ICOT Technical Report: TR-143

IR-143

An Algorithm For Finding A Query

Which Discriminates Competing Hypotheses

by
[lirohisa Seki and Akikazu Takeuchi

October. 1983

COHYRS 1COT

Mita Wokusal Bidp 21 (03 436=3141 -5

H :D | 3-8 Mita 1-Chome Telex 1COT]32964

Minate-ku Tokve M5 Japan

Institute for New Generation Computer Technoloé;

An Alzorichm For Firgi nE A Query
Which Discriminates Competirg Hypotheses

Hirohi=a Selki and Akikszu Takeuchi

TCOT Research Center,

Institute for New Generation Computer Technology,
Mita-Folusail Bldg. 21F, 1-2-28, Mta,

Minatc-ku, Tokyo 108, JAPAN

[Abstract] Thiz paper presents a logical approach to the preblem of
nypothesiz selection. In hypoLhesis formation sush 2= diagnesiz or
incductive ilrnference, we construct z hypothesiz which iz expected to gElve
& consistent explamaticon of observations on some chbject depain, Juppo e
that more than one plausible hypotheses can cover the glven observations
and thet esco of the hypotheses i= mutually incompatible witn another,
Then we try to identify whicsh hypothesi= is a "better" one, by finding
apother observation diseriminsting hypotheses obtzined so far, Irn this
paper, we adopt Popper's prineiple as the eriteria for hypothesis
selecticn and present apn aigorithmis method to find 2 Popueialm q uery
which discriminates a more appropriate hypothesis among the competing
ones.

1. Introducticn

In the formation of scientific theory, wWe try to find 2 hypothesis
Wiiech is ecapable of gZiving & consistent explamemtion of given observations
on soge object domain, by performing experiments and refining the
hypothesis, il neceszary. The typioal exsmples are found in
Tevlt/medical diagnoses or inductive inference. In such problems, it
of ten happens that more than one plauvsible hypotheszes can be considered
ent each of the hypotheses is mutwally incompatible with another. Then we
try to identily which hypothesis 1s a more appropriate omne. This is a
clzssieal problem in scientific theory formation f{e.g., [11). In [1],
Popper gave szeveral oriteria that we should be inclimed to zay that a
thecry T? corresponds "hetter" to the mven facts than the other theary
T2. The followinge are soxe of hiz oriteria,

{2} TV explains more faets than T2.

() T1 hes passed test whieh T2 has failed Lo pass.

Existing expert systems for dizgnosis such as MICIN pmive multiple
hypotheses to given ocbservations, To eazch hypothesis, the certainty
factor i= attached, which indicates its plausibility.

In this paper, we present a logicel approsch to give a method for
dizarinirating a more appropriste hypothesis among the competing
hyvpotheses. In ow f{ramework which lies on the same lipnes with Theorist
(2] or MIS [Z], cbservationsz and hypotheses are expressed with logcal
formulas, & hypathesis explains cobservations mezns that they are logical
consequences of the hnypethesis. Suppose that there are wo hypotheses
both of which are capable of explaining given cbservations and that therze
ewist 3 litersl {(we call it & "epucial®™ literal) whien iz a legiesl
sonseguence of only one of thoze hypetheses. Then, by performing an
experiment to decide the truth value of that erucial Literal, We £3n KNow
which one is a "better™ hypothesis, in the above-mentioned sense aof
Popper. In this paper, we gve an algorithmie method to find such a

"orueizl" literai.

In the npext section, we swmnarize some prelimimery opateriasls and
introduce terminoclogies. In section 3, we prove & basic theoren which
plves a2 basis to an algorithm for finding a erucial query which
dizcriminates a preferable ore among competing nypotheses. In seclion
4y, we shos & more efficient algorithm whiech uses a divide-snd-guery
algorithm, In section 5, we give some examples to explaan how owr
algorithm finds a crucial literadi.

2. Preliminaries

In this secticon, we introduce some terminelogles and notatieons.
4 hypothesis is given as a finite set of definite clauses of the form:
A <= Llyewey kn
where & iz an atom and L1, ..., Ln are positive literales.

in ocoservetion {or fzot) is ewpressed with & literal. A hypothesis
expleins (or supparts) an observation O iff there exi stz &n
SLD=-refytation of HU { ¢= 0 } via some computaticon rule. & hypothesiz H
explains observations Obs iff H explains each one of Obs. In Lhis case,
H is =2id to be & hypothesis for Obs.

in integrity constraint is given as a goal, i.e., a2 clause of
the form :
<"' L‘] Lﬂ

where L1,..., Ln zare positive literals. Tne irntegrity constrelnc
eypresses 2 mituation which should not happen. A bhypothesis H iz said to
viclate an integrity constraint IC iff there exists an SLD-refutation of
HU [IC) via some computztion rule ; otherwise, we say that H satiszfies
IC. & bypothesis H1 is said to be incompatible with a hypothesis HE with
respect to an integrity constraint IC iff H1 U H2 viclates IC.

Let P be a set of cdefinite clauses and G be & goal of the form @ <=
1,022, fm. Assume that there exdists an SLD-refutation of P U { G} wia
some compubtation rule R and 8 is its R-computed answer supstitution for F
U f G }. Using the substitutiem &, & proof ftree for P U {G} is defined
as follows :

{a) the root is GO.

{p) the root has k desccndents A18,....,828.
(c) Let A be & pode in the tree which is not the root. Suppose that Al
t= Bl,e..sEn 15 a clause in P and A = A'8, Then nrode A hos n

descendents 518,...,Br8. If =0, then & has a descendent reppet,
(d} Nodes which are ™ rue" have no descendents.

The degree of a proof tree is the number of nodes in the Lree. The
depth of a proof tree is the paximal length of paths [rom the roct to its
leaves. A node is called a node of level k if, from the root to the node,
there exists a path whose length is k. We demote by tr{i) a sudbtres
whose root is N.

Let & be & subset S of P In a proof tree, Iif a node ¥ has
descendents which are derived by using a clause C belonging to 5, then we
say that node N is an S-node. II L is a node =nd a subtree wril;
consists of only S-nodes, then it is called an 5-subtree. Furthermore, if
L is a logieal consequence of 5, then we say that L has an 3-subtree.

3. Crucial Literal ind An Algorithm Por Fipding It

Let H1 and H2 be hypotheses both of which are capable of expl 21 mng
glven observations Obs, and let IC be an integrity copstraint which
hypothezes should satisfy. Assume that esch of H1 and H2 sacisfies IC,
but H1 is incompatible with HZ with respeect to IC. Then, the rmext step
is to decide which ome is & pore appropriate bypothesis for Qbs by
performing another sxperiment,

A literal L is ezlled to be & Peopucial literal™ with respecot to-HY and
H2 if either H1 or H2 {(but mot bothl explains L. When there exiztszs such
a crucial literal and the user tells the truth velus of that literal,
then it gves a cdue for diseripinatine a more desirable hypothesis.
That iz, assume that Hi explains L but Hj doesn't (i,3 = 1,2 and 1 =\=
J}. If the user tells that L is true, then it 1i: lnown that Hj iz too
weak & hypothesis for 0bs U {L} and Hi iz preferatle to Hj : if the user
tells that L is fzlse, then Hi is= an incorrect hypothesis for Obs U (L]
and it sheould be modified, whereas HJ] iz =£ill 2 sorrect hypethesis for
Ces U {L}.

How we szhow an zlgorithmic method to find such a crucisl literal. At
first, we prove a theores which gives the basis of the algorithm., Before
that, we need the following leomma,

[Lemmz 3.1]

Let i be 2 node in a proof tree Bl U 22 U { IC }. 4=ssume tnat (1)
tr(H) is neither apn Hi=-zubtree nor an Hi=subtree, (2] N is He-node
{either =1 or i=z2) and (3) it has descendents Dninzt,....,d, dr=1), If
each tr(Dn) is either an Hl=-subtree or an HZ-subtree, then one of the
fellowings holds

fa}) Among Dly4..,20d Dd, there is a crueial literal with respect to

E1 and HZ2.

{o) He |- N,

{proof)

The set of subtrees {tr(D1},...,or(Dn)} 15 partitioned into two
di=joint subsets {possibly empty) P1 and P2, where Pk (k = 1,2) is the
set of a subtree which 15 &an Hk-subtree, respectively. Froz the

aszsumption (1) and (2) above, there exit the following two ecases @
{ease 1) neither P1 nor F2 is empty.
feazse 2) Pe iz an empty set.

In (ezse 1)}, let Bj be [tr(D41),...,tr(Djdi)] (J =¥z e, d] »>= 1) anc
for azoh 1 = 1,...,d], we check Lo see whether He |- Djl or rot. I, for
some 1, it doesn't nhold, such Djl gives a crucial litersl with respect Lo
H1 and HE2. Hence, case (a) holds. Otherwise, eacn DjL has also its
proof consisting of an He-subtree, so We can replace each tr{Djl) by ite
corresponding He-subtree, which makes tr{l) an He-subtree. So, caszc (b}
holds.

On the other hand, in (case 2), P] (j=\s e] becomes LEe =et
[tr(D1),...,5r{Dd}}. Then, for eech 1 {1 =1,...,d}, we check whether He
1= DL or mot. If there exits =ome 1 =uen that Hc |-\~ D1, then Dl gives
a erueizl literal with respeet to H1 and H2, so case f{a) halcs.
Otherwize, =ince emcn Dl has also its proof consisting of Bo-subtree, so
we replace each tr(Dl) by its corresponding He-subtree, whicn makes tril
an He-subtree. Hence, case (b} holds, 0. E.D.

Ay

[Theoreg 3.1]

Let H1 and H2 be hypotheses which satisly the zbove-mentioned
conditicns. Tnen, in a groof tree for H1 U H2 U | IC }, there exists a
node which corresponds a crucial literal with respect to H1 and H2.

(procl)

Assume that IC be of the form : <= C1,...0n. Froc the assumption that
H1 U B2 violztes IC, there exists an SLD-refutation of H1 U B2 U { IC }
via some compucation rule A, Let @ be its R-computed substituticn.
Hence, a proof tree for H1 U B2 U { IC } actually exists and we demote it
oy T, Consider the following two cases !

(case 1)

For 211 j, if wiCje} iz either an Hi=-subtree or &n HZ-subtres, then
among Ci8,...,Cn%, there exdists a crucial literal with respect to H1 and
H2, because both HY and HEZ ssitizfy IC.

({case 2)

Otherwise, for some Jj, +tr(Cj@} is neither an Hi-subtres nor &an
li2-subtree, Then, we examine its nodes in tr(Cj8) one oy cone according
to their levels, fron leaves upwardly to its root Cj8., Let 4 he the
depth of tr{C38).

At first, for e=ch node L of level d (which means that L is a leal
mtrue®), it clearly holds that H1 |- L &and H2 |- L. That is, tr{L) is
both an Hi-subbree and an H2-subiree.

Next, consider a node N of level dek (k=1,...,d). Assume that N i= an
He-node (either e= 1 ar e= 2) and that, for every descendent D of Y,
tr(D} iz either an Hi=subtree or &n HZ=-subtree. Then, there exist the
following two cases

fa} tr(D) is either an Hi-subtree or an HZ-subtree.

{(b) tr(D) is neither an H1-subtree por an H2-subtree.

In case (b), frem [Lemma 3.1], it follows that if,among the
descendents of N, there exists no crucial literal with respect to Hi and
H2, then § has an Hi-subtree, Hence, from induction, unless there is no
erueizl literal with respect to H1 and H2 in tr(Cje), then Cj8 has either
an Hi=subtree or an HZ-=subtree.

Likewise, applying the sames discussion to other literals cig (j =
1,024,0), it follows that, unless there exists a orupdal literal with
respact to H1 and H2 in some tr{Cj8), each Cj8 has either an Hl-subtree
or an H2-subtree, which is exactly the s=ame as in (ecase 1). Q.E.D.

The above-mentioned thecrem and leama immediately suggest a naive
algorithm for finding a crucizl literal.

(step 0) j := 0.

{step 1) j := 1+ 1. If j = n, then go to (step 4. Otherwise, check
wnether tr{Cj8)} is either an Hl-subtree or an HZ-subiree.
If =0, go to (step 1).

{step 2) Otherwise, k := d, where d is the depth of tr{Cjel.

(step 3) If k= -1, then go to (step 1). Otherwise, for each node of
level k, check whether It has either an Hi-subtree or an

H2=subtree, If the node has neither an Hl-subtree nor
H2-subtree, then a crucigl literal s found among the
descendents of that node. Otherwise, k := k - 1 and go to
(step 3).

(step 4) Find a erucial literal among 018,...,and Cn8, by checking
whether each Ci {j=14+..,n) has either an Hi-subtree or an

H2-subtree,

The above algorithm is, however, apparently inefficient, because it
might examinpe thoroughly all the modes one by one in a proof tres,
Herce, in the mext secticon, we present & more efficient algoritha.

4, Divide-and-Query Alrporithm For Finding & Orucizl Query

In thi=z section, we present a pore efficient alpgorithm for finding &
erucizl query, The zlporithm emplovs a divide-and-query algorithm which
was used in [3]. first we define the weight of & node in & prool tres,

Let M be a2 zubset of the nodes in & proof tree for H1 0 HE U IC The
weight of 2 mode M moduleo !l iz defiped as follows. If N is in M, then its
welght i= 0. If ¥ is a leaf then its weight 15 0. Otherwiss,
the weight of Il is 1 plus the =uwm of the weight modulo M of its =ons.

The defimiticon of the middle node of & proof tree is the s2me =3 tast
of Shapire, i.e., it iz the leltmost heaviest node in the iree whose
weight modulo I is =< [w/2}, where w is the weignt of the criginasl tree,
In crger to find & mniddle mde of & given proof tree, we use the
procedure fpm {zee [3]) which computes the middie node and its welght.
Using this procedure, ow divide-and-query algeritom for [inding a
crucial litersl is shown below (for comparison, we describe ow algorithm
following Shapire's).

[4 Divide-and-query zlgorithm for finding a crucial literall

Input : hypothesis H1, H2, and an integrity constraint IC, whicn
sati=fy the conditions menticned in [Thecrem 2.1]

Qut put : a pryupial litersl with rezpect to B1 and HE

Meorithn ¢ Let ¥ be an eppty set. Simulate the executicon of IC that

returns its proof tree T, ocomputing w, the weight modulo M of the
computation tree. Then c2ll & recursive procedure fp wilh T, ¥ and M
The procegure fp, on input T, W, and M, operates as follews. First, it
applies the procedure fpm, which [finds the heaviest pode N ip T whase
weight wg nmodule ¥ is less than or equal to (Ww/21. It then checks

whether ¥ is 2 logieal conseguence of either H1 or HZ.

(i} if botn HY1 = M and H2 |- N, then fp calls itzelf recursively with
T, w-ug, and MU (H]).

(ii) if Hi '= ¥ and Ej '=\= N (4,3 = 1,2, i =\= Jj), then Ip returns H.

(111} if npeither K1 != N nor HZ |- N, then fp calls itself

recuraively with to(H), wg and M.

Moo maip difference between the above alporithm and that of Shapiro is
as follows : in his algorithm, each time fpm 1is called, computing the
middle node in a prool tree, then its truth value is given oy an oracle
guery, while in our algorithm, instead of gracie queries, it is checks to
see whether the middle node is a logical consequence of either H1 or HZ.
The correctness of the apove algorithm 45 established by the following
theoren.

[(Theorem 4.1] _
Using the condition of Theores 3.1, the above algorithm always
tercinates and returns a orucial literal with respeet to H1 and H2.

{pracf] .
Assume that N is pot a crucial literal, i.e., fp is called in either

Uy

case (i)} or case (iii) in the above. In czme (i), there exists at lezst
one corucial literal in T but mot in tr{l}, because, if we assume the
contrary, either H1 or H2 viclates IC, which contradicts the assurpticn
of the theorem, A=z for caze (iii), the subiree wi(ll) satislies the
condition of Theorem 3.1, Hence, there exists a orupial literal in
tr(N). HNote that every time fp is called, the input value of the weight
strietly deorseases. Sinee the ewxistence of & crueial literal is
fuzranteed by Theorem 3.1, fp oust be czlled in case (ii), which is to be
prov ed, : Q. E. D,

is for the copputation-coomplexdty of the alporithm, the same
properties as Shapiro's (see Lemma. 3.6 in [3]). For example, the
nmber of the celling of fp is at most b log n, where n is the degree of
the imitial input proof tree ané b is the maxigal branching of the proaf
tree,

£, Exgmples

Tn this secticon, we five some ex@mples to show how the above-pentioned
algorithm finds a ecrucial literal with respect to two compating
nypotheses,
[Exzmpie 1]

The first er=nmple i= a problem of the circuit diagnosis whien is

adopted from [4]. Consider the following ecircuit diagram CO (Fig.
1]'.‘

(A} =--
:{ G1) === (E} =-—1
(B) -

(€) =mm —
@) - (F) =--

:)E--- (a)

Fig, 1 === an exapple of a circuit diapgranm

Fig. 1 shows a =imple circuit diagram, where (A),(B),(C),(D), (EJ, (F)
and (0) are nodes, G1 and G2 are AiD-gates and G3 is an OR-gate. Hodes
(4}, (B), (C) and (D) are the input nodes, (0) is the cutput node of the
gpove cireuit CO0.

A node has its state whieh is either " ow® or "hign". UWhen a mode N
is in a state 3, thepn it is represented with 2 unit elauze : node (N, 5).

An AND-gate is represented as a unit clause : and_gate(G,11,12,08),
Wwhnere G is the mame of an AlD-gate, Il and I2 are the state af it= input
node 5 and Opg is the state ef itz ogutput nede. Hence,
and_pate(G,I1,I2,0g) holgs iff (i) G is an AlD-gate, {ii} Opg=hiph when
botn I1 and I2 are high and (iii} Ogp=lod when either I1 or I2 iz low.
Using this prediczte, node (E) and (F) are defined as follows :

node (e, E) <= and_gate(g1,A,B,E}, nodela,hl, node (b, B). {1}

node(f, E) <- and_gete(g?,C,D,F), nodele,C), nodeld,D). (2}

Similerly, an OQOR=gate iz represented as a unit ol zuse
or_gate(C,I1,I2,08) and node (0) is defined as follcws :

nodel{o, 0) <- or_gate(gl,E,F,0), ncde(e,E), nodel(f,F). (3]

Hew, aszsume that the states of the input nodes are given as follow
nodefa, highl.
nodefb, highl.
node (¢, hignl. (W)
node(d, low).
We denote oy H) the definiticns of nodes (1),(2),(3) and (4), togsther
with the defimitions of predicates "and_gete® and "or_gztef,
If, for the given input (), the state of the output mode(d) iz low,
then it me2nz that there iz something wronz in the above circuit, Eshgni
{4] gives tone following twe hypotheses for this faul ty output.

£

Hypotheszis 1 :
the gte G1 is faulty and Lts output is stuck at low.
So, in plees of (1), the Folloiing holds
node{e, E) <- faultii{z1,4,5,E), node{z,A), ncdel{b,23).
fault1{g1,X, ¥, low). (2)°

Hypothesis 2 :
the gate G3 is faulty and its output is stuck at low.
S0, in plzee of (2), the followins hoelds
ncde (o, 0) ¢- fawl=2(s3,E,F,0), node{e,E), node{f,F).
faul t2(g3,X, ¥, lom). (3)°

Let H1 be HO - {(2)} U0 {{2}'} {(i.e., HD) except that the defimiticn of
node (E) is given in (2)' instead of (2)) and H2 be HO - {(2)} U ((3)'}.
Furtherzcre, let Ob= be {node(oc,low)]. Then, clearly, both H1 and HZ
explain Obs. Az an integrity constraint, we give the follewing pgoal
formula IC

€= node (X, high), node(¥X,lcw).
which means that, if there exizts & node which has the state hipgh anc
low simul taneously, then it is a contradiction. It is easily chrecked
that H1,H? and IC satisfy the condition of [Theorem 3.1] and a proof
tree of H1 UM U {IC]is as follows (for simplieity, leaves Mrue?
are omitted).

node{o, hign), nodelo,low)
node (o, hmigh)
er_gate(g3,high,low,high}
node e, high)
and_gate(gl,high,high,high)
node(a,high)
node (b, high)
node(f, low)
and jatelg2, high,los,low)
node{c, high!
node {d, Low)
node (o, Low)
or_gate(g3,lon, laow, low)
node(e, low)
faultilgtl, ,_,1low)
nede (a,high)
node (b, hign

nocde{f, taow)
and gate(g2,him,low.low}
node{e, hign)
node{d, low!

From the apove proof tree, our alporithm finds a crucial literal
node(e, hisn}, which i= = logical consequence of Hypothesiz 2, though it
cannot be derived from Hypothesis 1.

In [4], in crder to select & better nypothesis between Hypothesisz 1
and Hypothesis 2, Eshghi gives a oethod of devising diseriminating input
values of modes (A),...,(D) which will give different outcomes on the
node (0), depending on wideh fnypothesis is assumed to be & correct
explermation of the faulty oireuit. That is5, by simulating the circuit
banayiors derived from Hypothesis 1 and From Hypothesis 2 respectively,
if, fer the same input values, the cutput state {rocm one nypothesi= 1s
different from that of the another, then such input values are the
dizeriminating input values.

On the contrary, in owr approach, we assume that states of 2ll nodes in
the gircuit are observable by performing experiments. Without onanging
ipitial values of the ipput nodes, we find a node which has different
states, depending on whicn hypothesis 1= zssumed to be eorrect. From the
stanézoint of computation-complesxdity, ow divide-and-query algoritha 1=
more efficient than Eshgni's method, beeause the latter pethod wignt
examine expaustively zll =tates of nodes in the circuit. Furthermore, we
believe that there are some caoes where the information obtazined from the
orucial literal will ke used for finding discrimimeting input velues
without erfiaustive search of input valuesz.

[Exmmple 2]

The second example i:s the one from Shapire's model inference system
[3]. Assume that we are now sSynthesizing a "gsort" program and that as
facts of gsort, for example, the followings are given.

agsert({1],[1]) is true,
asort([2,1],01,2]1) is true,
gsort([2,1,31,[2,1,3]) is false.

Let these [agts be the observations Obs of qgsort. Furthermore,
suppoze that we have the following two candidate programs for "gsort" P
and P2, both o which expleins the given facts above.

P1
gaort(l], L[1}.
geort([XiXxs]l, Result)
¢= partition(¥s, X, Lo, Hi},
gzort(Lo, Sorted_Lol,
gsort{Hi, Scrted Hil,
aprend{Sorted Lo, [XiSorted Hi], Result].
partition{[XiXs], Crit, Lo, [XiHil)
<~ Crit »= X,
partition(¥s, Crit, Lo, Hil.
partition{[XiXa], Crit, [XLa], Ei}
<= X =< Crit,
partitioni(is, Cri
partitien({], Crit, [1, []
append({XiXs], ¥s, [XiZ=])
¢~ append(¥s, ¥Ys, I3
append([],¥s, ¥=1.

the zame as P1 except the definition of = predicate "pzrtition™.

split([X1Zs], crit, [XiLo]l, Hi)
€= ¥ =< Crit,
split(X=s, Crit, Lo, Hi).
split([X1¥Xs], Crit, Lo, [XIHi])
€= Crit =< X,
spliti¥=s, Crit, Lo, Bi).
split([l, ordit, [1, [1).
It is easily checked that both P1 and P2 satisfy Obs. Actuslly P2 is a
correct progran for "gsort", while P1 is a bugsy program. As an integrity
eonstreint for "gsorti", we consider the following gozl IC

<= gzort{i, Y}, not_ordered{¥).
where a edicate "not_ordered™ is defined as follows
jrin

not_ordered({A,BlX]) <= AMB.
not_ordered({a,3x])
€= 4 =< B, not_ordered{[B!X]].

Let Pi [i=1,2) be 2 hypothesi= Hi, Then H1,H2 and IC satisfy the
condl tion of [Theorex 3.1]. Az a proof tree of 11 UHE U{ IC I},
consider the following formula in which variables X and ¥ oceourring in IC
are instantiated irto [2,1,3].

esort([2,1,3),12,1,3]), not_crdered([2,1,3])
gsort(f2,1,31,[2,1,3])
partition([1,37,2,01,01,3])

2>1
par‘.‘.it-iﬂﬂf[E] = r[]-[E”
2¢3
partition([]1,2,{],[1)
gsort([],[1}

qeort{[1,3],01,31)
partitien{{31,1,[1,[3]1)
143
partition({1,1,[1,[])
gsort([1,[1)
geort{[3],[2])
partitien{{1,3,[].,(])
geort([1,[1)
qsort([]1,[1])
append([1,[3]1,[31)
append([]1,[2,1,3],[2,1,3])
not_crdered([2,1,3])
221

Frem the above proof tree, our algorithm finds a crucizal l_lteral
asort{[1,3]1,[1,3]), which iz a logieal consequence of Hypothesiz =2,
though it cannot be derived from Hypothesis 1. Sinece gsort([1,3],01,31)
iz a wrue fact, we know that Hypothesisz 1 should te refined.)

In Shapiro's Hodel Inference Sy=tem, a theory 1is ;daptif‘ied
incrementally by the repeated process of refining its Ih}'patnems and
refuting that with ecrucial experiments. A single hypethesis 1s assumed to
cover given observaticns, When an oracle gives another faect for whicn tne

current hypothesis is too wesk, then it is repleced by & strengthened cne.
If we suppose the zituation where pultiple hypotheses faor given facts are
conzidered during the theory identification, then & crucial literal
obtaired by our algorithm gives the irformation which faet is necessary
for refining or refuting hypotheses. Henee, it will sometimes save
insigificant facts given by the aracle,

6. Concluding Remarks

This paper has presented a logical method to discriminste 2 more
appropriate hypothesis among competing hypotheses. Under the condition
of [Theoren 3.1], our algorithn finds a cruciel literal which gives a
clue to =elect a "better® hypothesis. The correctness of the algerithm
hes proved in [Theorem 4.1] and its validity is evepplified by seversal
exampl es.

Ve believe that the algorithm described here will be used effectively
in the =ciemtifie theory formation (such as disgnosis, induective
inference), where generally mitiple {possitly still weak) hypotheses can
be conmidered to cover ourrently nown facts and, by performing
experiments, we try to find a most appropriate one a0ong them, In such a
situstion, & ciue for refiming those hypotheses will be found by ouwr
algorithm, although each one of the hypotheses itself mignt be not
correct yet.

The alpgorithm described here has been implemented in DEC-10 proleg on
DEC-2065, In our implecentation, we have utilized Shapiro's diagnosis
programs [3] with minor changes. In [5], Takeuchi has implemented a
divide-and=query algorithm in GHC which has reduced some computations
inmvelved in the original Shapire’s algorithm.

[4cknowledmuents]

The authers appreciate Kazuhirs Fuchi(Direetor of ICOT) and Koichi
Furulawa (Chief of 1st laboratory) for the chance of doing this research.
We are greatly indebted to Randy Goebel, who gave valuable sugpestions to
pur current work while hiz visit to ICOT., We would like to thank Susumu
Kunifuji and other members of ICCT 1st laboratory for their wuseful
discussions.

[Reference]

[1] Popper, K.R., "Conjectures and Refutations : The Growth of Scientifie
Enowledgze", Harper Torchbooks, 1965.

[2] Poole,D., Mleliunas, R., and Goebel,R., "Theorist @ a logical reascning
system for defaults and diagnosis", submitted to "KEnowledge
Representation", JEEE Press, in preparation.

{3] Shapire,E. Y., "Algorithmic Program Debugging, " The MIT Press, 1982.

[L] Eshghi, K., "Application of meta-language programming to fault finding
in logic circuits", First Internatienal Logie Programming Conference,
16682, pp. 240-246. :

[5] Takeuchi, A., a private memo in ICOT, 1985.

i@

