te machine language codez.  Thus,
parallelism irn the programs can be  exploited
naturally.,

Tre machine is constructed from processing
elevencts  and structure memories interconnected
through a hierarchical network. The processing
elements interpret the procedures represented by
the dataflow grapghs in parallel. Structured data
iz distributed to structure memories and shared
among Ehese prootdores.

Detailed desicgns for the experimental machine
have Deen developed and the first wversion of the
firmware interpreter debugged., The preliminary
evaluation results of OR-parallel and GHC programs
indicate that performance 1s linearly improved
exploiting parallelism. Future efforts will
imvolve optimization of the fimmware interpeter
and improvement of the machine hardware to serve as
the basis for a hignly paralicl inference machine.
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