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Abstract

In this paper, we assume a hack-end type relaticnal data base machine equipped with multiple
dedicated engines for relational database operations. Respoose characteristice are evaluated, and a
parailel control strategy is considered for improved response time by simulating the database machine

in executing database operations using these engines in parallel.

1 Introduection

The Fifth Generation Computer Systems Project in Japan aims to develop a high-level knowledge

information processing system including inference and knowledge base functions. In the first three-year
stage (1082-84) of the project, the P51 (Personal Sequential Inference Machine) was developed from re-

search on the inference function|l]. For the knowledge base function, a back-end type relational database
machine called Delta, compatible with logic programmiog languages such as Prolog, was developed as

the first step towards a knowledge base machine(2]. Delta possesses the following characteristics.

1. Facts from logic programming languages are stored i tables.

2. The logical command iterface with the host machines is based on relaticaal slgebra lsvel oz

mands.

3. Delta has dedicated relational datahase engines for rapid execution of join and other vpmaticrs

that can involve high proecessing loads.



4, Delta has a hierarchical memory (HM) with a semiconductor memory besides its large eapacity

disk device.

In this paper we assume a back-end type relational database machine equipped with multiple dedi-
cated enpgines for relational database operations. A simulation of the paralle]l execution of these engines
in performing relational algebra operations and other operations was made , and actual and experi-
mental data are used to evaluate response characteristics and consider a parallel control strategy for

improved response time.

2 Execution Method for Relational Database Operations

Selection, projection (including elimination of duplieates), and join operations are relational database
operations that can involve high processing loads. Realization of the join operation in particular, though
it is a powerful operation combining two relations, has been cited as a major problem in relational
database research|3|[4].

Ta order to execute relational algebra operations efficiently, it is often advantageous to sort the object
‘relations by key attributes in advance, thereby reducing processing time. This procedure is especially
effective for the join operation. In order to sort at bigh speed, we utilized a pipelined 2-way merge soTt
algorithm and developed dedicated hardware called the sorter. Iu this algoritbm, the data to be sorted
s converted into a data stream and it can be sorted keeping up with the flow of the input data stream.
Dedicated hardware called the relational algebra processing unit, located after the sorter, climinates
delays in executing relational algebra operations on the sorted stream.

In this section we discuss the operation of this dedicated relational database engine (abbreviated to

engine below] [5].

2.1 Pipelined 2-way Merge Sort Algorithm

The pip[-ilned j—wa}r merge 01t algorithm was p].'lirrlﬂ’ﬁt‘.d b:r Tudd[ﬁ]. When the number of records
to be sorted is V. this algorithm can reduce the sorting order O(N x loga V) to {N)[7T]. The following
egquations hold for this algnrithm:

o] = .I'.l‘.'ﬁ:N
size(M;) = 2'=L

where !

N record count

X



L : record length
¢+ number of processors

size{M;) : memory volume M; of the i-th processor

The sorting of relation ® with length [ by key attribute A is expressed as

Sal&(1))

or simply

s(1)

and the resultant relation is expressed as R.

2.2 Join Operation

As mentioped above, the join operation is executed with greater efficiency if the two relations are
sorted by key attributes (key fields) in advance. If the two relation tuple (record) counts are N and
Nz, then a join operation without sorting is QN x Nz), but a join operation followed hy sorting can
be executed in O(Ny + N2,

Let Ay and R be relations with lenpth {y and }2, and 0 be a condition on attributes A3, As of each

relation , then the join operation of K) and R; is denoted Ly

Ralls) = Ri{li) a4, Rall2)
or simply
I; = :l. b !2
where Iy is the resultant relation with length I3. The join operation can be exeented by a relational
algebra processing unit (abbreviated to HAPU below). It consists of two memories called Memoryl
and Memery2, which store Ry [Ry sorted by 4;) and Rq (R sorted by Az}, ead a processer, which

selects the tuples satisfying the condition.

The join operation is executed in the following steps.

stepl: Load relation Ry into the sorter,
slep2: Perform S, () in the sorter.

stepd: Store Ry in Memoryl,



siepd: Load relation Hp into the sorter

stepS: Perform S,4,(f1) in the sorter.

stepfy Store Re in Memory2.

stepT: Onee the first tuple of Ry has bequr to be stored in MemoryZ2, the val(Az) of that tuple, and the
val{A;) of the first tuple of Ry stored into Memoryl are compared by the processor. Satisfying the
condition val(A;) # val{Az), the tuples are combined, or else the nnnecessary attributes deleced
and the tuples combised, and then output. The above procedure is repeated for each tuple in
Memoryl and Memory?2 in their order of arrival. Here, the terms val{4,) and val(Az) express the

values of 4y and 4s, respectively.

2.3 Selection Operation

In the selection operation, eonstants in conditions are assumed to be a relation (R;} composed of

an attribute. So it is executed in the same way as the join operation by deleting tuples in Ry,

3 A Dedicated Engine for Relational Database Operations

5.1 Hardware Configuration

The hardware configuration for the engine executing the relational operations described in section 2is
given in Figure 1. The engine is composed of the HM 1/0 controller, which handles 1/O control between
the engine and the HM which stores relations; the sorter, which sorts a relation by its key attribute; the
RAPU, which executes relational algebra operations: and the engine controller, cootrolling the entire

structure.

The sorter is composed of o levels of processors with memuory units. Memaory capacity doubles with

vach higher processor level. The sorter eurrently implemented has the following specifications

12
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srze| Mol G4l byles

This weans that the sorcer is able to sort up to G418 bytes of data at one time. And Nppu.. the

maximum onmber of tuples the sorter i3 able to process, is given by the following equation.

Nenaz = mi"[2u1 size(Myg) [ L)
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RAPU is composed of the two memories (Memoryl and Memory2) storing sorted relations , and a
processor which selects output tuples satisfying the condition. Currently |, cach of these memories is
64I bytes, enabling join and selection operation for a pair of up to G4K bytes data bundles (a pair of

groups of up to 4,086 tuples).

3.2 Processing Method for u Large Amounts of Data

In section 3.1, it was stated that the sorter is able to sort 84K bytes of data at one time, and that
RAPU is able to execute join and selection cperations at one time for a pair of G4K bytes data bundles,

This seetion deseribes the operation processing method used for large amounts of data exceeding these

levels.

3.2.1 Sort Operation for Large Amounts of Data

When 64K bytes < < 128K bytes, the first initial 64K bytes of data are sorted by the sorter, and
then stored in Memoryl. The remaining {[ - G4}K bytes of data are sorted by the sorter, aopd then
stored in Memory2., The processor of AP merges them to generate the result,

When | > 128K bytes, sorting is accomplished by the following steps.

lat step: The engine receives a pair of 64K-byte data bundles in buffer BUFO0 from HM at a time. The
sorter and RAPU sort pairs of 64K-byte data bundles, and then output 128K-byte units alternately
to buffer BUF']1 and DUFZ on M.

Sth step(S = 2,3, ..., [loga(l [ 128K bytes)] - 1)s At the (S—1)th step, the data sorted in {64 x 2" 1)K-
byte units is stored in buffers BUFa and BUFDL. The engioe receives a pair of (64 x 2*"}H-byte data
bundles in BUFa aod BUFDL from HM at a time. The RAPT alope soris pairs of (64 x 2’._1}1'{'1&1.113
data bundles by merging, aod then outputs (64 x 2°)K-byte units alternately to buffer BUF¢ and
to BUFd, Where Siseven,n=1,b=2,c =3, d=4, and where Sisodd.a =3, b =4 e =1,
d="12

[loge{l [ 128K hytes)|th step: RAPU sorts a pair of data bundles in the two buffers created in the

previous step by merging, aod then outputs the result into DUFS.

Figure 2 shows sort operation for (64 » 8]K bytes of data
When the data of length ! i3 sorted, the total bulfer capacity required is 3% [, including input buffer

BUF0, workizg buffers BUFL, BUF2 (BUF3, BUTF4), and output buffer BUFS.
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3.2.2 Join Operation for A Large Amount of Data

If I} < 64K bytes and {; < 64K bytes, the sorter and RAPU ean execute the join operation at one

time. If the size of either of the two relations exceeds G4IC bytes, the following algorithm is used:

for i = 1 to [i; [ 64K bytes]
The engine reecives SRy from HM, sorts it, and stores it in Memoryl
for j = 1 to [I; [ G4K bytes]
The engine receives SRy from HM, sorts it, and stores it in
Memory2. When the first tuple starts getting stored into Memory2,
the tuples in Memoryl and Memory2 are compared o order of arrival,

and only those satisfring the condition are cutput.

In this algorithm, 5Ry; expresses the j-th sub-relation of relation Ry (i = 1, 2j, which is divided

into G4R-hyte sepments.

4 Parallel Execution Method for Relational Database Operations

Section 4 discusses the parallel executicn method by which multiple engines are used to execute

relativnal database operations in parallel.

4.1 Data Division Sort Operation

When a large amount of data is sorted, the data is divided into a pumber of data segments egual
to the number of inactive engines, and each data segment is then assigned to an engine to be executed

in parallel. That reduces processing time eomsiderably, We eall this procedure the data division sort

operation. It is executed ie the following steps.

altepl: Let m be the number of inactive engines and [ be the length of the data to be sorted. Then in
order to make m engines execure in parallel, the data is divided into m data segmentis and each

data sepment is stored ieto one of m buffers. The size of cach buffer is I/m.

sicp2: The data segments in the hoffers created in alepl are assigned to ra engioes oo a 111 hasis, thea

sorting 15 executed in parallel | and the results are output to the m buffers. Let n — m.

stepd: The pumber of sorted data segments 5 n. Gather up twoe of them, and make nl."zi pairs,

PLP2PL,... Py The i-th pair Py (1 £ i £ [nf2]) cousists of the sorted data segment Sy



{length [;; ) and the sorted data segment 53 (leagth i;z). A inactive engine sorts F; by Z-way merge
and creates a new sorted data segment {length Iy + liz). This is executed in parallel by inactive

engines.

stepdz Let n «— [n/2]. If n equais 1 then stop, else goto slepd.

In gemeral when data of length ! is sorted in parallel by m engines, the required HM buffer size is

3 % I, the same as for a single engine.

4.2 Data Division Join Operation

For two relations with sizes {; and [;, the join operation I w l2 can be executed in parallel by m
eugines by dividiog ore of the relations into m data segments. Join operation Iy /m w I3 is executed by

a single engine. This is called a data division join operation. It is effected by the following steps.

stepl: In order to make m engines execute in parallel, the relation with size I} is divided into m data

segments, and each data segment is stored into one of m buffers in HM.
#lep2: The join operation I} /m s I3 is executed in parallel by m engines.

stepd: The execution results from each #ngine are output to the output buffer.

If the selection operation is executed in parailel by m engines in the same way as the join operation,

we call this procedure a data division sclection operation.

4.3 Data Division Subcommand Tree

The data divisisn sort and data division jein (selection) operations are converted into subcommands
with tree structures and then executed. We call these trees data division subcoimnand trees. The data
division subcommand tree for data divided into m data segmeunts is abbreviated as m-DDET or simply
DDST. The j-tb pode at depth 4 is expressed as ;. A binary tree is formed by the 4DDST of the

sort operation S(5M bytes!, as shown helow:



Modes Day ~ Daq correspond to S{2ZM bytes), and sodes Dy and Daz correspond to the merge pro-
cessing for the already-sorted pairs of 2M-byte data bundles. Dy, corresponds o the merge processing
for the already-sorted pair of 4M-byte data bundles. In general, the m-DDST of join operation Iy m Iy

it given by the following tree of depth 2:

Sooe

D4y corresponds to the dummy pode for synchronization, and Dgy and D'gp correspond to the
processing for Iy /m m 5.

The m-DDST operation is executed from leaf to root. When execution at a node is completed, the
symbol CM is affixed above the arc from that sode to the next node. If a node bhas the CM symbols

on all ares extending ¢o it, then execution at that node begins. We call this node an execution-cnabled

aode.

5 Relational Database Machine Model

The relational database machine taken as the basis for this paper is a back-end type for a host
machine, This section discusses internal execution control of the database machine for the host machioe

inquiries and strategies for the parallel control of the engines.

5.1 HRelational Databage Machine Block Diagram

The bleck diagram for the relational database machine is given in Figure 3.

The relational database machine is composed of an interface unit, a coptrol ueit, a schedule unic.
and an HM controller, along with m? enpines. The interface, control and HM control units consist of
a single OPUJ, aud we euvisage the engimes as attached processors. The HM contral wnit includes a

large-capacity exterpal memory disk device (IIM disk].
L. Interface Upit [IU)

ITT receives a query commmand © from a bost machioe, and sends it to the control ynit queue. If

IU receives the processing complete potice for command C from the control unit, I send directions

10
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Figure 3. Block Diagram of Relational Database Machine

for outpot of resultant relations to HM, receives them from HM, and outputs them to the host
machine.
. Control Unit (CU)

OU takes commands C! from the queue in sequential order. [t analyzes it and transiates it into
internal commands €%, C3,... ,C% such as sort operations and relational algebra operations. It
sends execution directions for staging the object relations used by internal commands in the buffer
memory and for preparing buffer memory of the resultant relations to HM. It sends these commands
to the schedule unit quene. If CU receives all the processing complete notices for C{, G&I. -

from the schedule unit, it sepds the processing complete notice for C' to TU.
. Schedule Unit (517}

SU takes internal commands from the quewe following the engine parallel costrol strategy
{EPCS). By observing the state of active and insctive engines, 517 decides whether to divide data
or not for the internal commands taken from the queue. If division is required, it determines the
pumber of data segments for each command, sends execution directions for dividieg data to HAE
and converts it into DDST by EPCS. SU determines which selected commands and execution-
enmabled nodes will be assigned in what sequence to which engines. It semds execution directions

for the selected commands and podes to assigned engines. 1f SU receives the (root] processiog

11



completion notice for the internal command {comverted into DDST) from an engine, it sends the

notice to CUJ.
4. Engines

The engines execute the internal commands and the nodes in DDST under direction of the SU.
During execution, input/output inquiries for the object relations and the results are seat to HM.
5. HM Control Unit
The HM contirol unit handles the staging of object relations, division processing, and preparing

the buffer memory for resultant relations under direction of the CU and the SU. The replacement

algorithm between the buffer memory and the disk utilizes the LRU [least recently used algorithm).

5.2 Engine Parallel Control Strategy

We consider three engine control strategies for the schedule unit below. At a certain time {, there

is a certain pumber m of inactive engines. The total number of engines is mT.

1. No division data FIFO strategy
The commands are executed by one engine each withont dividing the data m commands are
taken from the quene on a FIFO basis. They are performed by m engioes in parallel
2. Data division FIFO strategy
Command assignment to m engines is processed 1o priority as follows:

[a) Commands which already have been converted into DDS5Ts and not executed to their roots
are referred to as unexccuted DDSTs. If there are unexecoted DDSTs at time §, 5U assigns

exccution-enabled nodes of the bighest FIFO priority command to m engines.
(b} If there are still m® (0 < m® < m) inactive engines | SU takes command C;- with the highest
FIFO pricrity from the queue and converts it into m"-DDST. The leaves of the m*-DDST are

executed by m® engines in parallel,

3. Maximal data division FIFO strutegy

In the previous strategy, command i is converted into m®*-DDET, but in this strategy, it is

copverted into m?-DDST. The m* leaves of m” -DDST are executed by m® eugives in parallel.

5.3 Objectlve Functions

We consider three functions as objective functions



1. Average response time

The sverage time interval from the arrival of a query command C from the host machine at the

interface unit wntil the response is output.
2. Average engine availability ratio

The percentage of time that m engines are cperating.
3. Average HM memory utilization volume

Average memory volume peeded in HM for executing commands by engines.

8 Ewaluation Result

Section G presents the response characteristics for parallel engine execution in the relational database

machine diseussed in Section 5.

6.1 Simulation Parameters
The simulation parameters are as follows.

1. Resource Parameters

(a) The interface unit, control unit, schedule unit, and HM contrel unit are located in a single

CPU with a capaeity of 5 MIPS. The engines are attached processors.
(b) We copsider that m” = 16 and m? = 8 for the total number of engines.
¢} HM bufler memory size is 128M bytes.

{d] The data transfer rate between the HM memory and the engines, and between the HM memory

and the HM disk, is 3M bytes fseconds.

(e] There are two chanpels between the HM memory and cach engine for input/output.
2. Processing time parameters
The processing time used here is the actual time measured oo Delta.

{a) Execution time for a relational algebra operation on one engine.
(b) Parallel execution time for a relational algebra operation on up to 4 engines.

(v} Staging time for ag object relation from the HM disk to the HM butfer memery, Shvigien Vs

for a relation, and time for preparing a buffer memory for a resultaust relation.

13



6.2

The processing timmes indicated below are cstimated from actual measured times, or calculated from

estimation of dynamic step counts.

{a] Processing time in the control unit.

(b)] Processing time in the interface unit.

(¢} Parallel exccution time for a relational algebra operation on more than 4 cogines,

(d} 1/0 processing time between the HM buffer memory and HM disk in executing & relational

algebra operation,

Processing times other than these are ignored.

. Parameters of the query commands sent from the host machine.

|a) Command arrival is assumed to be Poisson arrival.
I[bfl Sort, join, selection eommands arrive with equivalent frequencies.

{c) Object relation size ranges randomiy from 1M bytes to 16M bytes,

Response Characteristics

The simulation results under the above parameters are presented in Figures 4 through 9. In these

figures the continuous lines show performance under strategy 1, the dashed lines that under stratepy 2,

and the chain lines performance under strategy 3.

6.2

1.

!:-.'-I

Discussion

Average response time

Figure 4 shows that when traffic rate is low, average response time under strategy 3 i3 lowess,
higher under strategy 2, and highest using strategy 1, but beyond 6 ~ 7 (x10% [ hour) average arrival
ratio, average response time increnses abruptly and the previous relation between the strategies
is inverted. This means that when traffic rate is low, execution by dividing data into more data
segiueuts increases officiency, but when traffic rate is high, execution without dividing data is more
efficicnt. The corresponding curves for m7T = 8 show the same general tendency, but they are

successively displaced back along the horizontal {average arrival ratio] axis,
Average avallability ratio

Figure € shows that when traffic rate is low, the average engine availability ratio under strategy

2 is highest. lower under steategy 3, and lowest using strategy 1, but when traffie rate is high, the

14
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increasing rate of availability ratio under strategy 1 is high and strategy 1 surpasses strategy 2 and
3. Beyond average arrival ratio 8 ~ 10 (% 10% { hour), the curves under these strategics reach peaks,
and the fall a little. This means that frequent 1/O processing between the disk and the memory
results in intermittent execution of the engines. The corresponding curves for m? = 8 show the

same general tendeney.

3. Average HM mermory utilization velume

Figure & shows that the average HM memory utilization volume under strategy 1 is highesz,
lower strategy 2, and lowest using strategy 3 regardless of traffic rate. This means that execution
by dividing data into more data segments requires less memory volume. The reason for this is
that buffer memories for the already-executed nodes in the data division subeommand trees can he
opened, while buffer memory for exccution without dividing data cannot be opened untill execution
is completed. The higher the traffic rate, the steeper the slopes of the curves under these strategies.
But at a certaio traffic rate, the curves reach peaks and are parallel to the borizontal axis. This

means that the engines are operating at full capacity at that traffic rate.

1G



7 Coneclusion

We assumed a back-end type relational database machine equipped with multiple dedicated rela-
tional database engines, We evaluated the response characteristics and considerated the parailel control
strategies.

By simulation we found that when traffic rate was low, the strategy of dividing data into more data
segments brought less response time with higher engine availability ratio, but when traffic rate was high,
the oppositc was the case. Clearly, different strategies are required for different traffic rates. For the
utilization HM memory volume, we found that the strategy of dividing data into more data segments
required less memory volume.

In this simulation we assumed a relational database machine based oo Delta, but we think that the
simulation results can be applied to a general back-end type database machine with dedicated engines
using the parallel methed in this paper.

We are plan to extend this research by iovestigating paralle]l control techniques for dedicated uni-
fication engines in the knowledge base machine that is goiug to be developed in the second four-year

stage [1084-87) of the project|8|.
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