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ABSTRACT

Extended Concurrent Prolog (ECP) [Fujitsu 84, Tanaka 85| is an variant
of Concurrent Prolog {CP) [Shapire 83] with OR-parallel, set-abstraction
and meta-inference features. In this paper, we describe the implementation
of Extended Concurrent Prolog (ECP) “compiler” by showing how these
extended features of ECP can be compiled to a Prolog program. Qur ECP
compiler has only one scheduling queune to which all the AND-related goals
and all the OR-related clauses are enqueued. This scheduling method is
designated “Single Queue Compilation.” This “Single Queue Compilation™
method makes it possible to handle all kinds of AND-relations and OR-

relations in a uniform manner.

1 INTRODUCTION

Concurrent Prolog (CP) [Shapire 83] iz a parallel logic language which in-
cludes a commit operator and read-only annotation as language constructs.
Extended Concurrent Prolog (ECP) [Fujitsu 84, Tanaka 85] is an variant of
Concurrent Prolog (CP) [Shapiro 83] with OR-parallel, set-abstraction and

meta-inference features.

We have already implemented the “interpreter” and the “compiler” for our
ECP. Since we have already described the implementation details of cur
ECF “interpreter” in [Tanaka 85|, we focus on the implementation details of

our ECP “compiler” in this paper. This paper assumes [amiliarity with CP
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[Shapiro 83] and ECP [Tanaka 85], however we summarize the main features

of ECP below.

2 BRIEF INTRODUCTION TO ECP

As mentioned above, ECP is an extension af CP with OR-parallel, set-

abstraction and meta-inference features. These [eatures are as follows:

9.1 AND-parallelism and OR-parallelism

AND-parallelism and OR-parallelism are the besic parallel inference mecha-
nisms of ECP. The former is the mechanism which evaluates AND-related
goals in parallel. This mechanism has already been implemented in Shapire’s
Interpreter [Shapiro 83]. On the other hand, the latter is the mechanism
which realizes the parallel evaluation of guerds, when there exists more
than one potentially unifiable clause with the given goal. This was not
implemented in Shapiro’s Interpreter. The following program is an example

of exploiting OR-parallelism.

solve(P, Mes) :— call(F) |

solve (P ,Mes) :~ find_stop(Mes) |

When “solve” is called, the above two clauses are executed in parallel by
OR-parallelism. The first clause executes “P.” Rowever, 25 5000 35 “stop” 13
found in “Mes” in the second clause, the second clause is committed and the

first clause is aborted. This realizes the “solve” with abort.

2.0 Set-abslraction

Set-abstraction is 2 mechanism for realizing the all-solution-search feature
in a parallel environment. The following two predicates have been proposed
[Fujitsu 84].

eager_enumerate({X |Goals}, L)

lazy_enumerate ({X|Goals}, L)

In the above description, “Goals” is the sequezce of the goals defined in a



Pure Preolog world. We assume that the Pure Prolog world is defined as

follows:
pp((<head> <- <bedy>)).

That is, the Pure Prolog world is asserted as the set of “facts” which have a

functor name “pp.”

These two “enumerate” predicates solve the Goals in the Pure Prolog world
and put the set of all solutions in L in stream form. The following is an

example of “eager_enumerate.”

eager_enumerate ({X lgrand_child (jire,X)}, L)

We assume that the Pure Prolog world is defined as follows:
ppllgrand_child(X,2) <= child(X,¥),child(Y,Z)}).
pp{(child(jiro, keiko) <= true)).
ppl{child(yoko, takashi) <- true)).
ppl(child(jiro,yoko) <- truel)).
pp((child(keiko,makoto) <= true)).

In this ease, L is instantiated as [takashi makoto]. The difference between
“eager” and “lazy” is the way it instantiates the second argument. “eager_
enumerate” instantiates it actively. On the other hand, “lzzy_enumerate”
instantiates it passively in accordance with the request from the stream con-
sumer. In the following example, a solution list “L” is created in accordance
with the request from “display.”
= lazy_enumerate ({X|prime(X)}, L7?J,
display(L, Mes?), keyboard(Mes).

2.3 Meta-inference

Meta-inference means to scive a giver goal using knowledge defined in a
user-defined world {Furukawa 84]. We set up the predicate “simulate” with
the following form.

simulate(World, Goals, Result, Control)



Here, “World” is the name of a world, “Goals” is the goal sequence to be

7

solved, “Result” is the computation result, and “Control” is the stream
through which we can stop and resume the computation. We assume that
knowledge of the world is given as a set of facts whose principal functors are
the name of the world. That is, knowledge of the world has the following
format.

world_name{ (<Head> <— <Guard> | <Body>)).

As an example of meta-inference, we give the “shell” example [Clark 84]
which can run the forezround and background jobs. In this example, "&"
shows the sequential operator. The forecground job always checks its con-
trol information while running. The background job runs steadily without
looking up its contrel information.
shell ([, _J.
shell([fg(G) IN].C) :-
simulate(f_world,G,R.C0Z
remove(C, NewCl&
shell (N7, New(C) .
snell([bg{G) IN].C) :-
simulate{b_world,G,R,_),

shell(N?,C).

:= shell ([fg(problemA) ,bg(problemB)],C), control(C).

In this example, “problemA” defined in “f_world” runs on foreground and
“problemB” defined in “b_world” rums on background. Execution of the

foreground job is comtrolled by “C.7

3 SCHEDULING QUEUE

A “scheduling queue” is often used in implementing a parallel logic lan-
guage on a sequential machine. As mentioned before, AND-parallelism is the
mechanism which evaluates “goals” in parallel. This is easily implemented by

using a scheduling queue. The basic algorithm for the usage of the scheduling



queue is as follows:

(1) “goals” which should be solved are enqueued to the tail of the scheduling

queue.
(2) A “goal” is dequeued from the head of the scheduling queue.

(3) A dequeued “goal” is solved. If the principal functor of the goal is a
system predicate, the goal is solved immediately. If the principal functor

of the goal is a user-defined predicate, the goal is reduced to new “goals.”

(4 Newly created goals are appended to the tail of the scheduling queue.

In general, the computation model of CP can be expressed by AND-OR tree.
AND-OR tree consists of two kinds of nodes, i.e., AND-goal-nodes and OR-
clause-node. Shapiro’s interpreter [Shapiro 83] processes AND-goal-nodes
by creating a scheduling queue for each AND-relation. Therefore, AND-
parallelism has been implemented in his interpreter. However, OR-relation is

processed by backtracking., OR-parallelism is not realized in his interpreter.

Our ECP compiler has only one scheduling queue and all the AND-related
goals and all the OR-related clauses are enqueued to this global queue. 1t is
possible to handle all kinds of AND-relations and OR-relations in a uniform
manner. 1o this paper, focusing on the role of the “scheduling queune,” we
outline the implementation method for realizing extended features, and show

how one can nicely handle those features in a uniform manner.

4 ECP COMFILER

Our compiler translates the “ECP source program” to “Prolog” program.
Since we already have the “Prolog compiler” which translates a “Prolog”
program to the machine language, the “ECP source program” can be trans-

lated to the machine language.

“ECP program” and “Prolog program” have lots of similarity. Therefore,
the translation of the former to the latter is much simpler than the direct

translation to the machine language.



4.1 Program Compilation

At first, we show the overall compilation strategy.

Comparing ECP “compiler” with ECP “interpreter,” we potice that there is

no change with the scheduling of goals. The ECP “compiler” can easily be

made from the ECP “interpreter” by changing the following points.

(1)

(2)

Add scheduling queue to “goals™.

In the compiled program, every goal is modified to include scheduling
queue in itself. For example, ii a goal is “zoal{Args),” this goal is compiled
as “goal{Args, World, Qs).” Two arguments are always added to the
original ECP goal. One is the world name where the goal should be
solved. I nothing is specified with world name, world name “*" which
shows the global database world is autematically assigned. The other is
the variable which will be unified with the current scheduling queus when

the goal is dequeued from the scheduling queue.
Add scheduling queue to “markers.”

We have prepared various “marker” to realize the extended features of
ECP. We also 2dd an argument “Qs” to “marker” in order io process it
as exactly the same manner as the ordinary “goal.” If the original marker

ie “marker(Args),” the compiled marker becomes “inarker(Args, Qs)

Every process is put on the scheduling queue in the form of “$(Element,

Qs).”

Processes in the sch-iuling cusve are expressed as a binary ferm whose

principal functor is "2.” Note that the “lement” is either “goal” or
“marker,” i.e., if “Element” is the goal “goal(Args),” the enqueued process
becomes “$(goal{Args, World, Qs), Qs).” The same variable appears
twice as the first argument of “goal” and as the second argument of the
enqueued “process.” This form makes the goal easier to get the current

scheduling queue when it iz taken out from the queue. At that time,



the second argument of the process is unified with the current scheduling
queue by head unification. Since Qs is the shared variable, this results the

goal “goal{Argument, World, Qs)” to have the current scheduling queue.

In summary, the main difference of the ECP compiler from the ECP inter-
preter is that all “Elements” keeps the current scheduling queue as its argu-

ment.

4,2 Compiled Code and Its Execution

The ECP compiler compiles the ECP programs to Prolog programs. The
followings are the rough outline how various extended features of ECP ean

be compiled and executed.

4.2.1 OR-parallelism

The following two argurnents are added to the compiled ECP clauses.

(1) The world name to which the given clause belongs. If the clause is defined

Hxx

in the global database world, world name is assipned as a default

value.

(2) Scheduling queue the tail of which OR-<lauses are expanded with markers

50 that they can be processed in parallel.

The following ECP clauses

plArgs) :- G1 | Bt.
p{Args} :- G2 | B2.
plArgs) := G3 | B3.

15 compiled as follows:



plargs,

"%’ W%orld name

[$ (NextGoal, Qh\Qt)IQRlY

[3(z=(C.Qs1),Qs1),
$(%p31(Args.C,Q52) ,Qs2),
$(4ps2(Arze.C.Qs3) .,0Q=3),
$(8p82(Args,C.CQs4) ,Qs4),

s(e(C,4s3),Qs3)1Qel) = ', exec{NextGoal).

“Qsi” stand for the scheduling queue. D-list “Qh\Qt” is also used to express
a scheduling queue. Note that every process in the scheduling queue has the
form “3(Element, Qs).” OR-clauses from “sp3l” to “$p33” are sandwiched
in between the marker & and . The ECP compiler enumerates ail ibe
OR-clauses which have the same principal functor and generates the names
from “3p$l” to “3p$3.” The variable C contains the information whether ons

of the OR-clause is committed or not.

Each “spsn” corresponds to the definition of eriginal ECP program and it
has the following format.:
$pin{Args, €,
[3(NextGoal, Qn\Qt)|Qhlh
(§( 2 (C,Fn,V,CVn,Qs1),Qs),
<head wnification processes>, <{guard processesz,
$( 2 (Fo, [<body processes>|Bt]\Bt,

Qs2),Qs2y1ee]) = ' ezec{NextGoal}

“NextGoal” is used to get the goal which should be executed next. “Qh\Qt”
express the renewed scheduling queue and it is passed to “MNextGoal” bm
head-unification. The argument Fn of the markers £ and 2 shows whether

the n-th OR-clause has failed or not. The argument V is a list of variables

tYou may notice that '$pin” need not be separated, i.e., we only need one big structure in which all
CR-clavses are packed, The reason that we did not adopt this strategy comes from the regulations
of DEC-10 Prolog compiles, i.e., DEC-10 Prolog Compiler doer not accept the structure which
includes more than 50 variabies.



which contains all varizbles in the original goals. The argument CVn is
the copied list of V. The body part of each clause is kept in the second
argument of the marker ¢@in D-list form. You may notice that processes
between markers Zand @@are OR-related and processes between markers
fand 2 are AND-related.

This compiled code is executed as follows:

(1) When a user-defined goal is called, it finds the definition clause for the
given user-defined goals from the specified world. If it is found, enqueue
the scheduied goals to the tall of the queue, dequeues a goal from the top
of the queue, and executes this goal.

(2) When a system-defined goal is called, it computes the system defined
goal. If it succeeds, next goal is dequeued from the top of the queue and

executed.

(3) When a “marker” is called, it performs various computation depending
on the markers and renew the scheduling queue. New goal is picked up

from the queue and executed.

We should note that every “zoal” or “marker”™ has scheduling queue in it.
Every time new “goal” or “marker” is called, the renewed scheduling queue

is put on it.

When “markers” are picked up, they are processes as follows:

(1) When marker &{C, Qs) or &(C, Qs) is picked up, the marker is aborted
il “committed” is set in argument “C.” Otherwise, the marker is put on

the tail of the scheduling queue.

{2) When marker Zis picked up and the top of the queue is marker @, Le.,
the markers @ and @are neighbors, this shows that all gnards failed for
a given goal. Since the “failure” of all guards means the “faiiure” of the

given goal, “lailure” is transmitted to the AND-relations to which they



belong.:

(3) When “spsn” is picked up, it schedules the pre-scheduled goals to the

tail of the scheduling queue, following the definition of "$pn” .

(s When marker 2(C,Fn,V,CVn,Qs]is picked up, it checks whether “com-
mitted” is set in argument “C” or “failed” is set in argument “Fa.” Iz

these cases, all goals from A to X are removed from the scheduling queue.

—
o
Pt}

When marker 2(C,Fn,V,CVn,Qs) is picked up and the top of the gueue
is marker 2(Fn,Bn,Qs), i.e., the markers £(C,Fn,V,CVn,Qs) and %
(Fn,Bn,Qs) are neighbors, it means that all goals of a guard succeed. In
this case, we set “committed” to the argument C, unify V and CVn, and

schedule BEn.

(6) When marker 2(Fn,Bn,Qs) is picked up, the marker is simply put oo

the tail of the scheduling qﬁeue.
4.2.2 Set-abstraction

In the case of set-absiraction, there is no change in compiled code. “eager_
enumerate” and “lazy_enumerate” are compiled in exactly the same manner

as the ordinary goals.

When “eager_enumerate ({Xip(0) .q(0},L)7 is exectted, this goal is reduced
to the following processes and they are put on the vail of the scheduling

qucuc?
$(§2(Qs1) .51, $CA L 04 (XIp00 ., g0}, Qs2) ,Qs2), $(@G,L,Us3) ,Us3)

Two pairs of markers appear again. The mesnings of these markers are
slightly different from the previous ones. However it is still true that the
markers @and @express OR-relation, and the marker A X express AND-

relation. The markers goand @surround the OR-relation and work as a

* If the gozl is at the top level, it means the total [allure of the comm putaticn.

® Although we chose to expand “1et primibives” dynamically, it is possible to expand it at compilasion
time. This is alse true [or “meta-inference primitives.”

10



solution collector. The solutions are collected in “L™ in stream form. The
marker £ 2 comnpute one soiution. The computed value is substituted into

the argument “L.7

These processes can be executed as follows:

{1) When marker £2is picked up and the top of the queue is marker ¢&, i.e.,
the markers ¢ and @ are neighbors, this means that all solutions for the
given goal have already been computed. We put [J onto the tail of the

argurnent “L” in this case.

{2 When marker 2 2 (M {X|p(),q(},Q=2) is picked up, we find definition
clauses for the leftmost goal of this set. If more than two clauses are found,

it is broken up into several goals. The argument “M” is also reproduced

by fission.

(3} When marker ¢€(M.,L,Qs3) is picked up, the argument “M" is checked.
If it is instantiated, its value is sent to the stream “L” and the marker is

appended to the tail of the scheduling queue.

The following is an example of fission. Assume that the marker is picked up,
and P is defined in the Pure Prolog world as follows:

ppl(p(X) <- B1.,B2)).

po((p(0 <= B3)).

pp((p(X) <=~ true)).

There are three clauses. The marker # % breaks up into three goals and they

are appended to the scheduling queue in the following form:
$(=(Qs1'),Qs1"),
$C 2 X (M1, {X|B1,B2,g(X)}, Qs4),Qs4),
$(AX (M2, {XIp(B3.q(X)}.ds5),Us5),
SCHX (M3, {X|lq(X)}.Qs8) ,dsB),
${e(IM1,M2,437 ,L,Q=3"),0s3")

We can get all solutions Tor the given goal by invoking fission. Notice that the

11



solutions are computed by the depth-first search based on OR-parallelism.

The basic mechanism of lazy-enumeration is almoest the same as that of

eager-enumeration. When “lazy_enumerate({XiG}.L}" is executed, this goal

i5s reduced to the following processes.

3(¢5(L, Qs1),Qs1), $( 22 (M, {XIG}.Qs2).Qs2), ${{(Qs3).0Qs3)

As you notice, the form of the reduced processes are almost same, although

the “markers” works slightly different. The variable “M"” compute coe solu-

tion. The variable L is the variables used for the bounded buffer communica-

tion to the outside world.

These “markers”are processed as follows:

{1)

(2)

{2}

{4

When marker ¢is picked up, it checks whether “L” is a variabie or net.
If “L™ is a variable, it means that there is no demand of solution yet.
In this case, all goals from ©to ¢@are simply put onto the tall of the

scheduling queue.

When marker ¢5is picked up and “L” is instantiated to 1, it means that
the demand from outside world is ended. In this case, all goals from &to

M are removed from the scheduling queue.

When marker 2 is picked up and “L” is instantiated as [XIL1], it checks
the top of the scheduling queue. If the top of the queuve is marker €@,
i.e., the markers @and ¢hare neighbors, this means that zli solutions
for the given goal have already been computed. We instantiate X to
“$END_OF_SOLUTIONZ,” and all goals from Eto @are removed from the

scheduling queue.

If the top of the queue is ( 5 2 (4,{X|G}.Qs2).Qs2) in case {3), M is unified
with X and 2.2 (M, {XIG}.Qs2) is executed after putting (L1, Qsl1’} to
the tail of the queue.

When A2 (M, {X|G},Qs2) is executed, “G" is reduced to find a solution.

12



If a solution is found, it is substituted for X and all goals to e{Qs3) is
moved to the tail of the queue. If the reduction fails, this goal is simply

aborted and the next roal is executed from the quene.
g

4.2.3 Meta-inference

There is also nothing special with “meta-inference” predicates, “simulate™ is

compiled as same as the ordinary goals.

However, “simulate{W, (G1(Argsl), G2(Args2)), R, C)” is called at execution

time, this goal is reduced as followse:

S( 2(R,C,Qs1),@s1)
$(G1(Args1,W,Qs3),Qs3),
${G2(Args2,W,Qs4),Qs4),
3( L(R,Qs2),Qs2)

Note that zll processes between “markers” are defined in world “W.”

The following sumimarizes the actions when markers are taken from the

scheduling queue.

{11 When marker 2{R,C,{Jsl) is picked up and “failure” is already set in
argument “R,” all goals from f to X are removed from the scheduling

queue,

{2) When marker 2(R,C,Qsl) is picked up and the top of the queue is
marker X(R,Qs2), i.e., it is empty between marker 7 and marker %, we

set “success” to the argument “R.”

(3) When marker 2(R,C,Qsl) is picked up and “C” is instantiated as [
, abort | variable], all goals from J to 2 are removed from the

scheduling queue and “abortion” is set to the variable “R.”

(¢} When marker 2(R,C,Qsl)is picked up and “C” is instantiated as [ ...,
stop | wvariable], all goals from £ to X are enqueued onto the tail of the

scheduling queue without reducing these goals.

13



(s When marker 7(R,C,Qsl)is picked up, and “C” is a variable or instan-
tiated as [ ..., cont | variablel, the marker is just appended to the

tail of the scheduling queue.

(5 When marker 3(R,Qs2)is picked up, the marker is appended to the tail
of the scheduling queue.

Just as before, the markers 2 and % express AND-relation. If a goal between
2 and 2 fails, “failure” is set to “R.” Goals between 7 and 2 are processed
as exactly the same mapner as the ordinary goals, except that goals are
reduced in a specified world. No special problems are ereated even ii OF-

parallelism, set abstraction and meta-inference are nested within each other.

5 RELATED WORKS

Here, we would like to survey related works on ECP.

Generally spezking, the language specification of ECP’s extended features is
based on the conceptual specification of Kernel Language Version 1 {KL1i)
at ICOT [Furukawa 84]. The reiated works of each extended feature can be

summarized as follows:

(1) For OR-parallelism, Levy [Levy 24] propesed the CF interpreter using a
global queue. His interpreter is based on the lazy copying scheme. ICOT
2is0 implemented various CP interpreters which realized OR-parallelism

using several implementation schemes [Miyazaki 85, Sato 84, Tanaka 84,

(2) The research in set abstraction is preceded by POPS [Hirakawa 84]. POPS
is a Pure Prolog interpreter written in Concurrent Prolog. It enumerates
all solutions for the given goals in stream form. In our approach, the

enumeration of ail sclutions is directly realized by the scheduling queue.

(33 The key issue in meta-inference is how to implement the interpreter of
the target language. In this field, research has been done by writing
meta-interpreters [Shapirc 84, Clark 84]. We have implemented meta-

inference predicates directly onto the scheduling queue, Compared with

14



the traditional approach, our approach is more direct.

In relate to the “compiler,” our ECP compiler is greatly effected by the
CP Cempiler written by Chikayama and Ueda [Ueda 85a]. Qur compiler is
essentially the “revised” version of their CP compiler te allow OR-parallelism

and various extended features of ECP.

After finishing up our compiler, we knew that Clark and Gregory [Clark
85] also made the Parlog compiler which compiles Parlog program to Proleg.
We also happened to know that Murakami and Miyazaki designed the similar
GHC compiled code which allows OR-parallel execution [Murakami 85].

6 CONCLUSION

In this paper, we described the various extended features of ECP and its
compilation. Although we have omitted here, there are various problems
which occur in the actual implementation, such as the copying variables,

suspension of head unification, etc..

As menticned beicre, our ECP “compiler” converts ECP source program to
Frolog program. Although it is impossible to remove the scheduling queue,
we see all guard and body goals are completely pre-scheduled to the queune
in our “compiled” program. Therefore we can expect the speed up of the

“compiled” program compared to the interpretive execution of the program.

The current version of our ECP compiler only compiles the scheduling.
However, we can expect further optimization of this compiler, Examples

of such optimization are as follows:

{19 The compilation of unification.

When enqueuing the head unification processes, we can call specialized
unifiers such as “ulist,” "uvect,” “uatom,” instead of calling general

unifier “unify.”

(2) The compilation of the immediate guard.

15



If the guard part of a clause only consists of system functions, we can

solve it immediately instead of enqueuing all OR-clauses to the queue.

These compilation techniques are already implemented in [Ueda 83a] or
[Mivazaki 835] and the effect of these optimizations are proved to be very

effective. We can adopt these techniques without any difficuity.

By the way, the scope of this “single queue compilation” method is not limited
to Concurrent Prolog. This method is aiso applicable to GHC [Ueda 85b]. In
this case, the implementation becomes simpler because it does not generate

multiple environments in implementing OR-parallelism.
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APPENDIX A COMPILATION EXAMPLE

We show the ECP source of “merge” program and its compiled code a5 an example. Note
that ECP compiier automatically generates names such as *3mergedm3n’ where ‘m’ shows
the arity of that predicate and ‘n’ shows its OR-clause number.

/% Seuree code o Merge program in ECP W/

WEE':I]'I'!!!}-
werge (X, [1,%).
perge((XiXs1,Y, [X121) - true | merge(is?,Y2,1).
perpe (X, [YI¥s],[YI2]) = true | merge (X7,¥=7,I).

/% Coopiled pocs ¥/
:=-fastoode.

s-public merge/e.
mergm (A, B, C, %,
(4D, ENFHEN
[ rs:31(G,E),E),
& 'SEIH‘EB$3$'|T{M'=‘-.QG=I:':I]=
$( "Smerge$3s2'(4,E,C,G,Jd),Jd),
& "merge$lf3'(A,B,CGE)LE),
$( "mergei3d4'(A,B,G,G,L) L)y
$( "SGE(G,M),MIF]):= 1 ,'exec(D).

i=publ ie '&merge$3F1 /5.
"$mergeddsi'(4,5,C, G,
($(D,E\F)IEIN
[$( '%'(G, K, [4,B,C1,[1,d,K],L),L),
$(u(r, [1,M,M),8(u(s,N,0},0),3(ulK, N, P},P),
$( '&01 (B, Q\Q,R),R}IF]):i= 1 ','exee(D).

=public "fmergefidzt /5.
'$merge$3$2'(4,B,C,G,
[$(D,ENFYIETN
(¢( '4:'(c,H, (7,8, C],[1,d,K1,L),L),
$(u(I, M,N),N),4(ulJ,[],0),0),8(ulK, 4 P),P),
( "8G (H OVG, R),RIFI:= 1 ",Texee(D].
s=public "fmergeiitl' JE.
1mﬁ'E$3$3'{ﬁ959015!
[8(D, EVFHIEDN
L${ 'm'[ﬂ,H,[ﬂ,B.,C],EI,u,RLL},.I,.}..
$(u{I,[IN1,0),0),8{u(J,B,Q),3, 4K, [MIR],S),S),
& 1400 (4, [${merge(N?, P, R, T),THUIN, V),
VIiF])i= 1 ',vexec(D).

rmpubl 1o 'imergedIilt /5.
YemergeddL (A, B G Gy
[&(0,E"F)IEDN
[&( '&G'(G, 5 [A,B,C),[L,J, K], L), L3,
(I, M M) ,N),80(s(0iP],0,Q),$ K, [0IR],5),5),
$( 140 (E [ (merge (M7, P2, R, %, T), THUING, Vi,
ViiFl):= 1 7, lexec(D).
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AFPPENDIX B ECP COMPILER PROGRAM

We show the ECP compiler program. In the actual implementation, we use different
© ® ' IS : . .

markers” instead of them shown in the main part of this paper. The correspondence
between these “markers™ are as follows:

« OR-parallelizm

@&(c,Qs) o $G5(C.Qs)

A (C,Fn,V,CVn,Qs) $G(C,Fun,V,CVn,Qs)
1 (Fo.Bn,Qs) $C(Fn.Bo,Qs)

2 (C.Qs) . $GE(C,Qs)

« Set-abstraction

Ezger-enumerate

€5(Qs) . $SSET (Qs)

A2 (M. {X...},9s) SSET(M,{X[...}.Qs)

ga(M,L,Qs) . $ESET(M,L,Qe)
Lazy-enumerate

g (L,Qs) . SLSSET (L, Qs)

A2OL X, .. }.Qs8) SLSET M, {X]...}.Qs)

& (Qs) - $LESET (Qs)

« Meta-inference

H(R.C,Qs) - $STMU(R,.C.Qs)
X (R,Us) - 35IMU(R,Qs)
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1= fastoode. [${Coal,ChiNGt) ICR1] ), L,
exec{loal).
/¥ Top level %/ TLSIMI' (Res, [stop, ot iCntl ],
[$(0oal, Cu\RL )} QRN

= public (KL}/1.
= mode A (+).

[$('2=D0"(Res, Catl , Q) ,Q0 1G] -
Corf==pont , 1,
mmo{lml).

KX} 1= =thime, '43TMI (Res, [stopiCntl],

stvelI, Ry Gt

il write( 'Resdltt (R)), o, (3 ("4STMI' (Res,

T hme, . [stepicntl],Q,Q}iqel) -
sldp =il ata(0A0\0E, Geal), |,

1= mde mive(+).
slvel(l) := satvel(X, R), L

epmeol(Coall.
&S TMIY {Res, [comt j0nst ],
[4{Ccal, G\Gt)Ich]\
[&('eSTM] (Res, Cntl, @, Q) 10L]) := I,
exmolGoall.

= oode solvel+,-l.
=lve(X,R) -
o_smecule(?, L 0T,
[&(Ceal, SN2 1CaIN
($('ssDO* (R, 513,@1,
s{"esIMIT(R, %%, 2], 2} I0L]D,
lyexmo{Gozl],

1= public 'ESIMIYSE.
i= mode VEEDM(+,).

1eETMIY (Res, [4{ 0ol TaNCL L ICRTN
(&' (Res, Q) ,Q0 1GET) == 1,

ema{ioall,

1= mode exeol(+). :

e=oll) 1=
incorelll), .

mmo(i) 1=
Mmeter (X, F,A),
ergls, LA,

dequsps fziled coals(Q,Goall,l,

= publio YSEETSE.

- mode "EREM {4,

TEOE (C=t, [$(Geml, th\CE) G ]Nat) -
Cmit=scommitted |, I,
eec{bi].

emclfoal], reast (LI m () ) lonl\at) -
dequere_failed goals(Ch\Ct,Coal),l,
eee(Goal).
/t Blags & 1455 (O, [ S (0ol GNQE) [CRTN

{${T55' Emtlm |QJ |ﬂt]J H I'I'
= puilic 'SSDMI/S, exec{Goal).
= mode VESTMIM(7,+,+).
1= publie "SGE' /2.
VESTMIT (success,_, '~ mode 'SOE (+,+).
[¢{res D0 (mueceas, ), JIN[]) = 1.

'4sTM)" (Res,_,Ch\QL) ie 183E (Cmt, [$(Goal, ChA\CE) IQRNQL) t=

Fes==z{zil1re ;1
dequeve _=imdlate(Qh,Qhl),
(Qh1==0t% 3

Qht=[$({Coal, \Qt)|Qr2l, I,

Cemt-=commitied , !,
ex=c(Goall.

'SP (Comt, [$(Ge=l, CRVGEIICRTN

[$('CE (Comt, Q) , 00 10E]) = 0,

exec{Coal) ).
450" (suceess, ,[$('4SIM" (suceess, ), ),
$(Gaal, Car\QE) ICEINQE) = I,

exc(Goall.

1= public *E£G'/5.

mm i Goal ), 1= mode 'ﬂTE?r*l“'r"'J*]'

185 TM31 {Res, Catl, TeST (==t FeiY,_, .0} =
[$0Coal, BnCzhiChIN (Comt==cormitted
(3('ssDM'(Res, e, Q),Q) I0E]) = Failzefailed),

(variCfzil) ;3 Cntl=e#® § |
ool .

reE Tt (zordion, Cutl, EEE) -
o= aooesi(lnil),
decvece =imul ate(lh,

dequeus_guard(C,Ge=ll, !,
emolGoal],
r&s {oommitted, W, OV,
EE LTt I P
& 0eml, CnN\GRT) CalNEE) fm
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uni £y (OV, €7), 1,
exec{Goal ).
V4G (it Fedl [ 1L,
[&{Geal , Ch\at) QRN

[${'§]'Et=t,iaﬂ,[],[]|':l] |QJ FQ‘:]J L :-p

exe|Goal).
1451 (Comt, Fatl, OV, OF,
[&(Goal, hrat)iChIN

[£('45 " {Cmt, Fodl, OV, oV, Q,Q1at]d -

copr (OV, OV, WV, CTV) , Ly
exeefoal ),

1m1‘{+l—l—’m s
dequeve_gmard(Q,Goall, !,
exsc(Coal).

1= public "$G%/3.
1= mode ST (F

185" (Fail, =,
[$(Geal, \GE)ICRN
(414G (Fadl, B0, 00,00 |080) 1= 1,
emeoi{Ceal).

= putlic "85ZET /1.

t= mode "ESEET(+),

rasgsm i [arsEsnT ([0, 0] ) ),
$(Genl, Ca\Ce) 1Ch]NaL
emo{Goal).
resEET ([5(Goat, Shhas ) icha s
[d¢vezsET (Q), 20 00e]) 1= 1,
emo(lozl].

=1,

= pubiic T4SET/3,
te mode TESET (= b pt) .

VESETT (Mes, Cls, [${0cal, Ga\QE) [CRNGET) &=
o _reduce_set(Cls Mesg 001,000, 1,
ema(Conl),

+= putlic '$ESET'/3.
Hiad ]I:H‘E'E “mr:'{"*-""j!

18ESET (Mes, 5
[$(Ceal, Ch\QLIICRIN
[4('$ESET (Mes1,S1,Q,Q {Qt]) -
collect siMes Mest, 5, 51),1,
emolGoal).

1= publie '$LSSET'/2.
1= mode TELESET(7,-).

& SSETH( 3, Ge\[$ ("L ESTTH (S, Q) , Q) [QE]) ¢~
cvar{S, 511,10,
sicp_sec(ChnGE,Goell,!,
eme(boal].
TEIJE-EE-‘T{[]I:J - 11
dequewe_set(Q,Gaal), !,
emel{Goall.

2

veLSSET ([ '3END_OF_SILUTINZ' 1],
[$("8LB3ET () ),
§(Goal,\Qt)iGaNGE) = 1,

exec(Goal]l.

Y457 (5, [$ (P &EET (0, s, ) o 1CRIN

[$(1 45527 (S1,Q,Q 1L =
walb(s, [00Si]0, 1,
1e1 SET (0, Cls, CRNGED.

1= pullic "&.5ET /3.
1= mode VELSET (=4 ,+]

14L2ETT(C, CLs, TNGE) i
o 1l resuce_set{Cls, 0, CEWCE1), N,
sic p_set(Ch\@t],Coell, 1,
emal{Goall.

TALEET Oy,

[§{'sLSE (0, C5, ) JI0RTNGE) 2= 1,

"SLEETT (0, Qs CRAEE).
var 2P (PEEND OF SCLUTIDNG',
[${0ml, @Nes) IGalnge) == 1,
execiloal).

t= public 'ELEEET'/.
;= mode TELESETV(+],

tar FRET ([8(Gosl, NGl ORI
[ &LmSED (G),D000e]d 1= 1,
ex=c{Goall,

/% Set ¥/

o_reduce =t{lls, Mg T,T1) 1=
resucep((le, HextQsl, |,
o ferk =t(lls,Nexx s, des, T, T, I

;r@m_m:iﬂa,'ﬁﬂ.’{ﬂes},?,f t=
termirezep(fls, Mes), L.

o recuce_set(Cls, Mes,

[4("4SET {Mes, N5,
Qi),NTLT) -

moeep(Qe, N2 =), L

o recioe_mil,'SFALE T - L

= Eemoe Ll_rﬁ!].lﬂ!_,_#tl:+ = 7).

- .

'Q_l__f:‘in:_Eu\,L_'Sl KEI:E.E,E*T‘\T']:'.
:_;_re-.‘.:&_a&tlﬂs,.&.::,l‘\'l‘) -
tp—irmron(s, Ans), 1.
ol reciee =t(Ts C,TNI) -
srsme{ e, sk,
Ll,_rt:i‘;:__m:il-:ﬂs,ﬂ,ﬂﬂ}.



/% Simi ate ¥/

i= public mimdate/6.
rm mOde x[_mﬂat,a[q—,*,-ﬂ,-*,d-].

simul ate (Worid, Geal, Res, omal,_,
[4{NextGoal, CANGE) GBI TN
[4( &2 TM" (Res, Cotd |
Q0 oe1]l -
a_soadl e{Werld, Goal, Ch1IAQLY,
Chh[3("= 1M (Res, 07 ),
Qiieeld,

eEolemical),

/% Coudle ¥/
= public cmp/2.

copl(IF, OF) =
c_axmmet{TF [ IWLY,
reversa(lL, RiL),
g_cl0F, RiL],
soelism giliL), L

goasmsert({],L0) =1,

o as=ri([FIR],L0\) =
c_az=ri(F, L1001,
g esmere(R LIL).

¢ gs=rt(F,10WL) 1=
mped no({0F), mee(T),
reed(X), o as=ra1(X, L0V,

==en, sae(0F).

¢ asseriilend of file L'L) t= I,

g a=sert]((Head :~ Body),l0VL) :-
funeter (Head, F, 4],
check member (F/ A8 LOVLT),
a=zser={ (Head := Do )],
rEad{I}-LE.EErH{LU\L}-

o _gsemst] (e, [OVL) 3=
Q= .[Werld, (Head <— Bedy)]l, !,
funetor{Bead, F, A),
check remter( {Herld, F/a ), 10010,
esmr(CLls),
reed(¥),q as=ert1{X, LIL]).

¢_as=ert) {Baad, LOVL) -
funeco{Eead, F, A),
menk_pester (A, IOV,
asmerii{Eead},
read{¥],c assert! (X, LINL].

e elF, ) 1=
telling(0F),teli(F],
writa{(:= fastendel),
writedl(','),mol,
g olause (L),
tald, tell(0F).

cciawse([]) = 1,

o_Gause({[F/AINL]) :-
Nomeca (P, B A,
o ciav=es(F/A, Cist, ¥,
o dlause(l).

o clavse([(W,F/A)INL]) 1=
funcser (B, Ty A)y
Qe=..[W{F <— B)],
brgof((P <= B},Qs, Cist),
o clauses(F/a, Qi W),

o otarse (L.

o dlauses(FAL, (D ausa] W) 1=
22 is he?,
fenctor{Bead, 1, 12),
Eead=..[Flirg=],
funetar (e Fy &),
= JFDArgs ],
appe nd(DAr s,

[W, [($(Cesl, a\QL) IR ]NORT ], A=),
o eaddl ause (C1 ause, Dirps, W, C, AQR\EQL ),

(Cz='pommitted' ,
Qhi=h,
Ct=Rt
Oht=[s{ 435 (C, 011,01 ) IRQR],
Mi=[&{"CE(C,2),2) 101},
writeg({:= putlic F/a2)),
p(". "),
o,
retty_mrint{(Head 1= |, exme(Goal))).
g olauses(F/A, As, W) 1=~
2 iz k2,
fineca {Bead, F, £2),
Head=. t[FlMg]j
funct o (Dunmy, Ty A),
D.l:m‘:..fFfDArEE].
arend (DArgs,

(W, [$({Coal, CnGtIChINGRY ] Ares ),

o o _dleauses(t,F/A, s, Mirgs, W,
mpd s, Qb\ERE, Omt Rag),
(memter com—mitted(Comt Pag, M),
o guews(l, tepd C=, ChiNGD,
writen [ (= pullic FAR2) ),

k-
ol y

ety mirs({Head := l,exec(Coall})



iLink oommit(Cmmt Pag, 0,
n={$('ses (Cc, @) ,Q1)icaR],
Cr=[${"%G= (c, @), B)Ie],
Writeg((:= public F/a2}},

paE{", "),

o, -
ety _mint((Head := 1, eee(Geal))),
rint_each o avse (Copd C=)),

.= _dausas(E, F/A, [Clause [Tl auses],
b gs, W,
[{Head :- 1, ex=e{Geal))|
Capd A =7,
[4(Caller, Q) ICallsieat,
fcicsl) =
¢_each ol pree (O avee, frg= W, 0 Ch100R),
append(iArgs,
C,[2(Geal, C\GE) 10 NQMT ], Nirge),
ke _mmelF AW, LNF,
Beads,  [NFiNire=],
Eppﬂﬂﬂ’{ﬁr;ﬁ- IC,QJ,W;EJ.
Clle=..[NFiCirg=],
K iz F+1,
c_or_ciauses(K, F/A, Qavsas, irgs, ¥,
(oo Ce 2110004, Cs).
Q-T—dam:f—.t_lijk_l_lrjimtll L[l =1

g each c ause ((Head (== VP),Args,
W, Gy DRVAQL) 1=
w=r(VE),
I
oplArgs, CArgs],
Eead=,.[ |Hérgs]l,
o !l gueus{Cirgs, Hirgs,
Da\[E('4a(F,
($Crevar(ve, B,
) |BQt]\Bat,
@2),E)IRe]),
queve_optizizer([$('557(C, T, irgs, Cirgs, @15,
Qi) !mh], RQR),
g eas dause({Head <—- G=rd : Bedy),
iopgs W, G, QR\EQL) o=
complargs, Cirgsl,
o_schedil e(W, Body, T\, 200,
c_smecl a(W, Gmard, DY,
a0 (R, X, @), B iR,
Hezd=.. [__JE:A“@] ]
g =il cuews(lirgs, Bires, WhESR),
guens pprimives([S('$3" (L, F, Arps, Chrgs, 1),
Qi) iTonl, Kk,
g each o zuse((Fead <-- Bodyl, A=,
W, C, REVRQT) 1=
complires, Cirs),
g s=exlel¥, Sody, I, 20,
Bazds, . [ [Birgel,
il _guewe (Cirgs, Iirgs,

mens(rs e, |, @), &) [Ret]),

24

Queve_optimizer ([$('96'(C, F, Arge, CArgs, Q1) ,
L)kl RMn).

il quewe([C4CA=],[Ala=],
[${u(Ca, 4 Q) ,Q) IMOENTIL) :=
o ! _guewe(Cis, As, TWh'\TOt ).
s queue([],[], t\TOL),

i= public o_acheddesl.

¢ schedilelW, G,
SN[ 'SVP (G, ¥, D,
Qlot], Gt} ==
var(G), L.

c_scheddle(W,(4,B),0, @) :-
o scmeqzle(¥, 4 0,810,
c_smeddl eV, B2, 01,2,

o schedilel  ru=, 0,00 := 1,

¢ scedle( ,=mizte(¥,CE C),
Cr\[3('&sDav (R, ., Q) , 00 15210,
QuNGL) :-
o_schedl a(W, 3, GhnGET,
Chn\[$('85D0'(R, Qi) ,010 108 0). 1

oschedde( ,=ec{{X:3es1],3tr),
Con[S(res=ET (Q1),01),
$("ESED (Mes, {X:Oeel], @), 20,
$("4ESET (Mes S, 3),08) L],
CaNQE) 1= .

cesdeddel lesy set({X:Gcal},20),

Ch\[&( e =zET (38, 61,010,
S(O'LSET(_ IX:0a=1), 020,82,
S(ULERET (B) . E)iICE],

QhyGe) =1,

e_schedule(V, 4, Ca\[£(CA, Q) 10t],G\Tt) i-
=. aIF”ﬂ'F]l
E?I-ﬂﬂﬂ':ﬂrms [hpmrc"‘rg}i
Ch=..[F|CArgs].



