ICOT Technical Report: TR-136

TR-136
Design and Evaluation of a Prolog Compiler
by

M. Kishimoto, T. Shinogi, Y. Kimura
and A.Hatori {Fujitsu Ltd.)

September, 1983

[Cogs, 1COT
Mita Kokusai Ridg. 21F 03) 436-31491—~5

|| :D | 4-28 Mita 1-Chome Telex 1COT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

1 PROLOG COMPILER

DESIGN AMD EVALUATION OF A PROLOG COMPILER
M. Eishimote, T. Shinogi, ¥. EKEimura, and A. Hattori

FUOJITSUO LIMITED)
1015 Kamikodanaka NWakahara-ku, Kawasakl 211, Japan

RBETRACT

This paper discusses a Prolog compiler for the FACOM a, a symbolic
data processing machine. The compiler includes several optimization
algorithms, such as separated predicate frames, extended mode
declaration, and fast goal invocation. Ceompiled programs run at 30
to 40 ELIFS.

1. INTRODUCTLION

A Prolog compiler has been created that runs on the FACOM a, &
dedicated machine for symbeolic data processing (Akimoto 19853). This
paper discusses the design philesophy of the compiler, optimization
methods, execution results, and evaluates them.

This Proleg languzage processor is based on DEC-10 Prolog. The
language is identical to DEC-10 Prolog except for part of the syntax
and the built-in predicates (Warren 1977).

The Proleg languace processor is intertwined with the LISP language
processor. The interpreter is started by executing the LISP
function PROLOG.

The Prolog interpreter and garbage collector (GC) are implemented by
microprograms. ‘The garbage collector is shared by both the LISP and
Prolog language processors, using data tags to differentiate the
object code, Most of the Proleog I/0 routines and built-in
predicates are coded in LISP, but some are written in Prolog. The
compiler discussed in this paper is &lso written in LISP.

When executed by the interpreter, programs run at about 12 thousand
logical inferences per second (KLIPS), several times slower than
required for practical use. & compiler speeds up execution of
predicates to 20 to 40 ELIPS.

Section 2 of this paper outlines the compiler and the machine
instructions. Section 3 explains the extended mode declarations,
which greatly improve execution speed, and methods of fast goal
invocation. Section 4 presents some measured results of the
execution characteristics of compiled predicates and evaluates the
performance.

2. COMPILER DESIGHN

2.1 Data Structures

Compiled predicates have basically the same data structures as when
they are interpreted, as shown below.

2 PROLOG COMPILER

(1} Structure sharing is used. The data length is 4 bytes,
concisting of a 3-byte pointer and a l-byte data tag.
Molecules consist of 8 bytes, including a skeleton and
environment.

(zy & compound term is a tuple (LISP vector type) or a Coms cell.
For compound terms that deo not include variables, there are two
special types: constant list, and constant tuple,.

{3} Logicel inferences are performed using three stacks. The local
stack is implemented in hardware. The glebal stack and trail
ctack are in mein storage, where they can be compacted by the
garbage collector.

2.2 Separztion of Control Frames

In the interface to the compiled predicates, the actusl arguments
are placed on the local stack before the predicate is called. GSince
the FACOM @ is a stack machine, it does not have any registers
manipulated by machine instructions. The method of calling the
predicate after its actual arguments have been prepared is the same
as the wWarren's structure copying methed, except for the following
differences (Warren 1983, Tick 1984):

(1} Actual arguments are passed on the local stack instead of
registers. The compiler is therefore spared the complex task
of register zllocation. Tall recursion can be performed by
changing peinters on the local stack, because it is not
necessary to globzlize the unsafe variables., Unsafe variables,
however, must be considered in in-predicate loop as described
helow (Warrenm 1980C).

(21 BRctual arguments are dereferenced hefore being passed to
predicates. The compiler can determine whether dereferencing
is necessary, so it generates code without needless dereference
processing. Therefore logical inference can be performed with
less dereferencing than when dereferencing is postponed until
it hecomes necessary.

The FACOM o accesses the local stack by the frame peinter. 1In
Prolog, however, it is determined at run time whether recent choice
pointer (RCP) frames are allocated. Since the frame length cannot
he calculated at compilation time, stack access by the frame pointer
cannot be used. This problem is solved by separating the predicate
frame into two parts (Figure 1).

3 FROLOG COMPILER

LOCAIL STACK GLOBAL STACK TRAIL STACK
FP ~| CONTROL | - %gi“ VARS | ——— TRAIL
FRAME | gsTe — TR —
GFP .|
@ TRS - '
ARGUMENTS -
L : control, argument & variable frame
LOCAL VAERS .
———————] 21 work (callee goal) frame
2 | WORK AREA
FRAME
STE ==

Fig. 1 Layout of the stacks for the Prolog processor

@D Control, argument, &nd variable frame

The compiler can czlculate the size of this frame, which is accessed
by means of the frame pcinter.

C) Fredicate czll (work) frames

This frame 1s work arez used for gozl invocation in the clause

body., Since there mav be an RCP frame between this type of frame
and & frame of type {:}, access is relative to the stack top peinter
rather than the frame pointer.

The contents of the control frame are nearly the same as ones for
the interpreter. Three entries are used for different purpose to
have compiled predicates run faster.

2.3 Unificaticen

When a compiled predicate is executed, machine instructions
corresponding to a body of a clause set actual arguments and invoke
a goal. While other machine instructions corresponding to the head
of the clause perform unification with actual arguments. If there
is a mode declaration, unification is performed in the order of (1)
input actuzl arguments, (2) normal actual arguments, (3) output
actual arguments. If each argument is a compound term, all levels
of objects are compiled to unify in the depth first manner.
Unification is performed at high speed on the hardware stack,
without using registers, since there are no registers available to
the machine instructions. |

In Warren's implementation {Warren 1980), the GET-LIST instruction
simply checks whether an argument is a list, then sets a pointer to
the compound term. 1In contrast, the FACOM o GET-LIST instruction
checks whether an argument is a list, then decomposes it, and pushes
first the cdr part then the car part onte the lecal stack. (See
Figure 2.) The decomposed elements are dereferenced at this time,
but no molecules are generated, and the environment pointer (ENV) is
explicitly carried about. Molecules are generated (by the

4 PROLOG COMPILER

MARE-MOLECULE instruction} only ahead of a unification for variables
(by GET=-LCOCAL-VARIAELE and other instructions). Suppressing
generation of molecules speeds up unification of complex compound
terms.

{g) sample predicete and gquery
gl{lx1y]). % predicate

7= afla,b,c]l). % guery

(b)Y c¢odes for list vnification
{LS A1) % push first argument

(LS EKV) % push environment
{GL) % unify list

{c] Eefore (CL) (&) After (GL)

Fo =~ FFP —
la:b,c] Ia!br’:]
ENV ENV
STP = cdr parc [b,c]|
Car part =]
STP ﬂ-———**—J

rig. 2 List unification

2.4 Cesign of Machine Instructions

The FACOM a has 156 dedicated instructions for LISP. From the
standpoints of both function and speed, these instructions are
inadeguate for Prolog processing, so 635 new machine instructions
were added., All machine instructions are implemented by
microprogram. A high execution speed achieved by using a 6-byvte
instruction prefetch buffer, a machine instruction dispatch memory,
and other hardware features, The feollowing points were considered
in the design of the machine instructions.

{1}y More run-time decisions are made in Prolog than in conventional
languages., The semantics of the machine instructions are
therefore set at a high level, and decisions are performed on
the microprogram level at run time. The number of branch

instructicns is held down to improve the hit ratio on the
instruction buffer.

{2} CDereferencing, molecule-maxing, and other common functions are
performed by dedicated instructions te eliminate redundant
processing at compilation time,

The instructions newly created for Prolog can be classified as
follows: (1) GET instructions to perform unification; (2) PUT

5 PROLOG COMPILER

instructions to set actual arguments; (3) PROCEDURAL instructions to
handle inter-predicate control; (4) INDEXING instructions to select
candidate clauses; (5) miscellaneous instructions,

3. QFTIMIZATION METHCDS

This section discusses extended mode declaraticn and fast goal
invecation, two special methods of optimization used in this
compiler,

3.1 Epeed-up by Mode Declaraticon

This compiler completely compiles compound terms appearing at the
head of & clause. The DEC-10 Prolog like mode declarations (+, =}
are therefore extended to allow a deeper mode declaration (++). It
declares that 2ll the variszbles even in compound terms are
instantizted. (See Figure 5.) This declaration is satisfied by the
first and the third items in Figure 5, 1In the second item, it is
against the mode declaration that the actual argument of variable Ll
is uninstantiated. Use of the (++4) mode declaration enables an
efficient object code to be generated for objects in & compound term.

(&} Declaration

append ([¥X|L1],L2,[XIL3]):-
c-mode append(++,++,-).

{(b) Usace
?-append{fa,b,c] [d],BANS).
¥=2 Ll= [k,] -- QK
T-append{falyY] (4 1 ,&NS).
X=a Ll= UNDEF -- HNO
?-¥= [biz],
append { [al¥] {d 1, ENS).
X=a Ll= [b| UNDEF] == OE

Fig. § Deeper mode declaration

In an interface in which actual arguments are passed after
dereferencing, variables in argument pesitions with the (+) mode
ceclaration and variables appearing in compound terms in argument
positions with the (++) mode declaration are always instantiated
(never referencez). A variable that appears at least once in such a
position is called an instantiated variable.

Fer instantiated variables, dereferencing is unnecessary, so
unification can be replaced by the store instructions, and setting
of arguments by the load instructions.

A similar situation in which dereferencing can be eliminated is
called 2z real reference. Since an actual argument is set after
dereferencing, an argument with the (-) mode declaration is a
reference, and the referenced location is always an uninstantiated
variable value cell. 1In general, a reference indicates a constant

B PROLOG COMPILER

or a value cell of a different variable, so it is unsafe to write
without dereferencing. The dereferencing can be omitted, however,
in a real reference. A {-) mode actual argument is always a real
reference during the interval from invecation of the predicate to
the first unification.

Another new mode declaration used in this compiler is a half
instantizted mode declaration (?%, -#). Half instantiated means
thet dereferencing would produce a value other than a reference.
The (72} mode declaration signifies the normal (?) mode declaration
when a goal is called. If alsoc declares that the argument is half
instentiated afier the goal termination. Similarly, the (-%) mede
declaration is the input mode declaration (-) when a goal is
czlled. It zisc declares that the argument 1% instantiated after
exit. The half instzntizted mode declaraticns (74, -£) can be used
to enable the compiler to detect not unsafe variables. The compiler
determines that neither variables declared =g input nor half
instantiated in the goal invocation are unsafe.

Ordinarily, mode declarations can be used only in relation to their
own predicates. In this system, mode declarations can alsoc be used
in relation to invoked goals. As an exemple, the precdicate
NOT_TAKEl in Figure & is & part of B-QUEEN. From the mode
declaration for the NOT_TAKE]l predicate, it cannoct be determined
that wvarizble= N1 and M1 are safe. BRut, both variables are proved
not to be unsafe, znd recursion can be changed to in-predicate
loop. Since ":- mode is (74, ++)}" is declared for the built-in
predicate. The compiler is eguipped with ready-made mode
declarations for the built=-in predicates as shown in Figure 7.

nDt_takE-"-{ [1,8,M).

not.takel({ [XIL] , N,M
- X =\= N,
X o=\= M,
Nl is HN+1,
M1 is M+1,
not_takel{L,N1,M1).

:= mode not_takel{++,+,+}.

Fiz. 6 Predicate NOT.TEEKEL

7 PROLOG COMPILEER

%2 ARITHMETIC
1= mode 1s5(7T#,++),
AN
R A

% CONVENIENCE
:- mode length(+,7%).

% DATA BARSE
+=- mode recorded(+,7?,
recoreda(+,7,
recoredz{+,7,
erase{+),

ad wad wed
HE i

s
I
)

i

Fig. 7 Mode declarztion of built-in predicates

3.3 Eigh-Speed Invocation

Goal invecation is speeded up by the following means. Except for
{1), these means are compiler options, because balanced against the
high speed are trade-offs such as that non-compiled predicates
cannot be invoked, and modifications in predicates are not reflected
gfterwards,

(1) Continuatien czll

Continuation calls are used to speed up termination. Continuation
calls use the same amount of stack as ordinary calls, though they
are applicable even to indeterminate clauses,

(2) Linked call (direct czll)

Linked calls are used to speed up calls among comolled predicates,
In an ordinary call, a predicate definition is searched from the
vredicate name &nd arity, but in a linked call a direct branch is
made to the address of the predicate difinition,

{3) Tail recursive call (TRO) (Warren 1980)

A tail recursive cell can be used only with 2 determinate clause,
but it greatly reduces consumption of the local stack.

{4y Forming of loops within predicates (in-predicate loog)

When & clause is determinate and the last geoal is itself, a
recursive call is converted to a loop (iteratien). Since loops
within predicates are alwayes formed using relative branch
instructions, they execute even faster than the combination of a
linked call (2) and a tail recursion (3).

4. PERFORMANCE MEASUREMENTS

We measured the speed performance and dynamic characteristics of the
compiled predicate. This section presents and discusses the results.

4.1

B PROLOG COMPILER

Execution Time

Table § shows some of the execution times for the problems in the
Prolog contest (Okuno, 1984). Execution time was measured for 12
cases to examine how the optimization methods explained in Section 3
contribute. The results indicated in Table 9. TFollowing
conclusicns are lead from them.

(1)

{2}

2 comparison of sets of cases with the same invecation method
but different mode declarations (for example (), (& and @)
‘shows that the (+, -) mode declaration provides g boost in
speed of 0% to 20%. The (++, -%) mode declaration provides a
boost in speed of 35% to 70%.

Goal invocation is speeded up by linked czll and tail
recursion. In terms of execution time, the linked csll is
faster than the tail recursive call. When in-predicate loops
are used, speed is improved by & maximum of 45% compared with
the ordinary call.

Table 8§ Result of benchmark

[msec]

Benchmark program Interpreted code Compiled code

APPEND (30) 2.74 .75
KREVERSE (30) 3s.8 15.5
QSORT (50} 52.1 18.6
DATAEASE-1 51 2

JISF (FIBLO) 1156 43

Tahle 9 result in each case

(a) Optional case explanaticn

CLEE Mode

Goal invacation

E -

Mormal invocation

Linked e¢all

Tzil recursive optimization
Trans iteration

oo o0

Normal invocastiaon

Linked czll

Tail recursive cptimization
Trans iteration

o0oDo

Wormzl invocation

Linked call

Teil recursive optimization
Trans ilteration

®: Without
o: With +,

©: With &+,

mode, declaratien
- mode declaration

-4 mode declaration

[=) Fesult
CAREE NREVERSE QEORT
mseo KELIFS msec ELIFS
ay 33.1 (15) 31.9 {23)
& 28.9 (17) 28.7 [25)
&) 27.9 (18) 29,8 (24)
& 26,5 (19) 26.7 (27)
@ 29.6 {18) 30.1 (24)
® 25.3 (20) 26.9 (27)
)] 26.9 (18) 28.0 (26)
&= 26.9 {18) 28.0 [26)
22.3 (22) 23.7 (31)
18,3 {(27) 20.5 {35)
3 19.5 (2%) 21.6 {33
2 15.5 {32) 18.6 {39}

4.2 Stack Consumptian

PROLOG COMPILER

Consumption of the three stacks was measured during execution of
compiled code and we compare it with consumption during execution of

interpreted code.

Several programs were run, and stack consumption

was measured for eight of the same cases as in Section 4.1. Table
10 gives the results,

10 PROLOG COMPILER

Table L0 Stack consumption

[Word = 4 byte]

Program CL5E LOCAL GLOEAL TRAIL

472 28212 435

NREVERSE INT
@ 477 2763 0
@
@
@]
@ 49§ 1023 4]
%} 1]
) 1

QSORT INT 754 1652 268
D BlE 1654 104
@ {
& 197
@ i ¥
& 468 1023 104

% i
197
i

{1y Local stack consumption was greatly reduced by the tail
recursive call and the in-predicate loops. For NREVERSE, stack
consumption was not reduced, because the compiler cannot
recognize the NREVERSE predicate is determinate.

—

(27 Without mode declaration, global stack consumption was about
the same as= in execution by the interpreter. With mode
declaration, global stack consumption was reduced because

variables were reclassified.

(3) Compilation have candidate clauses narrow down. Clauses that
previcusly had alternatives became determinate, and trail stack
consumption was reduced.

4.3 CPU Qccupiled Rate

The CPFU occupied rate was measured during Proleg executicn,
Figure 8 shows the CPU occupied rate for APPEND and E-QUEEN for
compiled and interpreted codes.

11 PROLCG COMPILER

13,654 step
'@' Interprited code
unification {468 \3 - @ Compiled code

Wo-Mode Declaration
. a1 . Narmzl invoke

dereference | 21 - 13 ~._ 3,621
contral e -8 2 Compiled code
32 46 22 Mode Declaration
backtrack =1 0 e Trans te Iteration
@ @ @
{a}) Determinate AFFPIND
2,673,882 scep
unification (23%
\1 617 018 step: number cf
dereference |20 — 1,233,408 exgcute micro step
e 25 _— 2: rate of steps in
contrel 33 — 13— 148 o each case
: 23T —
built=in 12
1% 34| 45
bachtrack —dm=—= 3 5 6 —
{a) B=QUEEN

Fig.

{1}

(2)

{2}

5.

) Dynamic analvsis of Prolog execution

More than 80% of the dereferencing done by the interpreter was
eliminated by using the mode declaraticns discussed in
Section 3.2. In APPEND, &ll dereferencing was eliminated.

Special unification, generated by compilation of clause head,
cuts the unificaticn operation roughly in half.

It is difficult to speed up the execution of programs like
B-QUEEN which consist of & high proportion of built-in
predicates, because the execution time of these predicates is
fixed.

CONCLUSION

A Prolog compiler for the FACOM @ has been created. Compiled
predicates run at 30 to 40 KLIPS, =bout three times faster than when
interpreted, Extended mode declaraticns were added to improve

execution speed, giving improvements of 35% to 70% over no

declarations, and 25% to 70% over conventional mode declarations,
Various invocation methods were evaluated, and a dynamic analysis of
compiled predicates was performed to evaluate the FACOM a.

This research was done at the reguest of the Institute for New
Generation Computer Technology (ICOT) as part of the
fifth-generation computer project.

12 PROLCG COMPILER

BCENOWLEDGMENTS

The authors wish to acknowledge the guidance received from

Mr. Tanahashi and Mr. EHayashi, and the useful discussions with other
members of the laboratory steff. They zalsc wish to thank

Mr., Sugino, Mr. Yamazaki, Mis. Inc, and Mr. Yamauchi of Fuiiesu 851
for cogperation in developing the compiler and collecting data.

EFERENCES
RKIMOTO E (19E85) Evaluation of the dedicazted Hardware in FRCOM

ALPFHEA, IEEE 1883 COMBCON EPRING

Okuno E (1984) Propeosed problems for 3:d LISF contest and lst
Prolog contest. (In Japenese) IFSJ, SYM, 28-4

Tick F, Warren DHD (19%84) Towards a pipelined Prolecg processor.
1%84 Interngtional Symposium on Logic Programming

Wazrren DED (1977) Implementing Prolog - compiling predicate
programs. DAI Research Report 3%-40, Univ. of Edinburgh

Wazrren DED (1980} An improved Proleog implementaticn which
optimizes tall recursion. 1980 Logic Programming Workshop,
Debrecen, Hungary

Werren DHD (1983) An abstrzct Prolog instruction set. Tech Note
30%, AIC BRI Internationazl

