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1. Introducticn

Recent trend in computational linguistics put= a great attention on
context-{ree grammars for natural language grammar forpelism. flthough it
is an arguable topic whether natural languages could be described by
context=ree grammar=, they are supported by recent preminent works in
linguistics [Pullum £2],[Gazdar B82],[Kaplan 82].

DCG (Definite Clause Grammar) formalism, proposed by Pereira and
Werren [Pereira B0], is based on Horn clause logic and can be seen az a
formalism in a context-free grammar reinforced by upification between
grguments in nonterminal esymbols and attached Frolog procedures., It is
powerful enmcugh t¢ cope with most of the grammar thecries enploying
conNtext-free grammar forms for describing their ayntactic structure.

In this paper we assume DCG formalism &= the user language for
Specifying grammars, and presant an efficient apd generzsl par=ing eysten
which operates in parallel logic programming languages like Parleg [Clark
84] or GHC [Ueda 85]. Current system has been tested in Parlog interpreter
{Gregory 84] and the same program incidentally runz in Proleg as well with
a8 elight modifiecation.

We stieck to pondeterministie parsing metheod throughout in this PEpET,
though there is another trend inp parsing natural languages concerning
deterministic metheds, eg, [Marecus 80]. This is because we adapted the DCG
fermalism for describing gramwers and we like tc make the degeripticn of
grampar rules as independent as poasible of each other and of the
pracedural semantics of the parsing system. However, there could be szome
restrictions on the forpms of grampmer rules cr on the wey eof expreszzing
éXtra conditicns because we employ the bottom-up stratepy for our persing
algerithm and make use of pmarallel logic prograoming languages.

The algorithm of our system i= based on the conceurent process model
cf parallel logio programming languages originated froc Relaticnal Language
[Clark B1]. A= i= seen in 2 later sectien, What our parsipg zmethod dees 1s
virtually equivalent to what most of the efficient parsing algorithms
Zc~called tablesu methods do. The past important feature of our method 1=
that the grammar rules and the dicticnery are completely compiled into the
legie programming langusge and the system does not need any progran whieh
interprets the grammar and the dictionary. Furthermore, the tablesu itself
iz alse eccmpiled in the program. More precisely, an item thet is pormelly
kept in & tableau is represented as either an precess  or arn tem in a
ftrean and no item in the streams is created duplicatedly.

The next section describes the tasic slgorithm which ocur =system is
ba=ed on. A naive way is shown far transforming grammar rules inte =&
Prelog program which reflects our idea clearly.

.



The following twe secticns congider the way to make the system more
effipient apd extend it sc that it become= capable te wWork in parallel
logic programming languzges.

In Secticn 5 we compare cur system wWith other parsing algorithm for
context-free grapmars in order to estimate the cooputaticnal complexity.
we mainly take up Chart parsing [kzy 80] and point out the similarity
between them. '

La=tly we discuss how to incorporate context dependent information in
the system. Extra conditions ipeluded in DCG rules are not difficult to be
inccrporated in the system If Frolog {s accessible to the parallel logic
language or all the extra conditicns are written in the parsllel lenguage
itself. However, wWe need =z =peciazl consideration of the arguments in
ponterminal symbels in grammar rules. 4 brief discussicn on this probleo
is given in this section.

2. Basic Algorithm

In this seection and following several secticns we deal with not DCG
rules but bare context-free grammar rules. This simplificaticn helps teo
convey the essential idea mere easily. We @alsc inhibit graomars from
containing empty producticn rules and ceyclic set of rules. The first
restricticn comes from the fact that our algorithm is basically a bottom-up
pareing. The latter is in arder te geke it sure that no process rums into
an irfinite loop. Though a cyclic set of rules is a special case of a =zet
of left recursive rules, cur system allows to contain them, wiich peasibly
cause infinite locps in the case of scme top-down parsing algorithms.

Our bosic algorithm iz the left-corper parsing [Aho 72], in which
phrases are conatructed from Dotton to top and from left to right.
Whenever a phrase of a certain nopterminal grammar category is obtaired, it
checks whether that phrase is usable to meke up a larger and more cemplete
structure extending the previcusly constructed partial structuresz cr tc
make it a3 the left-most element of a new tree structure. Thase processes
proceed until every poasibility 1= tried. We have given this procedural
semantics to DCGs by transforming each DCG rule intc & certain form of
Pralog clause. This system is called the BUF syaten [Matsumoto §3,84].

In this secticn we show another way of achieving the same effect on &
grapmar written in the DCG formali=zm. To keep the hiztory of the parsing
processes of 2 left-corner parsing, it is pecessary te remember not only
the sequence of rules used so far but also the internal positicnms in these
rules until which the parsing process has finished. This is simply dope if
gach position in the right-hend =aide of every grammar rule hbas anp
ideptifier to distinguish itself from cthers. Suppose each ponterminal or
terminal symbol is= defined as 2 predicate in Frolog and has two arguments,
one for the dats coming frem its left in the sentence and the other for the
data to pass to the right. The data that move around between the grammar
eymbols are sequences of iderntifiers that glve the history of parsing
process. Thic consideration leads to the following transformation of the
context=-free grammsr rule (1) inte Prolog clauses (2). In the right=hand
side of the graomar rule, the symbol 'id' fellowed by = figure stands far
identifiers.

(1) & ==» b, 41d1 e, idz2 d.

f2) bv(X,[ia11x13.
e([1d11X],[4a21x1).
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d([41621X],¥) = alX,¥).

Lists are vused to represent the history of the parsing proceszs and each
neoterminal symbel of the grammar is defined as a Prolog predicate. If a
nenterminal symbel receives 'id1' a=z the tep element of the list, this
means that ononterminal symbel 'b' has already been found anpd the
corresponding part in rule (1) has been used ip the parsing process. The
sgquence of identifiers can be expressed by defining identifiers as
funeters, that is, (2) is alternatively writtes like (2)'. We use this
notation rather than liasts becauwse of its better readability.

(2)" b(X,4d1(X)).
o(id1(X),id2(X)).
d(id2(X),¥) := alX,¥).

4 sippier rule like (3) 1= transformed into the Prolog clause {4).
(3} wvp == verb.
(4)  wverb(X,¥) :- wp(X,¥).

This shows that nontermipal symbol 'verb' can be immediately reduced to the
nontermipal 'vp'. Mote that nonterminal and terminal symbols need not be
treated in different waya.

The fellowing grammar (5) written in DCG fermalism is transformed into
the Frelog pregram (6). Agzin, the figures preceded by the symbel 'id"' are
identifiers for particular positions in the grammar rules.

(3) 3 =-=» np, id1 wvp.
np -~-» det, i1id2 noun.
np =-» det, 4d3 onoum, id4% relec.
rele -=» [that], 445 =.
¥p == verb.
¥p ==-» verb, id6 oop.
det == [the].
voun -- [manl.
noun --* [woman].
verb --> [loves].
verbh --> [walks].

(6} np(X,id1(x)).
vpldd1(X),Y) 1= a(X,¥).
det (X, 1id2(X)).
noun(id2(X},¥) :- np(X,¥).
det (X, 1d3(X)).
noun(1d3(X),1d4(X)).
relc{idi{X),¥) :- npl(X,1).
that (X, 1d5(X)).
3(1d5(X),Y¥) :- rele(X,¥).
verb (X,¥) 1= vyp(¥,¥).
verb(X, id6 (X)),
nplidé(X),Y) := vp(X,Y).
the(X,¥) :- det(X,¥).
man(¥,Y) := noun(¥,¥).
weman{X,¥Y) :- poun(X,Y).
loves(X,Y) :- verb(X,Y).
walks(X,Y) :- verb(X,Y).
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New the Prolog elauses in (6) give 2 left-corner backtracking parsing
prograz fer the ccntext-free grammar {}. In order to parse a dnput
sentence, for exazople, "the men walks?, oenly we have to do is simply tc
eall the fellewing Frolog gozls.

(7) thelbegin,X),man{X,¥),walks(¥,end}.

The terms 'begin' and ‘'end' in these goals are constanis faor identifying
the beginning and terminal positions in tLhe sentence. Note that one
varizble i= shared by each ccnsecutive pair of goals, which i= used to paes
the history of the parsing process [roo left to right. To complete the
parsing program, snother Frolog clause (&) 1is required, which checks if a
septence structure is constructed by wusing up the whole words in  the
sentence.

{8} =(X,¥) :~- %=cbegin,¥==end.

Figure 1 shews the parsing process starting from the Prolog goals (7). In
the figure, a single arrow shows that a goal is reduced to another goalls)
through the matching process with the head of a clause. & double arrow
indiecates the assignment of valuves tc the arguments of the geoal by the
unificaticn. This Prolog program goes through every poasible apalysis for
the given zequence of worde utilizing the backtracking mechani=m of FProlog.

3. Parallel Parszing

The parsing program shown in the preceding sectiocn is now examined te
ke mere afficient and suitable for parallel execution. A close look at the
Prolog program reveals that there are twe kinds of clauses in it. We refer
to them as type-cne clzuses and type-two clauses. Structurally a clzuse 1in
type-cne has & variable for its first srgument ef the head and & clause in
type-twe has a structured data fer its firat argument of the head. During
the executicn of the program, type-cne c¢lauzes start to construct & new
tree structure regarding itself as the left-corper ccnstituent cf a tree
structure. The first clsuse in (6) ie an exaople of this type. It puts an
identifier 'id1' an the tep of the sequence it receives. 4 type-two clauge
patohes the first element of the recelved sequence against the element in
its first argument. If they are equal to each cther 1l makes gither a new
Prolog eall or a new data structure. The second clause in (E) makes a new
call corresponding te & nonterminal 's' 1f the first element of the
sequence is 'id1', This identifier iz removed from the sequence on calling
the pew Prolog call, =ince it 1= nc longer necessary to keep this
particular fragment of history. The =ixth clasuse in {&) works in a
different way. If the first element in the received sequence 1= 'idi' it
puta ancther identifier 1id4t gn the top of the seguence after removing the
previcus identifier. This corresponds to the process of axtending the
partially constructed tree structure. In either case each type-tWwo clause
works on a particular identifier.

This algorithm iz actually not =2¢ efflcient. Its time complexity 1is
exponentiel with respect to the length of the serntence since many
repetitive computaticns ¢ecur in the parsing process. They are caused by
the defipition of type-one clauses ir that they put an identifier on the
receiyed data of the histery without regard tc it= content. Therefore, the
computatien hereafter beccmes independent of the history up to that mcment.
In order tc aveid the repetition caused by type-one clauses it 1s mnatural



toc meke up & szet of &ll histcries apd to apply the type_cne elzuses to the
set. &0y & type-cne clause puts its proper ideptifier on the top of the
set that represents the whole history se far. & type-two clause receives &
set of histories and examines if each of them is possibly extended by
itself.

Thi= medification fits in with parallel legic programming langusges.
Type-ope olauzes and fLype-two clauses belonging to the sare nponterminal
symbcl can run independently, that is, in parallel. Both of them receives
the same data. In a parallel logic programming languages like Paricg or
Guarded Horn Clauses it is common tc represent 2 set a2 a list and treat it
a2 a data stream. If we sssume a liet structure for the set of histories,
all the type-cne clauses of the zame nonterminal symbol ean be  bundled
together to make up such a stream and we can define each type-two ¢lausze of
the same nonterminal symbol s=2 & distinet procesz that works on the strear
and modifies it accordingly.

The feollewing meodification of the Prolog clsuses into Parleg clauses
materializes this idea. We can defipe equivalent clauses also ip GHC. He
employ Parlog syntex in  this paper because of its readability. Farlcg
clause (10) is given from Prclog clauses of (©). Clauses of (12) are
Farlog definition of type-two clasuses shown inm (i1).

(8) det(X,1id2(X)).
det (¥, 1e3(%x)).

{10) mede det1(7,”).
det1(X,[1d2(X),1d3(X)]).

(11) noun(id2(X),Y) :- pp(X,¥).
noun (id3(X),1d4(X)).

{12} mode nounz{%,"}.

nounz2([3,[1).

nounz([142{X}|T],¥) :~ |
op(X,¥2),
noun2 (T,¥1),
merge (Y1 12 ,I} "

poun2 ([1d3(X)IT], [i64(X)1¥T) = |
noun2(T,Y);

noun2([_|¥],Y) := |
nounz (%,¥).

Clauses defined in Parlog assume that the received data, i.e., the data
given to its first argument i= a list (cr & stream) of histories though the
first argument is expressed by the same varisble pame as in Prolog clauses.
A= can be seen in the program the stresm 1s & 1ist of stresms each of which
ie headed by an ddentifier. Gernerally speaking, type-ene clauses are to
¢ollect all poosible leftecorner branches starting at their ewn pesitien.
There is a special case for type-cne clauses where some of the original
type-cne clauses have a variable for their secend argument. Such & clause
is to be derived from a grammar rule the right-hand side of whiech consists

of only one symbol. For example, type-cne clauses in Prolog like (13) are
tranaformed into a Parlog clause {14). -

(13) verbi{X,¥) := vp(X,Y).
verb(X, Ld6(X)).



{18) mode verbi(?,7).
verb1 (X, [1d6(X)1¥Y]) = |
vplX,1).

Wnen there are mere thao cne such @ c¢lause, their outputz are
merged together.

Type-two clauses are defined as a =et of cr-processes, each of which
specializes in an individual identifier that can extend partially ccocmpleted
tree structures in the stream data. The first clause in (12) is for the
ecsee when the stream 1= empty. The seccnd clause accepts the identifier
*4d42'_. Ip this case, this means the coopleticn of 2 noun phrase and 1t
produces a goal for 'np' elcog With apother ecall feor 'nound' for the
remaining data in the stream. The third clause deals with the case where
the poun is used to modify a partially completed tree into a larger but
£ti1l incomplete tree structure. The last definiticn inm (12} is referred
te only when all other processes have failed to utilize the first element
in the =stream. MNete that thiz clsuse i=z separated from the preceding
plzuses by a colon net by a full stop. This is a Ferleg conventicon which
indicates that this clause should be executed only when &ll the preceding
clayuses failed. Thisz clause throws away the first element in the stream
and calls itself with the remaining data.

Each nenterminal symbol is now defined by cne type-cne process and one
type-two process as folleows.

{15) mode noun(?,”).
poun{X,¥) 1= |
nounl(X,¥1),
roun2{X,¥2),
merge (¥1,¥2,1).

Although the use cof merge processes guarantees te earn higher
parallelism, merging iz not 2 cheap cperaticn and it can be avolded by
using a data struecture called different lists. A different list consists
ef a pair of lists and represents a list as the difference of these two
lists. The programs shown in this secticn also run in Proclog with a simple
pmedificatien. The usage of different l1ists in Prolog mekes the program
more efficient since we can do away wWith merge opersticons. The following
defiritien= from {16) to (1%) written in Prolog are the eguivalents of the
definitiens (10), (12), (14) and (15). This modificaticn is alsc available
in the Parleg program but restricts the order of executicon. Hereafter,
different lists are used in the Prelog definitiom. Note that the
operatiopal semantiecs of Prolog guarantees that the streams are completely
conatructed when they are passed to the next processes. In the following,
the first argument in & definition of a nenterminal symbel werks as an
input stresm and the second and third arguments represent a different list
that works 22 the output atream.

{16} det1 {i. [idE'{I}:idS{H =Yt'.].ll!t}"

(17) noun2([],¥,¥) = 1.
noun2([1d2{X}|T1,¥Y,¥t) 1= 1,
npld,Y,¥1),
nounz2(T,¥1,Yt).
noun2 ([163(X}{T],[id8(X}}¥1,3t) = 1,
noun2(T,¥, ¥t).
poun2 ([_IT1,¥,%%) := 1,



nounz (T, ¥,¥t).

{18) verb1(X,[id6(X)1¥],¥t) := 1,
vplIL, Y, ).

':19:' I]Qun':.‘:{,?,ﬁ'tjl H !,.
pount(X,¥,¥1},
novn2 (X, 2,¥t ).

If we oring in a syntax sugar, we can get rid of all the nuiszance
difference lists. A3 & matter ef faet, the DCG s=yntax can be uszed to
express the program more simply. The clauses frem (16)' to (19)' reprezent
exactly the same clauses frem {16) to (19).

(167" det1({X) -=> 1,
[ida(x),id3({x)].

(171 noun2([]) ==> 1.
noung ([id2(X1T]) 1= 1,

oplXl,
noun2{T).

noun2{[1d3(X}{T]) --> I,
[1a8(x31,
neun2{T).

noun2{[_IT]} == 1,
noun2(T).

(18} verbi(X) =-> 1,
[id6{x)],
vplX).

(19) pDoun(X) ==> I,
nounl (X},
Aounz (X,

The modifications of the program in this secticn necessitates scme
alterastions to the definiticn of nontermiral symbocl 's'. One way of doing
it is change the initial goals to (20) and to add the clause shown in  (21)
or (22} to the definition of 's2' (type-twec clauses for nonterminal symbcl
's'}. The feormer is to be added to the Parlog program and the latter to
the program with difference li=ta.

(20) the(lbegin],X),man(X,¥),walks(Y,2),f1in(2).

{21} s2(X,[end]) :-
X=={pegin] | true.

(22) s2([begin]) --> 1,
[endl.

The definitien fer 's2' given here produces the term 'end! that indicates
the cconpleticn eof a sentence structure. The process 'fin' i3 a user
defined predicate and iz positicned at the end of the initial goals, which
receives the stream produced by the last word in the sentence and checks if
the streasm contains the term 'end'. The uzage and the definition of this
proceszs depenc on the user's intention ef using this parsing system.



L, Top-down Predictien

A straightferward improvement in the efficiepey 12 achieved by
employing a notion referred o as 'oracle' in LINGOL [Pratt 78] er as
'reachability' in Chart Parsing [Kay 80]. We call this noticn as top-down
predicticn szipnee this naming seems te be suitable for ccoupling with the
bottom-up strategy.

The seccnd grammar rule of the gremmar shown in (&) means that a
pesasible strueture ¢f a noun phrase is & determiner folleowed by a2 noun.
Suppoze & determiner iz found in the parsing process. Makipg use of this
rule corresponds to sending the ideptifier asscocisted with this rule.
There are twe things to teke note of. The first is= that the usage of this
rule gives rise to an expectation of a noun at the position just after the
determiner. This gives & positive reasopn to encourage to build up 2 noun
structure at that place. In this case 2 noun i1s referred teo aa & top-down
prediection at that position 4in the sentence. Top-down predictions are
pbtained dypamically during the parsing process. The second thing to pey
attenticn is that the usage of a particuler gressger rule should be
guaranteed by at least one top-down predicticn. Im our current case, the
left-hand side of the grammar rule is a ncun phrase. In order for this
grammar rule to have a guarantee of being a part of a larger constituent,
at least one of the top-down predicticms at thst position must be & noun
phrase or must be something which cam  have a noun phrasze as= its left-past
de=zcendant. If there i= neo =uch top-dewn prediction, there is no place for
the ncun phrase which will eventually be constructed by this grammar rule.
Top=down predicticn iz wvery usefuwl ip evoiding botitom-up searches which
have no place to go. Wnether & nonterminal symbol has a possibility of
being a left most descendant of another nonterminal symbol ia precomputable
from the grammer rules. The left-poat element on the right-hand side of a
grammar rule is pessibly a left-most descendant of the nontermipal symbol
en the left-hand aide of the grammar. The relaticn we are talking about is
defined sz the transitive and reflexive elesure of the set of such pairs.
We refer te this relstion as the link relztien and e=ay that a2 nontermirnal
symbol links to another if they sstlzfy thi=z relaticn.

There are several ways to 1ncorporate this idea 1in our paraing
program. We introduce one idea which we are employing currently. & stream
given to nonterminal symbols is a stream of streams each of which is headec
by an identifier. 4n 1dentifier 4i= a wunigue aymbol for a particular
position in a grammar rule, and is waiiing for a unigue nonterminal symbol
that folleows the identifier in the grammar rule. This nonterminal symbel
is exactly what iz expected a= the top-down predictien at the corresponding
position in the sentence. The mapping from identifiers to ponterminal
symbols 1z of cowrse cobtaipable when context=free grammar rules are
tranalated into the parsing program. The epecial identifiers 'begin' and
‘epd! predict 's' and nothing, respectively. The top-down predicticn is
easily made use of by medifying the type-cne cleuges. In the original
prograg shown in Secticp 2, a type-cne clause corresponds to the left-mest
element on the right-hand side of a grammar rule and producés an
identifier. Thisz identifier is Dblocked if the nonterminal symbel on  the
left-hand side of the original grapmasr prule is not predicted by the
identifier it received. In the parallel definiticn of & type-cne clausze,
an didentifier is bloeked only 1n the case that the corresponding
nenterminal symbol iz not predicted by any head ideptifiers in the Input
atream. In other words, the identifier 1= passed to the output stream if
at least one head identifier in the input streasm 1is known to predict the
nonterminal symbol op the left-band side of the criginal grammar rule

3



cocneerned.

Io our current implementation, the process of the top-down predicticno
iz realized by & process of filtering. This process take the input stream
te the type-cne clause and throws all the unusable elements away. The
definiticn of type-cne clause (10) now becomes (23).

(23) dat1(X,Y) :=
tp_check(X,np, New_X),
tp_output (New_X, [id2(New_ X),id3(New_X)],¥).

In this definitien, 'tp check' iz the filtering process which allows to
pass only the elements in 'XI' whose head identifier predicts a noun phrase.
"New_X' is the cutput eof this filter. The process '"tp_ocutput' returns the
datez at the second argument tc the third argument if "New_ X' produces &t
least one element. Otherwise, i1t returns empty te the third argument.
Hote that these twe processes rup ip parallel, that 1=, two identifiera
'id2' and '1d3' are passed to the next process even though the =streamn in
their argument is still incomplete. £lsc nocte that the filtering procoess
is shared by twe cutput identifiers since both of the ccrresponding grammar
rules have 'pp' on their left-hand side. When there are more than one
filtering process, hence, more than cne 'tp-cutput', their outputs are
merged.

5. Comparison with Chart Parsing

In order {c estimzte the time and space complexity of our parsing
method, we compare it with Chart Parsing [Kay 80].

Chart Farsing copsists of processes construeting a data  structure
called a chart, which is a sg-called well-formed substring table and is
copceptually depicted as a directed graph. Each element ipn & chart iz =&
term representing a pertially or perfectly constructed tree structure. A
partially constructed tree is expressed by a term with scme empty slcts and
a8 perfectly constructed tree is expressed by a term that represents a tree
structure without any empty element. They are referred to as an active
edge 2nd an iractive edge when they are represented by a directed greph.
Chart Parsing is actually net 2 rparsing algorithm but an algorithm schems
a8 ite author says. The process of copstructing terma in a chart (or edges
in a directed graph) varies according to the contrcl given tc the schens.
We will not explain the schema ip detail. We will point cut the similarity
between our parszing method and Chart Parsing with a bobttome=up control.
When a botiom-up strategy is given to the Chart Parsing, it operates with
two rules. One rule 4is to start building up new tree structures frem a
perfectly constructed tree (ie an inactive edge). When an inactive edge is
obtained, this means that a complete nonterminal symbel 4= made up.
Referring to the grammar rules, this rule produces all the partially
complete terms (ie active edges) that have the current nonterminel symbol
az its left-must element din the right-band =zide. The =eccnd rule is for
Filiing an empty place in a partially complete term with a copplete term.

There 1z a very close cne-tc-cne correspondence between a bottom-up
Chart Farsing and cur parsipg algoritho. In gur parsing algorithm the
first and the second rules of Chart Parsing correspond to processes done by
t¥pe-one clauses and type-two clauses, respectively. Inactive edges are
represented by calls of nonterminal symbols in the program and a set of
active edges are represented by the data structure being passzed to



pooterninal symbols.

The important differences between them are that ocur algorithm is
coopiled ipnto & Parleg or Frolog program and that partial results need not
be kept in scmething like a well-formed substring tsble. In Chart Farsing,
adjaceney of twe edges are checked by the location and the length
asscoiated with terms. A chart keeps them together with corresponding
terms. Our algorithm, however, does not require thes since the original
werds in a given sentence are connected by shared variable=s and the data
regresenting active edges are passed through these variables, each of which
irdicates a specific position in the original sentence. The definitien of
clauses ensyures that & tree structure is pever oreataed repeatedly unleas
scme grammar rules are defired duplicatedly. Figure 2 showz the chart
created by bottom-up Chart Parsing method using the grapmar rule (23) [Eay
20]. 1Ip this table, & term represent=s a tree , locus showe the positico cf
the term in the sentence and length is the pumber of werds in the term. A
guestion mark in a term are the undefined part in the term.

{2z} & --: np, vp.
op ==> &, N
np ==» pre, D.
VP ==3 ¥, a.
VP ==2 Vv, av.
a ==> [failing].
a —=» [hard],
n --» [studentsl.
v —=» [looked],
av =-» [hard].

The mein part of the Ferlog progren cbtained from these grammar rules are
shown in {24}, {24) copsists only of the essential eclauses. Some @more
clauses should be added to complete the program. Top=down predictions are
not used in thi= program.

(Eh) npi(X,[1d1(X)1).
at(Xx,[1d2(3)1).
prel(X, [443(X)]).
vi(X, [id4(X),ide(X}]).

vpa([id1(X)IT], Y} 2=

={X,¥1),

vpe(T,¥Y2), merge(¥1,¥2,Y).
n2{[id2{X)iT],Y) 1=

oplX, Y1),

n2(T,¥2), merge(¥1,¥2,Y).
n2([1d3(X)1{T],Y) :-

np{I,Y't:',

n2(T,¥2), merge (¥1,¥2,Y).
a2([id4(X)1X1],Y) =

vplX,¥1),

a2(T,¥2), merge(¥1,%2,¥).
ava([ie5(X)iT],1) =

VF{I, Y1}j

av2(T,¥2), merge(¥1,Y2,Y).

feiling(X,Y) :=

a(X,¥1), prp(X,¥2), merge(11,¥2,Y).
hard(¥,¥) :=-
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al¥,¥1), av(X,¥2), merge(Y1,¥Y2,Y).
students(X,¥) :=

pl{Z, 1.
locked(X,Y) :=

viX,¥).

(28) i1s the ipitial calls of Farlog program for parsing the same
sentemce. Figure 3 shows the execution of this prograo.

(25) failing([beginl,D1),students(D1,D2),locked(D2,03},hard(D3,DL),fin{Dk].

In this figure, arrows mean calls of new processes or creatico of data.
Double arrows indicate the flow of data structure. The numbers are
@szspeiated with arrows to show the cope-to-cne correspondence between
processes in Chart Parsing and in our algoritbm. Arrows that do nct have a
number correspond to the creatien of type-one and type-tweo literals from
nonterminal symbols. Note that the znalysis starting frem each werd ip the
sentence does pot depend on the analysis ef other places. It is affected
by ether process only when it refers to the data rasszed from other
processes. For example, the analysis starting from 'locked' can proceed
even if 'D2' 4is not instantisted. The apalysis starting from 'hard®' is
suspended on ealling 'av2' or 's2' if 'D3' is still ap uninstantiated
veriable. Ip Figure 3, the wvertical axis more or less shows the time.
Processes on the same level could be done in parallel. From this figure we
can see that the time cemplexity of our algerithm is to be properticnal to
the height of the analysis tree, which iz in worst case equivalent to the
length of the given sentence.

“he space complexity cf our algorithm is not worse than that of Chart
Farsing since no data structure is duplicated. Furthermore, if variables
in our pregram are shared as in Prolog, it requires less space than the
chart. Subterms pust be copied to repiszter a newly constructed term in the
chert whereaz they need not be copied ip our algoerithm becaguze of the
shared variesbles. In the case of parallel executicn, the time eocoplexity
depends on the treatment of logical wariables in the parallel logic
languages.

€. Conclusions

This paper briefly described the idea of our parallel parsing aystem
based on perallel logic programming languages. Our specification of
parsing program runs not only on Farlog but on many of other parallel logic
prograpoing langusges like Concurrent Prolog and Guarded Horn Clauses that
derive from the Relaticnal Language [Clark £€1). As is described in Section
3, Proleg implementatien of our parsing system is also practically wuseful.
As for the parallel implementaticn we bhave to wait for an efficient
realization ef a parallel logic programming language.

There are scme problems with cur parsing system that must be menticned
here. We did not explain the full treatmert of DCG rules. When DCG  rules
have arguments ip nooterminal symbecls and Frolog programs in  their
right-nand side as extra conditicns, they must be coupled with the Farlog
er Proleg program.

Extra conditicns are net difficult te handle in  our program though

acme restricticns are inevitably placed on the property of extra
conditiops. After the transformation there is in general cne clause for
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each ponterrinsl symbcl in the right-hand side of any DCG rule. Extra
ecnditiens ip & right-hand side of a DCO rule is put in the guard part of
the clause produced far the pDopterminal symbol preceding these extra
conditions. Acecrding to our bottom=up procedural semantics, axtra
conditions preceding the first nontermipal symbol in the right-hand side of
a rule does not have any significant meaning. Users are advised met to
write extra ¢onditicpz there or they are rput at the guard part of the
clause for the first nonterminal symbel of the rule even wher a user writes
scme extra ccnditicns &t the beginning of the rule. In the programs shown
in preceding sections, type-cne clsuses with the same ponterminal symbol
zre bundled up into cne eclzuse. However, type-cne clauses having different
extra conditicpn= cappot be bundled up simply. Such clauses are defined
separately and their gutputs are merged later. Another restricticon iz that
the operaticoel semantics of the derived program prchibits extra conditicns
from having nondeterminacy. It is becasuse extra conditions are treated a2
guards.

Another problem grismes when nonterminal symbols have argumenta and
they centain uninstantiated variables. Varisbles in an &rgument may be
paased to more than one place in the stream data. The data structures
moving through a shared vearisble are scmething like tree structures. Ve
have t¢ pote that substructures in different branches in the data structure
are in different envirommenta. Although they can share the value of a
variable, ap instantiatico of one variable must not affect the wvalue of the
game varizble in different envircnments. The easiest way to aveid this
difficulty is te copy the value of a2 variable any time the varliable 1=
passed to more than ope environment. However, sueh a simple treatment may
cause a space expleosion. More moderate and =afe way is to copy the velue
¢f a variable that is included in the output of a type-two clause any time
the guard part of the clause finishes successfully. The treatment of this
problem is erucisl for our eyetem to be practical. & develcpment of a
parzing system in Proleog based on this idea i= now under way.
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the(begin,S0), man(51,51},
]

walks(81,end).
[

£ o —— =

]
i
b v/ /
det (begin,S0) man(id2(begin},81) walks(i ;{bagin},andj
| i
| ¥=begin H }
| 80=id2(begin} | l
' W W
& noun{id2(begin),S1) verh{1d1{begin),end)
|
| |
W W
npl{begin,S1) vplid1{bagin),end)
| i
| X=begin H
| 81=id1(begin} W
W s(begin,end)
o] i
|
W
begin==begin,end==end
Figure 1. Sample Parsing

/3



ETs

[ T = s L ) O Y S O

Lecus

=0

033 £33 €3 b AF BRI BRI O O D 00 O ek dak

Lenath

N N A S ST S SR T N el e el e el el

Figure

Term

[failincla
[failinglorpo

[ students]ln

[locoked v

[hardla

[Rardiaw

[[faitlincla [?lnlnp
[[failinglpro [?ininp
[[failingla [studentsinlnp
[[failine]lorc (studentsinineg
[[[failinala [students]nling [?]lvols
[{{failinclprp [students)nlno [?]lvols
[{looked]v [Zjalvp
[{lonked]v (2 ]avive
[[{1locked]lv [hardlalve
[[lookedlv [hardlav]vp

(l[failingla {etudentslnlnp [[lcoked]lv (hardlalvols
{[{failinglprp [studentsln]no {[locked]v (hardjalvols
[{{failingla [studentslning [{locckedlv [hardiav]ls
[[{failinglprn {studentsinlop [{lockedlv [hardlav]vnls

2 The Chart
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