ICOT Technical Report: TR-158

TR-15%

Retrieval-By-Unification Operation
On a Relational Knowledge Base Model

by
Yukihiro Morita, Haruo Yokota
Kenji Nishida and Hidenori ltoh

February, 1986

CHas6, 1007

Mita Kokusai Dldg 21T (03] 456=-319]1 —=5

ICOT 428 Mita 1 Chome Telex 1COT }32964
Winato ku Tokyo 108 |lapan

Institute for New Generation Compl.iter Technology

Hetrieval-By-Unifiestion Cperation

on a Relational Knowledge Base Model

Yukihiro Morita, Haruo Yokota, Kenji Nishida and Hidenori Itoh

Institute for New Generation Computer Technology
MhMita Kokusai Duildine 21F

1-4-23 Mita, Mirato-ku,Tokyo 108 Japan

February, 1886

Abstract

This paper describes a method for refrieval-by-enification (RBU} operations,
especially unification-join, on a relational knowledge base model. The relational
knowledge base model is a conceptual model for a knowledge base. [u this
maodel, knowledge is represented by ferm relefions. Terms in the term relations
are retrieved with operation called RBUs (ie., unification-foin and unification-
restriction). To perform upification-join in the simplest manner, all passible pairs
of tuples in term relations should be checked to see if each pair of terms in the
tuples is unifiable or not. This would result in an extremnely heavy processing load.
We propose a method which involves orderiug terms and, as result, omitting some
pairs from this processing. The paper also describes a method for implementing

the unificetion engine [UE). that is, hardware dedicated to the RBU operations.

1 Introeduction

The Fifth Generation Computer Systems (FGCS) project in Japan aims to
develop inference and kpowledge base mechanisms to implement a knowledge in-
formation processine system. To create a large-scale system for knowledge infor-
mation processing it is necessary to make a subsystem which efficicntly manages
and shares knowledge, like the database management system in data processing.
In this paper, the machine that efficiently realizes the above subsystem i= called a
knowledge base machine. Development of a knowledge bage machine is one of the
goals of the four-year intermediate stage (1085 to 1988) of the project.

The knowledge base machine will be used by a variety of users and host com-
puters, so a flexible conceptual schema is desirable. The relational knowledge
base model suggested in [Yokota 85 | is an extremely Hexible conceptual model of 2
knowledge base. Knowledge is represented by term relations, which can include a
set of Horn clauses or of semantic networks. However, the amount of processing by
the machine becomes enormous when the RBU operation proposed in [Yokota 85 |
is performed in a simple manner,

This paper describes how to process the ILBU operations. Section 2 provides
necessary information on the relational knowledge hase model and the HBU op-
erations. Section 3 proposes an eflicient method for processing the RBU oper-
ations. Finally, Section 4 introduces a method for implementing the unification

engine(UE), that is, dedicated hardware for performing the RBU operation.

2 A Relationz] Knowledge Base Model

One reason why latabase svstems bave prospered is that sets of data can
he shared by a number of applications as a result of the establishment of data
independence based on data models. It is important for a kopowledge base system
to snpply 2 number of applicatinos with more complex structures thao the data

stored in databases. Tlus, we must set up a koowledge model for unifurmly

treating knowledge among supplicrs and users of the knowledge. We proposed a

relational knowledge base model in [Yokota 85 | as such a common model.

2.1 Basie Concept

The relational data model is suitable for treating sets of data mathematically.
Let U = {4;.42,...,An} be a et of attributes, and a domain D; = dom(A;)

(i =1,...,n). Formally, relation R(4;, A2,...,4n) on U is defined as follows:
RCD; xDax...xDh.

uwe€R{A; Az, ..., AL) is called a tuple. If it is necessary to distinguish among the
attributes the disjoint sets of attributes X and }", we use the notation R{X, ¥,...).
For example if X = {4;, 42} and V' = {43, 44, As}, the tuple (z,y,...) stands for
{@1,82,83,04,85,...)-

However in the relational data model, domains are resiricted to sets consisting
contains of nothing but constants. In the relaticnal knowledge base model, on the
other hand, domains are expanded to sets of terms. A term is a kind of structure
capable of containing 2 vumber of constants and variables. A subset of the Carte-
sian product of term domains K, Ko, ..., K, is called a ferm relation|Yokota 85 |
on 1I,

TCK; xK:x...x Ky

where K; is a set of terms. p € T(U) is also called a tuple {over U).

Assume that Var is a set of variables and Fun; (i = 0,1,2,...} is a set of
f-place function symbols. Uj=gy- Fun; is denoted by Fun. Elements of Fung
are called copstants, We assume that Fun 1M Var = ¢. Now, terms on Fun U Var

are recursively defioed as follows:
1. Azy coustant a € Fun g and any sariable € Var are terms.

2. Ity ta. ... 1, are terms aod

f € Fun, is an n-place function symbal,

then f{f3,tz,...,1n) is also a term.
3. All terms are generated by applyving the above rules.

Let Term be a sct of terms on Fun U Var., A subsisiciion 6 ; Yar — Term i

represented by a finite set of ordered pairs of terms and variables
{{ti/zi} | t; € Term ,z; € Var and if i#j then 2z2;# z;}

Applying a substitution @ to term ¢, we represent the resulting term by (8. (8 is
called an instance of L.

A substitution @ is called a unifier for t; and {7, if and oply if ;8 = (28, We
also say that {; and !9 are unifiable when there is a unifier for them.

A unifier § is said to be the most generel unifier {mgu), if and only if for any
unifier ¢ of the set there is a substitution 6" such that ' = @ ° §", where o is
composition of substitutions. We write the meu of {; and {3 as mgu(ly, t2).

‘A substitution .ﬂ is called a simuifaneous unifier for the set of pairs of terms
{{ti1,ti2)}i=1,..n if and only if there is a substitution § such that ¢; ;6 = ¢; 26 for
all i.

A simultancous unifier § is said to be the most general simultaneovs unifier
(mgsu), if and only if for any simultaneous unifier @' of the set there is a substitution
é" such that 6' = 608", Tle mgsu for the st of pairs of terms {{fi1, bi2)}i=1.2,.0

is denoted by mgsu({(;1.4i2) }i=1.2,.0n)-

2.2 RBU Operations

Data manipulation languages for relational databascs are basically grouped into
two tvpes: relational algebraie languages and relational calculus-based languages.
Relational calculus is non-procedural while relativnal algebra is procedural. Thus,
it is easy for us to model real operations on data using relational algebra.

In the process of extendiog the relational data model to the relational knowl-

edge base model, operations of conveational relational algebra, such as join and

restriction, are extended to operations based on unification. In other words,
equality-check operations between constants are enhanced to unification operations
between terms. Thus (equijjoin and restriction are extended to unification-join
and unificetion-resiriclion, respectively.

The projection of a (term) relation T\, V) over a set of attributes X is defined
by T[X] = {z|3y(z,y) € T}.

Let w; and ws be attributes or terms, and g be a tuple of a term relation. Let

fm{wy, u) be defined as

tm{wy,p) = | pluy], if wy is an attribute;
wy, if wy is a term.

wle w2 represeats the condition for the tuple p such that tm(wy, p) and tm(ws, p)
are unifiable. Let F be a formula Vk:l,-.--_n["‘i=1,---,mk{-‘1f,,;. e w;)], where Aip, ds
an attribute and w; g is a term or an attribute. The unification-restriction of term

relation T, written 5T, is defined as
orT = { pf| 3k 3p € T, 6 = mgsu({(p]A;,] tmlw; e) }i=1,m,) }-

Let XY, Z, TV be sets of attributes. The unification-join of T; and Ty, written

T1X, }’}}-D:ET:[Z,,W], 15 defined as thie termn relation on X UY U TV

T (X, }’]}.Tz TofZ, W) ={p| 3y €T1.3p2 € Ta, 0 = mou(p[¥)], p2| Z]),
#lX'] = mlX]6,
pY'| = m[Y)6 = pa|Z]8,
plW'] = m[Wle).
Where " NX = ¢, We rename attribntes, if needed. We call these aperations
retrieval-by-urification (RB I/ for short} operations|Yokota 85 |.
In the relational knowledge base model, knowledge is represented as term rela-
tions. Term relations stored in a certain format may he regarded as a set of Horn

clanses (see Figure 1). [Yokota 85 | showed that input resolution can be performed

using ROU operations.

The relational kpowledge base model 1s also expected to be capable of other
tvpes of knowledge representation such as frames and semantic networks. A com-
mon model to bandle various types of knowledge representation is necessary to
create a shared koowledge base. The relational knowledge base model is a promis-
inz candidate for such a model.

A mathematical foundation for formal semantics of relational knowledge bases
was studied in [Murakami 85 |.

Figure 1 shows an example of term relatinns and RBU aperations. Here

XY, Z W and 5§ € Var, anceslor and paren! € Fung, and smith, elark and

turner € Fung. HKEBEI {-"*1-*42} iz an example of a term relation. KB2
04, oloncestor(smith) KXB1, and KB3 = KB2 , 7, KBI1.

3 A Processing Method for RBU Operations

The relational model provides users with a flexible data model, but it requires
a large amount of processing. In particular, performing join operations with Jarge
relations requires a tremendous amount of computation, Several algorithms for im-
plementing joln have been proposed and studied |[King 80 |[Merrett 82 |. The Delta
machine [Kakuta 85 | employed dedicated hardware relational algebra engines to
improve efficiency.

In the relational knowledgze base m{:ﬂai, unification-join processing is likely
to generate very large computation loads. In this section, we propose a method
to procese RDTT operations, especially unification-icin, on the assumption that
dedicated hardware will be used. In Section 4, we propose a method to realize this

bardware.

3.1 Ordering of Terms

We assume that a very large amount of konowledge will be stored in the knowl-

edge base machine. Thus, we assume these terms are stored in secondary storage

[KB1

ancealor (XY)V =parent (X, ¥
ancertor (X, V)V —parent (N, Z) W ~ancesior (2, 1)
porenl{emith, elark)

porenticlark, furner)

-
*

[ancesior|X, ¥)|E] [parené| N, ¥)[5]

-

{ancestor (X, V]|5] lparent{ X, 2}, ancestor [2, Y] |5]

lparent(emith, elork)|S] | 5

|parenticlark, turner)|S] | 5

-

KBz |

| KB3

|ancentor (smith, 1] | [parent{smith, ¥} -

|ancz|tar[lmifﬁ,l"}l | [parent{smith, Z),ancestor {3, 77))

|porent{emith, clark)] i [parent{smith, clark)} [l |
|ancestor (amith, ¥ I [porent{smith, clork), oncertor (clark, ¥} [uncnrw[:i’urk,]'HJ

Figure 1. Example of term relations [Yokata 85).

=

/A
[\

family order: (f2) (g2} (2} (b0) (a0)
level order: (F2) (g2} (aB) (z) (b0)

Figure 2. A tree and character strings representing term f{g(z, b}, a).

{e.g. moving head disk},

To perform unification-join in the simplest manner, all possible pairs of tuples
in term-relations should be checked to see if each pair of terms in the tuples is
unifiable or not. Generating all possible pairs, however, would result in extremely
beavy processing loads. One way of preventing it involves ordering terms and, as
a result, omitting some pairs.

To arrange terms in order, we introduced the concept of generality as
follows[Yokota 85 |:

Suppose {; aud I3 are terms. If {; is an instance of {;, then ¢ is more general

than f5. That is,
ty Jta iff 38 sy = 1,8 (0 is substitution.) .

This generality order, however, is a partial order. All terms should he ordered
thoreughly keeping the order of generality. Terms can be represented by trees
(Figure 2), which can then be linearized to character siticgs. Since trees can be lin-
earized in various ways, such as familv-order and level-order methods|/Kouth 73a |,
there are mauy character string representatious. The character string represen-

tation of method m of term f is denoted by repn(t]. Note that each character

corresponds to elements of Var U Fun. The corresponding elements of War U Fun
of the character ¢ is denoted by nade(c).

The length of string # is denoted hy length(a). We write the substring from the
i-th character through the j-th character of the character string s by s[; j], where
i £ j. and especially when i > j it denotes the null-string (length(s[1:0]) = 0).
The position of 2 first variable in character string ¢ is denoted by posv(s) and the
position in which variable z appears first is denoted by posv(s, z). If there are no
variables in s then we define posv(s) = length(s), and if there are no variables
z i s thea we also define posv(s, z) = length(s). ¢{1; posv{s) — 1] is denoted by
prefuls). We define difpos(s;. s2) as

1, if 51]1;1] # s2[1;1] or,
di fpos{s1,82) = §; or 87 is null-siring,
n, if s1]lin] = sgllin]. si[nin] # egfnin] (n 2 2).
We define a lexicographic order of character string representations of terms as
follows:
41 > a; if and only if n = difpos(sy, 52), and
L. nodelsi|n:n|). node{sg|n;n]} € Var,
(a} posv{sy, node(s;ln;n|)) > posv{ss, node(ssn; nl)).
(b] posvi{sy, node(s1in; nj)) = posv(s2, node{sz]n: nj}),
si{n + Lilength{sy)] > #2[n + L length{sa)].
2. node{s;|n;n]] € Var, node(sz[n;n}) € Fun.

3. node{sy|n;n]), node(s2

ninf] € Fun

node{s;|nin)} > node(s2{n:nj) in arbitrary order in Fun
We use this lexdcograpbic order (of method m) to order the terms. That is,
ly >m iz i/ repm(t1) > repm{t=)

In this paper, the method of ordering of terms which corresponds to the family-

order representation is called the left-most method, Similarly, the method of

ordering of terms corresponding to the level-order representation, is called the
ouler-mosi method.

MNote that, in both of the linearized methods, family-order and level-arder, the
‘father’ node appears before it's ‘son’ nodes. So for substitution 6y = {{t1/z1}]}
and term ¢, let 3;,52 and k be repn(l), repm(t8,) and posv(s;,z;), respectively.
Then &; and s; have a common identical substring s;[1; k] and node{s;[k; k]) €
Var, node(szlk;k]) € Fun U Var. So repm(t) > repm{t0;). (Note that when
node(salk; k}) € Var, posv(sy,z1) = k and posv(s:, t;) < k)

Therefore, for term ¢ and substitution 8 = {{t;/2;}i=1,...n}

repm(t} = repm((6).

Where repm(t} = repm(1f) hold when # is a renaming substitution (ie., 8 =
{{t;/2:}} then t; € Var for all i and if § # j then {; # ;). Thus both of these
ordering methods maintain the order of generality (ie., if £; 2 {7 then t; = f3).

The order introduced in [Yokota 85 | is an instance of the left-most method.

2.2 A Processing Method for Unification-Join

Iu a set of terms ordered in the above way (i.e., left-most method or outer-most
method), character strings of terms which can be unified should have a common
identical substring preceding a variable.

Let us consider a pair of terms £; and {2. Suppose 5, = repm[h}, 8z = repmliz),
k = min (posv{s;), posv(sg)), p1 = prefv(s;) and pr = prefu{sz). If {; and [
are unifiable, then there exists 8 = mgu(f;.{2) and {0 = {20, s0, repn(L1f) =

répm ({20}, and
repm (6} k] = a1[1 k] = repm(128)[1: K] = #2]1 KL
That is,
s |k = sqi Lk where &k = min (posv(s), posv(s2}).

1

INTUT : Two sets of terms T, and Ta.

QUTPUT: All the possible pairs of terms.
Step 1: Set fs — null-siring, class;{k) — ¢ fori=1lor2and k=0,1,2,....

Step £: Take a term f € Ty, (f = 1 or 2), such that ¢t = t'forallt' e Ty U T:.
And let T; — T; - {t}.

If there are oo terms in T} U T3, then Stop.
Step §: Set p — prefuv({repm()), and n — difpos(p, fs).

Step 4: Let elasay(k) — ¢, and classz(k) ¢ for k 2 n,

Let fo—p
Step 5: Ontput all pairs {t,1'), where {' € class;(k},1 <k <n-1j#i(f=1or2)

Step 6: Let classi{length{p)) «— class;(length(p]) U {t} and go to step 2.

Figure 2. The pair generatiozn algorithm.

Therefore, only such terms should be paired and checked as unifiable or not. When
character strings are sorted, it Is easy to select such pairs.

Figure 3 shows a pair generation algorithm. Here we maiutain the set claas; (k)
as a set of terms such that prefo(t) is fa[lik].

Samples of the generated pairs in each case (left-most method and outer-most
method) are given in Figure 4. This algorithm generates term pairs indicated by
the squares, and the pairs indicated by the diamond symbol are omitted. Black

syuares indicate uuifiable pairs of terms.

In tree representation, variables appear only at leaves of tree. Since the level-
order method lists the podes from left to right, one level at a time, leaves ap-
pear later i repieetorderlf) than those 10 repfomip order(!). Since we check ouly
prefv{repm(t)). the onter-most {level-order) method omits more pairs of terms

than the lefr-most (family-order) method o grneral.

fiw,
ifh_ad
Tin, b
Ik, HEL]
IMh. Hati

By 1 N-Tt=he Tape |

el
&
i
i
I
o

€@
&
2
=
o
=l
o
&
0
&
=)

5
{u}
-4
L=
&
o
L]
=
L]
=1
=l
i
=
T
£g
ge
{=le]
53
&g
[=L=
5o
ol
a2
GO
ey
3
O
-
La

fererei=1
oA

{3l =0

S &
COCO0 00000800
B G GG 0D DD O

B
Bfie feah

Gl G Dl B0 O
o

L LLL LR T]
G Sl

nl i hdanm

G 3 B (HE)

(left-most method) (outer-most method)

Figure 4. Example of combination of terms.

Unifcation-restriction can be achieved by using unification-join. For example,
suppose T{A4;, Az, A3, A4} Is a term relation, S = (A1 e A Az e A3) V (45 ¢a;1)
and X = {4, Az, A3, Ay}, where {; and a; are terms and z,; are variables. Let a

term relation T'(A;, Az, A3, 44) be

{{tr 212,212, 214), (22,0, 22,2, 61, 22,4) }, then

-
d‘_rT = TJCﬁ'."!:T .

4 Design of the UE

In the initial stage of the FGOS project, we developed a relational database
engine to be used in the relational database machine Delta[Kakuta 85][Sakai 84 |.
In the knowledze base machine, we also alm at improving efficiensy by ereating
hardware dedicated to the RBU operation.

A reiational knowledge base system architecture was proposed in [Yokota 85][:"-iﬂnﬂi BG }
Here we propose dedicated hardware called a wnification engine (UL for short) for

performing retrieval-by-unification aperations as fast as possible.

12

The following describes a method to realize this dedicated bardware UE which

is based upon the RBU processing method proposed in Section 3.

4.1 Unification Engine Configuration

The upification engine is dedicated hardware for retrieving terms from term
relations. It processes data streams by pipeline processing.

Fizure 5 shows a unification engine configuration. A unificarion engine uses
three channels, two for input data streams to it and one {or ontput data sireams
from it.

The unification engine consists of the following five units:

preprocess unit: This unit extracts an object item (term) from & tuple and sends

out enly that item to the sort wnit.
sort unit: The sort unit sorts sets of terms into order.

pair generation unit: This unit accepts two strings of sorted terms, then gen-

erates pairs of possibly urifiable terms.

unification unit: The unification unit obtains the most general unifier (mgu) of

generated term pairs.

postprocess unit: The postprocess unit applies the mgu to the original tuples.

4.2 Sort Unit

Several sorting algorithms have been proposed and studied[Knuth 73b |. The
relational database engine of Delta employed a sorter whick adopted the two-
wiay merge sort algorichm|Todd 77]. Sinee we number variables left-to-right
charaeter strings of terms, we can obtain the lexicographic order by variable length
character sort. So we adopt the variable-lengb two-way merge sort method, e

use a TRIE representation of variable-length character strings to avoid readjusting

Bt s Rt ey

—:- PRU !—> SU > —

: PGU| |UNULJ|POU =

PRU :Preprocess Unit

SU :Sort Unit

PGU :Pair Generation Unit
UNU :Unification Unit
POU :PostProeess Unit

Fignre 5. Unification engine configuration.

comparison starting points. This representation is used in a pipelined heap sorter

proposed in [Tanaka 85 |.

4.3 FPair Ceneration Unit

The pair generation unit puts terms in the stack until all possibilities for unifi-
cation are exhausted. Then, comparing these terms with the input term, the unit
outputs all pairs of terms excluding irrelevant pairs of terms. This unit accepts
the TRIE representation, so it is casy to compute the difpos(p, fs) in Figure 3.
Figure 6 shows the configuration of the pair generation unit.

The pair generation unit consists of five components, a comparator, two term-
stacks, a functor-stack, a selector and an output buffer. The comparator sends out
streams of two terms to be jpput ooe by one i order. Term-stacks store tenns
while possibilities of unification remain and the functor-stack indicates the order

of eurrent processiug. The selector apd the output buffer control send out streams

14

selector

! Term ————
5 comparator stack ' g
I A ;
from the 5 > - output 'l_ht:'.IUE
sort unit | _ . buffer -
! I] b
Term e
stack ’_ :
_funcror T l
| stack]

¢ e o o e o 8

Figure 6. Pair generation unit configuration.

of pairs of terms to be output to the urification unit.

4.4 Unification Unit

Unification was first introduced by Robinson as a the basic operation of resolu-
tion. Several unification algorithms have been studied|Yasuura 85 |. Most unifica-
tion alzgorithms, structure shared methods or structure copy methods, use pointers
to bind variables. However, pointers are not appropriate to data stream processing.

Figurc 7 shows one of the basic unification algorithms{Chang 73 |. Here ' is a

set of terms.

Let us consider the hardware for exccuting the repetition part of Figure 7 (step
2 — step 4) (we call this hardware a unification element.). Collecting unification
elements in series (see Tigure §) allows pipeline processing of pairs of terms from
the pair geweration unit.

Fizure 9 shows a configuration of the unifieation elements. The blocks corre-
spomling to each *step” in the alzorichm proceszes characier strewns in the pipeline

mnner,

SI!EP 1 Set k= D,ﬁ-'k = “", and ﬁ;; = £,

Step £: 1f Wy is a singleton, stop; 6; is most general unifier for V.

Otherwise, find the disagreement set Dy of 1V},

Step 8: If there exist elements vy and in Dy

such that vy is a variable that does not oceur in lx, go to step 4.

Otherwise, stop: W is not nnifiable.

Step 4: Let 04y = 6z {tg/vp} and Wiy = Wif{tefvg). (Note that Wiy, = Wilker.)

Siep 5: Set k =k + 1 and go to Step 2.

Figure 7. Unification algorithm [Chang 73]

Control information

Pairs — —>
of :
terms —. UEL || Ued

1
t

{
= —
= . —{ U€g
= -

S

1
i
i
bim. =

necunification element

Firure 8. Hardware for

unification algorithm.

10

Ly = ! 5AU . N
. | DEU ECU | |

L, —» | SAU — >
i ¥
locu

| usu A

DEU: Disagreement Exiract Unit
OCU: Occurrence Check Unit
SAU: Substitution Apply Unit
USU: Unifier Synthesize Unit
ECU: Equalty Check Unic

Figure 9. Unification element configuration.

17

-
Lot . ; EW
i : - ' NW .
- |sw | ;
5 > ue] = +11E',:--‘: : |.> sluer —
SW reireuit changing switches

SWNW :switching network
ue; :unification element

Figure 10. Unification unit confignrations.

If there are no limits set on the number of variables in terms, thien an infinite
number of unification elements would be required. This problem is easily solved by
a modification of the configuration nsing circuit changing switehes or a switching

network as shown in Figure 10,

5 Summary

In this paper, we proposed an RBU operation processing method and a method
for implementing it. Our unification engine applies not only to knowledge base

machines, but also to other knowledge information processing systems. The order-
ing of terms propesed in Section 3 also can be used for a disk clustering method, a
kind of page indexing method, to narrow the search space. In the future, we plan

to evaluate the proposed algorithm and engice by means of simulation.
ACKNOWLEDGEMENTS

The authors thank Mr. K. Yokota of ICOT cescarch center, Mr. H. Sakai of
Toshiba Corporation and the members of KBM {Kpowledge Dase Machive) work-

ing group at ICOT for many useful discussions.

18

Refarences

{Chang 73] Chang, C. L., Lee, R. C., Symbolic Logic and Mechanical Theorem

Proving, Academic Press, 1972,

[Kakuta 85] Kakuta, T., Miyazaki, N, Shibayama, 5., Yokota, H., and Murakami,
K. “The Design and Implementation of Relational Database Aachine Delra”,
Proceedings of the International Workshop on Databese Machines 85, March

1985.

[[King 80] Iling, W. F., “Relational Database Systems: Where We Stand Today™,

IFIP pp. 568-331,1980.

[Knuth 73a] Krouth, D. E., The Art of Compuler Programming, Vol 1, Funda-

mental Algorithms, second edition, Addison-Wesley, 1973,

[Kpueh 72b] Knuch, D. E., The Ari of Compuler Programing, Vol. 3, Sorting end

Searching, Addison-Teslev, 1973,

[Merrert 83] Merrett, H. T., “Why Sort/Merge Gives the Best Implementation of

the WNatural Join.®, ACM SIGMOD Record 13, No 2, Jaonary 1983,

[Mozoi 86! Mopoi, H., Yokota, H., Murakami, M., and Irch. H. "A Large-
Seale Knowledze Base Machine Control Technique Using Multi-Port Page-
Memory™, Submitted to the 12:h Internationel Conference on VLDD August

198G,

(Murakami 85] Murakami, M., Yokota, H., Itch, H. "Formal Semantics of a Re-
lational Konowledge Base™, [OOT Technical Report No. TR-140., December

1385

[Sakai &4 Sukai, H., et. al, “Design and Implementation of the Relational
Database Bogine” JCOT Techricel Repart Noo TR-063., April 1084, Pro-
ceedings of Iniernutiona! Conference on Fifih Generation Computer Syaiems,

Nevemther 1084

[Tanaka 85] Tenaka, Y. “A VLEI Algorithm for Sorting Variable-Leagth Charac-

ter Strings”, New Generation Computing 23, No. 3, pp. 273-306, 1085,

[Todd 77| Todd, S., *Algorithm and Hardware for a Merge Sort Using Multiple

Processors™, IOM Journal of Research and Development, 22 1977,

[Yasuura 84] Yasuura, H., “On Parallel Computational Complexity of Unifica-
tion”, Procezdings of Internationa! Cenference on Fifth Generation Compuler

Systems 1084,

[Yasuura 85] Yasuura, H., Ohkube, M., and Yajima, §., “A Hardware Algorithm
for Unification in Logic Programming Language”, Technicel Report of IECE,

EC84-67, pp%20, March 1985, in Japauese.

[Yokota 85] Yokota, H., and Itoh, H. “A Model and Architecture for a Relational
Kpowledge Base™, JCOT Technical Repori No. TR-144, To appear in Proceed-

ing of the 15th International Symposinm on Computer Architecture, November

L5835,

