ICOT Technical Report: TR-159

-1

Distributed Implementation of FGHC
—Toward the realization of Multi-PSI system—

by
Makoto Kishishita(Fujitsu Lid.)
Jire Tanaka. Toshihiko Miyacaki. Kazuo Taki
and Takashi Chikavama (ICOT)

March, 1986

C 1986, 1C0T

Aitn Kokusas Bidg 21F {03 436-3191~5

[C DT 4-28 Mita 1-Chome Telex 1COT J32564

Minatn-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Distributed Implementaticn of FGHC
--Toward the realizaticen of Multi-PSI ayatem —-

Jiro Tanaka, Toshihiko Miyazaki, Kazuo Taki, Tekaeshi Chikayama
ICOT Hesearch Centar, Mita-kokusai-build. 21F
1-4-28, Mita, Minato-ku, Tekyo 108, JapaN

Makoto Eishishita
International Institute for Advanced Study of Sccial
Information Science (IIAS-SI8), Fujitsu Limited
1=17=25, Shinkamata, Ohta-ku, Tokyc 144, Japan

[Abstract]

Varicus technical problems arise when we consider the
distributed implementation of @ parallel logic language. This paper
tries to describes cur sclutions for such problems.

The model we assumed 1s the multi-FE asystem where dozens of
PE2 are grid-netwerk connected. Each Processing Element (PE) has
lgeal memory. It has no shared memery ner global addreas apace.

We assumed Flat Guarded Horn Clauses (FGHC), which 1is the
simplification of Guerded Horn Clauses (GHC) [Ueda #85], as our

upderlying parallel logic language. Each PE can execute FGHC
programs,

We have implemented the software simulator of the nulti-PE
Zystec. Our simulator iz based on the work of Muraksmi and Miyazaki
[Murakami 85b]., It simulates the execution of pre-processed FGHC
program in a multi-FE epvircnment.

1. Introducticn

The development of logic=-based high-speed parallel-computing-system is
the final goal of Fifth Generation Computer Project at ICOT. This
project is the ten year project and we are nmow on the beginning of the

fifth year.

Various researches have been carried cut for the development of

logic-based high-speed parallel machire frem the "architectural™ view
point [Murakami 85a]. The protetype developments of PIM-D (Parallel
Inference Machine based on Dataflew) and PIM<F (Parallel Inference

Machine based on Reducticn) are the examples of such activities.

However, in accordance with the development of ocur research, we nctiﬁad
that there exists lots e¢f problems to be solved st "scftware” or
ffirmwWere®™ level, such a= (1) how to boot the system, (2) how deliver
objeot program to each PE, (3) how to handle input/cutput and

interrupt, (4) how to balance the load between FEs, etc.

These problems are nct the hardware preoblem in itself. These problems
must be solved at the software or firmware level. Therefore, ICOT
decided to start "Multi-PSI"™ project. There is not se much new in
hardware. ICOT has already developed Perscnal Sequential Inference
(P2I) machine [Taki &4). This machine is a personal workstation and
its deslgning concept is very similar to LISP machine. Conventional
techniques have been adopted and ESP [Chikavama 84], which is the
object-goriented extension of Prolog, is firmwere supported. Mul ti-PSI
hardware is simply built up by connecting & - 16 Perscnal Sequential
Inference (PSI) machines with high speed grid-hardware. Mast of

problems exists in "software®,

[\I

2. The multi=FE model

The model we azsumed 12 the multi-FPE system where dozepns of FEs are
grid-petwerk connected. There exist lots of designing chcices. Lota
of intenszive discussions had been dope ipside ICOT. The deciszions we

have made are as followa:

(1) PE must be connected in a way which allows the Increase of FE
number. Qur system must work even if we have hundreda of PE.
Therefore, we did not adopt the common bus. Instead, we adopted

grid-network.

(2) Eech Processing Element (PE) has its local memery. It has no
shared memory por global address space. Global address schema has not
adopted because we have thought that the distributed garbage
collecticn is extremely difficult. In our system, FE communicates

each other conly via measage exchange.

(3) We assume and-parallel logic langusge as cur underlying logic
language. #nd-parallel executicn of & prograe iz alsc assumed.
Cheosing "pure” proleg and "or-parallel” executicn may be the other
poasibility, which was pnot our choice. Or-parallel execution
acccopanies the copying of variables. And-parallel executicn does not.
Cur claim i3 that and-parellelism plays more basic roles than
or-perallelism in distributed environment. Each FE executes a Program

independently or cocperatively.

(4) "Distributec" logic languages has not been adopted as our base
language. D-prolog [Pereira 84] or MENDEL [Heniden B86] 4= the

examples of =uch distributed language. In such language, eaach

L]
)

"process™ ia a sequential prolog program and "processes®™ commupicate
each other via sending or receiving messages. These languages hasz not
been selected since we must wWrite Mpreoeess" explicitly in such

languages and we did oot like such ccarse granularity.

Figure 1 shows bhow the multi-FE model looka like.

Scheduiing Quesa

/ Nerwari Router
Lo

Figure 1 Multi=-FE Model

This mul ti-PE model has the following features.

(1) We assume that the program, i.e., the definition of clauses, has
been loaded to every FE from the beginning for simplicity. First, =
goal is put inte one PE, this automatically starts the computaticn.
When there is no goals to be processed on all PEs, it means the end of

éL

computation.

(2) Each PE has cne scheduling queue. Fach FE repeats to dequeve =&
goal from the scheduling queue and reduces it to the resulting goals.
These goala are enqueued to the scheduling queue or thrown te other

FE.

(3) Each PE executes the goals which are thrown from other PEs besides

processing local goals.

(4) Since each PE has independent address space, the unification of
twe variables existing on different PEs invokes the necessity to aspan
inter-FE reference chains. Each PE has the variable management table

for that purpose.

(5) Unificaticn sometimes invokes vericus me=sages to other PEa. The
exapples of such messages are "get_value,® "unify," T"unify_channels,™

etc. The meanipg of these meszsages is explained in section 6.

3. Underlying language

As mentioped in section 2, the language we are intereated in 1is
"parallel logic language", which allowz and-parallel executicn of a
program. Parleg [Clark 85] and Conecurrent Prolog (CP) [Shapirc 83a]
are the examples of such "Parallel Logic Languages." Although thars
are differences, the basic computation mechanisms of these languages
are quite saimilar. Horn clauses with guards are uzed to define
predicates, goals ere executed in parallel, and they have scme

gynchronization mechanisms between goals.

After examiping wvarious trade-offs, we have decided to adept Flat
Guarded Horn Clauses (FGHC) as cur underlying language. FGHC is the
aimplified versicn of Guarded Horn Clauses (GHC) which ia eriginally

proposed by Ueda [Ueda 85]. The FGHC clause has the following format.

Hfﬁt‘s‘l, drg2, Argn) :- G1, G2, ... y Gm | B1, B2, 4,9 Bk .
Head Part Guard Part Eody Part

pasgaive part active part

Zimilar to other parallel leogic languages, a FGHC elause cansists of
three parts: Head Part, Guard Part and Bedy Part. Head Part and Guard
Fart are called "passive part" becasuse these parts do not instantiate

veriables. On the other hand, Body Part iz called "active part.?

The features of FGHC and dits evaluation rules are swmarized as

follows:

{1) Only system predicates are allewed 2= goals in Guard Part. This

ls the reason that we call our language "Flat™ Guarded Horn Clauses.

£

{2} Passive part is executed sequentially. First, head unification is
executed sequentially from right to left. Second, Guard Part is

executed sequentially.

{3) Suspensicn cecurs when the unifieation of passive part wants to
ipstantiate global wvariables, i.e., pazslve part nDever exports
binding= to the outer world. This provides the basic mechanism of
"auspension™ in FGHC. The prineiple of GHC can be understcod as
follows: We pever TMassume®™ in the copdition part. If there is not
enocugh information to judge, we simply wait until we get the encugh

information.

{4) The passive part of candidate clauses are tested sequentially. If
& passive part of onpe candidate clause succeeds, that clause wil be
committed. If the candidate clause faeils or suspended, the pext
candidate clause will be tested. When none of candidate c¢lauses
succeed apod there exists more than one suspended elauses, the goal is=

auapended.

{5} The suspended goal is hooked to all variazbles which have caused
suspension. The suspended goals are kept in the ferm cof "goal($(Argl,
wesy Argn), [E1, ..., Fm])," where "goal"™ is the predicate name and
(R, +.., BRm] i3 the result list whose each element shows the
execution result of each candidate clause, A suspended goal is
resumed when that wvariable is instantiated. Notice that suspen=icn
cocurs to "goals" net to "elauses.m Qur implementation experlences
[Tanaka 85a, Tanaka 85b] show that the or-parallel execution of a
parallel logic language acccmpanles toc much coverhead. Therefore, we

decided not to support cr-parallelism.

We show an simple example of FGHC program here. This example is an

"atream-merge" example [Ueda 85].

merge ([AX], ¥, Z) i- true | Z = [AIW], merge (X, ¥, W).

[AIW], merge (X, ¥, W).

merge (X, [A1¥], T} := true | Z

merge([], ¥, Z) := true | Z = Y.

]
b
L]

mergel(d; []; Z) := true | Z

The meaning of thiz example is self-explanatory. Notice that the
upification which experts bindings to the global world must be written
explieitly in the active part. Also notice that "merge" process is
hooked on both variables X and ¥, in the case no ipput data is
available. In such case, only cne of these geals will be resumed and

other geals are disabled at that time.

In shert, FGHC 1s the subaset of GHC which 4is fully tuped fer the
implementation easiness. Qur assumption is, even if it is "flat,™ it

is still powerful enough for the practical applicaticn.

4, Multi-FE Simulator

We bave implemented the scftware simulator of the multi-PE system. In
relate to this simulator, our system 1= based on the work by Murakami
[Murakami 85b]. Our system i= written in proleg and simulates the
execution of pre-processed FGHC program in a multi-FE eovironment. We

assux 9 FE zystem in this paper.

Figure 2 shows the top-level program for Multi-FE Simulater. Here,
the top level geoal is "dg/1," which stands for distributed_ghe.
"dg/ 1" calls "scheduler® and it puts the given "Goalsa" to PE#1. Then
"de/L" i= invoked. The first and the 2econd arguments are the D-list
which schedules PE executicn. The third and the fourth arguments are
the ists of input channels, the list of output channels,
};apectively. The "dg/4" executes the firat element of D=liat, append
the computation result "NPE" to the tail of D-list, invckes "nm" +to
take care of message exchange between PEa, and calls mag/sun

recursively.

/* Top Level of Interpreter =/
dg(Goals) :-
/* Call SCHEDULER */

schedule(Coals,X,X,QHL,[$55]QT1]),

/* Call DISTRIBUTED FGHC Interpreter */

dg{[pe(#1, 081, QT1, C_Thwil, I¥1, OUT1, R1},
pe(#2, [$ss|0T2)], QT2, C_Tbl2, IW2, QUTZ, R2),
pe(#3, [$55/QT3], QT3, C_Twl3, I¥3, OUT3, R3),
pe(#4, [583|QT4], QT4, C_Tblé4, INL, QUTSL, R4),
pe(#53, [s$s3{QT5], QTs, C_Twils, IN5, OUTS, RE),
pe(26, [35%/0T&], QT6, C_Tblé, ING, OUT&E, RE),
pe(#7, [s58|QT7], QT7, C_Th»i7, I#7, OUT7, R7),
pe{#$3, [%35|QT3], QT8, C_Tvlis, I#g8, 0UT3, RE),
re(#9, [$53|0QT9), QT9, C_Tslg¢, IN9, OUTS, RE) |T], T

]
/* Scheduline (Qnene */

fIyi, Ii2, IW3Z, IN4, IS,
INe, Id7, 1INs, 1Ingj, -
/* Input-channels */

-
*

[oUuTi, OUT2, QUT3, 0OUT4, OUTS,
ouUTe, QUTT, QUTaE, OUT9) Y.
/® Qutout=channels ¥/

/#* DISTRIBUTED FGHC Interpreter =/

dg([PZ|PEs], [¥PEZ|T], C_IH, C_OUT) :-

/* Pan Wext Proceszinn=Element =#/

call({ P), /* Drive Processineo-ZElement ¥/
ara(7,PZ,UPE), /* Get Returned PE-Status */
nm(C_I0, C_OUT, NC_Ii, NC_ouT), /% Call Metwgork=Mongoer ¥/
dz(PZs, T, IC IH, ﬁE_GET},

Figure 2 Top Level Frogram for Multi-FE Simulztor

o

Figure 3 shows the program for PE.

/* Processing Element */

pe(ID, H, T, C_Thl, C_IN, C_OUT,
/¥ Input PE-Seatus &/

pe(ID, R¥, RT, RC_Tbl, NC_IN, RC_OUT, NRB)) :-

/* Return HNew PZ-Status %/

recieving(C_I¥, T, C_Tbl, HC_IH, NT, NC_Thl),
pe{d, BT, NC_Tul, C_OUT, (4, T, C_Tbl, C_QUT)).

pe({5s3

H],[558|T] b1

T}, C_T OUT
(4, T, C_Tbl, T

T
bl ¥
T =1,

, C
C_ou
pe([5(Geal, G, Gt)|¥], T, C_TL1l, C OUT, Z2) :-

. reduce(Goal, T, C_Tbl, C_OUT, NT, NC_Tbl, WC_OUT),
pe(E, NT, NC_Tbl, NC_OUT, R).

Figure 3 Preogram for FE

"pe/T" iz set in meoticm by "eall(PE)" in "gg/Y4." The first argument
cf "pe/T" i3 the ID number of PE, the second and the third iz the
D-list which corresponds te the scheduling queue inside the FE, the
forth 1= the variable management table which is used to span inter-PE
reference chains, the fifth and the sixth is the input and output
channels to network manager "nm, " and the seventh is the pew FE =tatus

"NFE™ which will be enqueued in "dg/4."

"pe/T" receives the mezsage frem C_IN, append this message to the
tail of its scheduling queue, and starts up "pe/5." "pe/S" reduces

a8 goal inside the scheduling gqueue. fpe/T" returns ita state after it

[

has Finished the 1 eyecle computation of the scheduling queue.

In short, PE consists of Ainput/output channels, scheduling queue and
the variable management table. The copceptual structure for FE is

shown in Figure 4.

PE

PE ID

schedul ing queue inout channel

[HENTEEEEEER

output channel

variable managesent table
A
ki

b o= =) -

Figure 4 Conceptual Structure for FE

™

Netweork manager takes care of message exchange between PEs, Messages
are sent including the address information te be zent frem output
channel. Network manager delivers the message to the addressed ipput
channel. Figure 5 shows the conceptual dimage how input/cutput

channels are cornected in oup gimulator.

nm
out out/f out .
1n I N
N
#n
pe#1 pe#2 e pe

Figure 5 Channel Connection in Multi PE Simulater

The simulation of the grid-network behaviecr is fairy easy. We Justg

need to apecify "nm" more realistically.

5. Executing FGEC ocode

We have already mentioned that pre-procezsed FGHC pregram 1s executed
ingide each PE in our simulater. We show how these pre-processing will

take place by & =imple exsmple. We consider the "merge" example

in secticn 3 again.

The first thing the user must do 1s to add "pragma®™ to source program.
"Pragma" specifies how the program should be executed in a multi<FPE
environment. Pragna shows just the executico contreol ioformation, and

does not effect the semantics of the originzl source program.

In relate to "pragma" specificatisn strategy, we do net have enough
experiences yet. ITherefcre, we are currently testing various "pragma”
methods. Currenfly, the meoat dominant "pragma® specificaticn method
is the one propesed by Chikayema [Chikayama 85]. However, we assume
Shapiro=-like "pragea® [Shapirc 83bk] for explanation simpliecity in this

Farer.

The scurce code which are added "pragma" must be pre-processed to the
executable code. We have adopted prelog code as cur target code.

Figure 6 shows= the pre-processing example.

/% merge in FGHC W/

merge ({4 !X], ¥, Z) := true | Z = [AIW], merge (X, ¥, W).

merge (X, [A1Y], Z) := true | Z = [A|W], merge (X, I, W).

merge ([1, ¥, Z) := true | Z = 1.

"
bt
L]

merge (X, [], Z) == true | 2

f® merge in FGHC with Pragmas ®*/

merge ([41X], ¥, 2} := true | Z = [AiW], merge (¥, Y, W)Eup.

merge (X, [A]Y¥], Z) := true | Z

[4!W], merge (X, ¥, W)fdoun.

13
]
[

merge ([}, ¥, Z) := true | 2

merge (X, [1, Z) := true | Z = X.

i

/¥ compiled merge program %/
merge (1, $(21,42,A3), Resultl,
[$(ulist (a3, a, W),
threw{ merge(X, &2, W), up) IT1, T) :-
ulist(guard, A1, &, ¥, Resultl), !.
merge (2, $(41,A2,43), Result2,
[ulist (a3, &, W),
throw{ merge(41, ¥, W), down} |T], T) :-
ulist{guard, A2, A, Y, Reaultz), I.
merge (3, $(A1,42,43), Result3,
{unify(a2, A3)iT1, T) :-
unil(guard, 41, Result3), 1.
merge (4, $(A1,82,A23), Resultd,
(unify{a1, a3)IT], T) :=

unil{guard, A2, Reaulth), I.

Figure & FGHC Code Pre-processing Example

(5

The prolog complled code may hard to understand. However, thesze
compllation techniques are already "Mestablished® implementation
techeiques which can be seen in [Ueda £5a, Murakami 85, Tanaka B85b,
Tanaka 86]. You may notice that every compiled predicate carries

scheduling queue as its argument.

6. Inter=FE communicaticn

One ¢f the mest important operaticn in distributed computing is the
compmunicaticn between FEa. Wa bhave prepared the feollowing 5

predicatez az system predicates:

(1) send_goal (PE_ID, Goal)

Send goal to the FE apecified by FE_ID.

(2) get_value(C Var, Result)
Request the wvalue of C_Var. The value is returned tc "Result" by
"reply_reault™ message. Usyally used executing passive part of the

Sgurce program.

(3) wnify(C_Var, Value, Fesult)

Fequest the unification ef C var and Value to FE whieh € Var belongs
to. Velue must be instantiated at run time. The computation result is
returned to "Result"™ by "reply_result™ message. Usually used

executing asctive part of the source program.

(4) unify_channela(C_Varl, C_Var2, Result)
Request the wunification of C_varl and C_Var2 te PE which C_Vari
belonge to. The computation result 1= returned tc PHesult"™ by

"reply_result™ message. Usually used executing active part of the

[

sgurce program.

(5) reply_result(Result, Value)
Returns the unification result or computaticon result to "RHesult.®

Vaelue muat be instantiated at run time.

7+ Sending/Receiving goals

Since cur system does not have global address space, sendipg of a goal
which includes wvarisbles te cther PE npeeds a little cemplicated

mechanism.

The sender "PE" transforms the variable X which ie included in the
sendiog goal to "$VAR(ID, N)," where ID debotes ID pumber of sender FPE
and N iz a pewly geperated pumber. This corresponding information i=
reglstered in the variable management table with the form [X, #VAE(ID,

N}, _1.

The receiver "PE" generates a new variable X' from the form PEVAR(ID,
H)® and contain this correspondence to variable management table in
ferm [X', $VAR{ID, W), “"™on-asking flag"]. The wvariable 1in the
recelved goal i1a al=o replaced by 4cha(X', "oo-asking flag"). Here

$cha(X', "on-asking flag") is called "channel-variable,"

Figure 7 shows the case where a goal (X,Y) i3 thrown from FE#1 to

FE#2.

]

nm

send-goal (send-goal (
T{(EVAR(1, 1). F(EVARC(T., 1),
SVAR(T,2), EVARC(T. 2))
right)

PE#1 PE$2

throw] T(ECHA(X", Fx).
(T(X,¥), right) ECHACY . Fv))

[X.SVAR(1.1).-1 TX" SVAR(1, 1), Fx]
[Y.3VAR(1,2), -] Y™, SVAR(1,2), Fv]

Figure 7 Sending/Feceiving Geals

B. Distributed unifiecation

We have introduced "channel-variable®™ in the previous sectlom. This
nchanrel-variable™ is used ta carry cut the distributed wunification.
When program executicp gets across the unification with channel

variables, messages to other PE must be generated.

The distributed unification algorithm can be summarized as follows:

{1) Unificaticp in the passive part.

In FGHC, we cannot Ainstantiate global variable before the clausze 1=
committed. Only the reference of the value i1s possible for the global
variable. Therefore, when unification coperation with the

nchannel=variable” i= broke out in the passive part, it lssues the

(¥

"get_value" message and this unification iz auspended until the walue

iz returped by "reply_result"™ message.

{2) Upnificaticn in the active part.
Io the active part, there i3 no regulaticn az 1o the pasaive part. We

can instantiate a value to the glchbal variable.

{a) Unificaticn tween a variable and a channel-=variakble

If the variable 1= undefired, the ochannel-variable Aitself 1=

substituted a= 4its wvalue. If the variable hes already been
instantiated, "unify"™ message 1= issued. Thiz upificaticn is resumed

when the velue iz returned by "reply result? message.

(b) Unification between two channel-variables.

Unificaticn between two channel-variables issues the Munify_channels®
message. Thiz mpessage 18 =ent te the PFE which the firat
channel_wvariables belongs to. Then this message 1= processed as

exactly the same as in (a).

Figure B shows the typical case of unification between PE#1 and FPE#2.

PE#1

throw
(T(X,¥), right)

uni Ty (y, 1)

PE#2

send-goal (
f(EVAR(1,
EVARC(T,
right)

1)
2)

_—

L]

v

get-value

[X.BVARC(1. 1), -]
[Y.SVAR(1.2), -]
Figure 8

reply-result

v

A

unifv

replv-resul

=
T

f(SCHA (X', Fx),
SCHA (Y™, Fy))

, sSuspended

r

: .
i X
])
X Y X
: resume '
¢ 1 T suceeded '
¥)
: :
L

continue

unify(yY",

i ¥
[}]
[]]
1 i
] : :
E , suspended !
] i '
¥ wh# I
[l * 1
; resume :
v i T succeeded E
i

: :

continue

[X",SVAR(1, 1), Fx]
LY, SVAR(1,2). Fv]

Typical Case ¢f Distributed Unifiecatien

9., Coding and implementaticn details

We asked the actual coding of the simulator te Etsuc One, Satoru Torii
and Yuri Ohara at Software Laboratery, Fujitsu Laboratories. They
tock approximately 2 menths to finish up the simulator, ipcluding the
design of detailed specificaticn and the debugging. The simulator is
approximately 1000 lines lemg in prolog, except the pre-processing
compiler part. We have tested seversl sample programs on this

simulater, such as merge, primes, etc.

As far as we know, there wes net much difficulty in codirg. We
lmagine this comes from the lapguege simpleness of FGHC. However,
unification algerithm we reached was pretty complex, since it includes

Fehannel-variables" and "bind-hook™ and "resume™ mechanism.

10. Copcluding remarks

We described the cutline ef ocur Multi-FE simulator. There are two
things that must be dome. One 1= the actual constructicn of Multi=PSI
systenm. Currently, the epthusizstic efforts for Multi-PSI system are
in progress by Teshihike Miyazaki, Fazue Taki, Takashi Chikayama, and
other members of ICOT. ICOT has already finished up the design eof
connecting harcdware. The actusl hardware of wversion 1 will be

completed by April 1086,

The cther direction 1= the research of cperating system written in
FGHC. The ocperating system is called T"PIMOS™ and it operates eon
Multi-P51 system. Our claim is that meost problems in parallel systems
exizt in "softwaren. FIMGE i= written in FGHC and aims to exaomine

2uch software problems. FIMOS , for example, tries to examine process

2

allocaticon, load belancing and acheduling problems. Chikavama's
Computing Power Uniform Distributien Model [Chikayama 85)] is one such
example. In that sense, cur directicn is quite cpposite to Shapirec'=

Logix [Shapiro 85], which i= concentrated on user "services" based on

sequential implementaticn.

11. Acknewledgments

Thi= research was carried out as a part of the Fifth Geperatien
Computer Project. The authors would like thank Eenichire Murakami,
NTT, and Eazunori Ueda, ICOT, for their wuseful copmentz and
suggesticna. We alsoc would like to thank Etsuc Orno, Satoru Terili and
Yuri Ohara at Software Laboratery; Fujitsu Laboretorles for their

implementation efforts.

[References=]

[Chikayama 84] Chikayama, T. : ESP Reference Manual.
IC0T Techniecal Repert TR=044, ICOT, 1984,

[Chikayama 85] Chikayawa, 7. : Computing Power Uniform Distribution
Model, ICOT Internal Memo, 1085.

[ciark 85] Clark, K., Gregory, S.: PARLOG: Parallel Programming in
Logic. QResearch Report DOC B4/4, Department of Computing, Imperial
College of Seience and Techneology, Revised June 1085,

[Honiden B6] Haoniden, S. et al.: MENDEL: Prolog bazed concurrent
cbject=criented language. Compeon 86 spring, San Frencisco, March
1586.

[Murakami £5a] Murakami, Kunio et al.: Research on Farallel Machine
Architecture for F.G.C.5.. Computer, wvel.18, Ne.§, Jume 1085.

[Murakami 85b] Murakami, Kenichiro: The atudy of unifier
implementation in multi=-processcr emvirenment. Multi-SIM study group
internal document, ICOT, 1985, in Japanesze.

[Pereira 84] Pereira, L.M. et al.: Delta-prolog : & Distributed Logie
Programming Language. Froc. Internaticnal Conference cn Fifth
Generation Computer Systems 1984, ICOT, pp.283-291.

[Shapiro 83a] Shepirg, E.: A Subset of Concurrent Prolog and 1ts
Interpreter. ICOT Technical Report TR-003, ICOT, 1983.

[Shapire 83b] Shapire, E.: Lecture Notes c¢n The Bagel: a Systolic
Concurrent Frolog Machine. ICOT Technical Memorandum TH-031, ICOT,
1983,

[Shapire 85] Shapire E et al: Logix User Manual fer Release 1.1.
Weizmarn Inatitute, Isrsel, 1085.

[Taki B4] Taki, E. et zl. : Hardware Design and Inplementation of the
Personal Sequenrtial Inference Machine (FSI). Proe. Internaticnal
Conference on Fifth Geperaticn Computer Systems 1984, ICOT, pp.396-409.

[Tanaka 85a] Tanaka, J. et al.: AND-0OR Queuing in Extended Concurrent
Prolog. Froc. the Logle Progremoning Conference '85, ICOT, pp-215-224,
in Japanese. English wversion 1= to appsar 4in Lecture Hetes 1in
Computer Seience, Springer-Verlag. Alse available as ICOT Technical
Memorandum TM=120, ICOT, 1985.

[Tanaka 85b] Tanaka, J. et al.: Single Queue Compilaticn in Extended
Comcurrent Prolog. Mathematical Methods 4in Software Sclence and
Engineering, HRIMS Hokyvurcku, FResesarch Inastitute for Mathematical
Seience, Kyoto University. blso availlable as IC0T Technieal EHeport
TR-13%, ICOT, 198&,

[(Tanaka 86] Tanaka J et al.: Compiling Extended Concurrent Frolog
=3ingle Queue Ccmpilation=. Proc. Eurcpean Sympeosium on Frogramming
86, March, 1986, University of Saarlandes, West Germany.

[Ueda B5a] Ueda, K., Chikayama, T.: Concurrent Proleg Compller on Top
f Prolog. Proc. of 1985 Symposiuwm on Legie Programming, pp.119-126,
1985,

[Ueda 8%b] Uada, X.: Guarded Hern Clauses. ICOT Technical Heport
TR=103, ICOT, 1985.

=

