ICOT Technical Report: TR-135

IR-133

Retrieval of Software Module Functions
Using First-order Predicate Logical Formulae

by
H. Yoshida. H. Kawo and M. Sugimoto
{ Fujitsu Lid.)

Sepiember, 1985

€985, 1COT

Mita Kokusai Didg. 21T {03) 456- 31915

IG DT 4-28 Mita 1-Chome Telex 1COT 32964
Minato-ku Tokve 108 Japan

Institute for New Generation Compdté; ;I:ééhnnlogy

1 Yoshida, Module Retrieval

RETRIEVAL OF SOFTWARE MODULE FUNCTICHNS USING FIRST-ORDER PREDICATE
LOGICAL FORMULAE

H. Yoshida, H. Kato, and M. Sugimotc

FUJITSU LIMITED .
1015 Kamikodanaka Nelkiahara-ku, EKawasaki, Japan

ABSTRACT

This paper introduces a method to retrieve scftware modules from a
medule library in order to reuse them for new software. Tt is
geffective for a programming environment in which specifications of
software modules are formalized using first-order predicate logical
formulae. This method uses resolution and heuristics to determine
reusability of current modules in the library., A prototype system
has been developed using C-Prolog on a VAX11/780.

1. PREFACE

In logic programming, a programming language has its logical basis
in Horn clauses which are subsets of first-order predicate logical
formulae. A language for specifications of logic programs will be
somewhat close to legical expressions., Por this reascn, first-order
predicate logical formulae can be taken as one of the candidates for
the specification description language. However, first-order
predicate logical formulae are both difficult teo write and read, and
thus require a user interface. The TELL system (Enomocto et al.
1984) currently being researched by the Tokyo Institute of
Technology is an attempt to integrate a natural-language interface
into formal specification descriptions written in first-order
predicate logical formulae. 1In other words, the specification
description language TELL/NSL, which is the core of the TELL system,
is a natural language (English) with limited syntax, and software
specifications written in this language can be translated
unambiguously into first-order predicate logical formulae through
syntactic analyses,

Well-written software specifications not only facilitate
maintenance, but also make it easier to reuse old software, If
useful software is stored in a library and can be retrieved easily,
it can be reused, which improves productivity significantly,
Although automatic retrieval is desirable, simply matching
characters is not a practical method of retrieval. A retrieval
method based on software functions is required. It is important to
grasp the "semantics of specifications" as intended by the designer
for semantical matching. This paper discusses a method for
retrieving software module functions in a programming environment,
such as the TELL system, that can formalize semantics of
specifications using first-order predicate logical formulae. This
method uses resolution and heuristics to match first-order predicate
logical formulae. This paper briefly introduces specification
description language TELL/NSL in Section 2. It presents an
overview, and the algorithm of the method in Secticns 31 and 4, and
reports on a prototype system developed using C-Prolog on a
VAX1IL/780 in Section S.

< voshica, Module Retrieval

2. SPECIFICATION DESCRIPTION LANGUAGE TELL/NSL

The four tyvpes of modules that can be described using TELL/NSL are
functicnal definition, egquivalent to a predicate or function, class
definition, eguivalent to an abstract data type, action definition,
equivalent to a parallel process, and dynamic class definition,
equivalent to shared data between processes. This retrieval method
currently applies only to functional definition.

Figure 1 is an example of 2 top level module definition for sclving
the eight gueens puzzle described in TELL/NSL. This specification
can be translated inteo Formula (1) below.

arrangement X is an eight gueens splution

mezns that
1) Eight gueens are placed in X.
2) No gueen is checking any other gueen in X.

end eight gueens sclution.

Fig. 1 % sample epecification (by TELL/NSL)

Ye [eight_gueens' _solution(c) =)
35 [|5|=8"Ygl,qges = placedi(g,c)ll (1)
“nigldg? Lgl#gl checking(gl,a2,c)]]

TELL/NSL is a2 pseude-natural language which can he translated into
first-order predicate logical formulae. It ig characterized by
natural stepwise refinement through lexical decompositien. That 1is,
one word corresponds to each module, and the specification
gescription of each module explains the meaning of the word in
natural language. The words in the explanatory ctatement provide
further explanations as auxiliary modules which are subcontractors
of the original module. Thus, the module structure and the
inter-module interface of the entire software are determined
naturally based on the explanatory etatement in natural language.
The specifications of each module define the logical association
with the auxiliary modules and are translated into relatively simple
logical formulae. Therefore, a sufficient response speed can be
expected even if the resolution principle is used for those logical
formulae. Since there is a tendency to cenarate many small modules,
reusing medules by functional retrieval would be highly effective.

S FUNCTICNAL RETRIEVAL

A functional retrievcl system using this method iz used, for
example, in the following seguence:

(1} The specifications of imdividual medules using TELL/NEL, their
translated logical formulae, and programs that have been
verified to satisfy the logical formulae are stored in a
library.

(2} Anyone can then use TELL/NSL to develeop @ new module by
describing the specification of the module.

3 Yoshida, Module Retriewval

(3) & syntactic analysis is then performed on the specification of
the new module, which is then translated into a first-order
predicate logical formula and input into the functional
retrieval system.

(4) The functional retrieval system compares the input logical
formula with tF> formulze of the modules in the library te
determine whether they are reusable.

(5] The developer processes the program of a module determined to
be reusable and obtains a program of the new module. .

Simpce this method uses the resolution principle to determine the
eguivalence of logical formulae, z specifications is determined to
be reusahble if it is legically eguivalent to the input
specification, regardless of differences in characters or
expressicns. For example, mocdule eight_gueen_puzzle with a
gpecification that can be translated as shown in Formula (2) below
is reusable as module eight_gueens_solution shown in Figure 1.

Yo [eight gueens puzzle{c) =
VvglvgZ [checkinag(gl,g2,c) => gl=gi] (2]
~a5 []s]|=8"v¥g (ge5 = placed(g,clll]

In reality, however, modules with eguivalent functions are seldom
stored in the library. To use the functional retrieval system
effectively, modules that are "similar"™ to some extent must zlso be
retrievable. The problem is under what condition the two
specifications should be concidered similar. Becavese the main
purpose of the functional retrieval system is to promote reuse of
programs, it must be able teo obtain the desired program easily,
merely by processing the programe of the retrieved modules.
Therefore, the functicnal retrieval system must not only to answer
"similar," but alsc provide guidelines as to what part of the
program text should be processed and how. The method tentatively
checks whether each of the following three cases and any of their
combinations apply, to determine whether two specifications are
"eimilar":

(&) Difference in the order of parameters

Two specifications are egquivalent except for the order of formal
parameters., For example, modules successor and predecessor having
specifications that are translated as shown in Formulae (3) and (4},
respectively, are logically eguivalent if the two formal parameters
are exchanged.

Yu¥y [successor (x,y) = x=increment (v)] {3

¥ r
¥z¥w [predecesscr(z,w) = increment(z)]=w] {4)

Therefore, if Formula (3) is input, the functional retrieval =system
will return Formula (5), provided that predecessor 1s stored in the
library.

Vu¥y [successor (x,y) = predecessor(y,x)] {51

By taking the program text of module predecessor out of the library
and by replacing all occurrences of the first parameter z with y and
all of the second parameter w with x, the user can obtain the
program of the new module successor.

4 Yoshidea, Module Retriewval

(b} Turning & parameter into a constant

Two specifications will be eguivalent if some constant is given as
an actual parameter. Tor example, module n_gueens_solution having
the specifications that can be translated &s shown in Formula (6)
will be reusable as module eight_gueens_sclution shown in Figure 1
if constant & is given as the first parameter.

¥n%¥c [n_gueens' solution(n,c} = .
28 [|s]|=n"¥g (g8 = placedlg,c)i: (6]
“nEglig? Lglé#g2checking (gl g2, clll

Therefore, if Formula (1) is input, the functional retrieval system
will return Formulz (7).

c [eight gueens' solution{c) = n_gueens' solution(g,c)? (7
v taking the program text of module n_gueens_solution out of the
ibrary and by replacing all occurrences of the first parameter n

th B, the user obtains the program of the new module eight_gueens_

E
i
wi

sclution.

(c} Difference in auxiliary modules

Two specifications will be equivalent if the subcontracting
auxiliary modules are replaced with similar ones. For example, in
module sort and modvle generate_test having the specifications that
can be translated as shown in Formula (8) and Formula (9},
respectively, the original medules are equivalent assuming that
auxiliary modules parmutation and generated, and sorted and tested
are logically eguivalent.

Vyx¥y [sortix,y) = permutationix,y) ~ sorted (y)] (81

Vz¥w [generate test(z,w) = generated(z,w) ~ tested(w)l (9)

Therefore, if Formula (8) is input, the functional retrieval system
will return Formula (10), and Formulae {11} and (12} which are
gssumed eguivalences of aguxiliary modules,

UXYy [sorlix,y) = yenerate tescix,y)] (10}
¥ x¥y [permutation(x,y}) I generated(x,vy)] (11)

¥y [sorted(x) = testedix)] (12}

By taking the program text of module generzte_test out of the
library and by replacing all occurrences of the auxiliary module
names generated and tested with permutation and sorted,
respectively, the ueser obtains the procram of the new module sort.

t shoulé ke noted that this method does not werifv ths assumptions
in Formulae (1l1) and {12). Therefore, medules having completely
different functions may be retrieved by this method. However, as
shown above, the program of module generate_test can easily be
reused regardless of whether Formulae (11) and (l12) are satisfied.
Buxiliary modules parmutation and sorted of the new module sort can
be used as is if tney already exist 25 modules. If they are new
modules, epecifications are defined for them and reusable meodules
are functionally retrieved from the library as for sert, in which
case the retrieved modules need not be gensrated or tested,

5 Yoshigcs, Module Retrieval

4., PRINCIPLES CF RETRIEVAL

Parameters of each module are represented by universally guantified
logical variables in a logical formula which is a translation of
specifications. Therefore, the similarities shown in EBections (a)
and (b) of the preceding section can be determined, because their
logical variables or their logical wvariables and constants are
unified during the preocess of verification of egquivalence of logical
formulae, by the resocluticn principle, The determination of the
similarity shown in Section (¢}, on the other hand, is a high order
unification, and is realized by heuristicse,.

The procedures and heuristics used are explained below.
{a) Termincology &nd notation

Predicate names are represented by lower case zlphabetics, such as
g, £, and g, while the ordinary logical fermulae are represented by
upper case alphabetice, such as F and G. The set of parameters X1,
¥2, «.., %Xn of predicate p iz represented by "X" as a tuple.
Therefore, call of p is represented by "p(X}". The operation for
properly rearrancing the order of tuple elements is called
permutation. Tuple X rearranged by parmutation 7 is represented by
"®1". Tuple <X1, X2, ..., %i, ¥l, ¥2, ..., ¥Yi> for the two tuples
%=<X1l, %2, ..., Zi> and ¥=<¥1l, ¥2, ..., ¥j> is called concatenation
of ¥ and ¥, and is represented by "X + ¥".

Call of 2 predicate and its negation is called a literal. In
particular, call p{X) cof predicate p and its negaticn “B(X) are
called positive literel of p and negative literal of p, respectively.

A clause is a set of literals. A clause consisting of only one
literal is called & unit clause; in particular, a clause ccnsisting
of only one literal of predicate p is called the unit clause of p.

(B) Procedures

Bereafter, the new module to be retrieved will be named £, and the
module with which its egquivalence is to be verified will be named
g. Meodules f and g are defined in Formulae (13) and (14).

X LE£(X) = F(X)] (12)
vy (glY) = G(¥)] (14)

In the first phase, it is determined whether functicne of module g
satisfy those of module f. Functions are verified if a parameter
tuple Z of module g that satisfies Formula (15) can be found for a
parameter tuple X of module £.

vX [g(2) == £(X): {15}
in this case, =since FPormula (15) to be verified is unknown, the
normal resoluticon principle cannot be applied as is. In this
retrieval method, therefore, parameter tuple X of module f is fixed
to obtain Formula (18} as the unit clause of module g, using
Formulae (16) and (17) as axioms,

& Yoshica, Mocdule Retriewval

ZF(X) (16)
¥Y (G(Y) =>gl(¥)) {17

Aglz) (18)

If Formula (18) can be resolved, feormule (19) is considered to be
satisfied, and Formula (l15) is considered to have been wverified by
Formulae (19} and (13).

AF () 2 ~glz) (19)

At this time, tuple Z is normally a permutation of tuple X (or a
concatenation of tuple X with & tuple consisting of several
constantz) .

With Formula (15) elene, module g may be a partial sclutieon of
module f. Therefore, Formula (20) which is the oppeosite of Formula
(15} i= also werified in the second phase,

Y¥XIE(K) =gz (20)

Formula (21) can be resolved from Formulae (15) and (20). Thus,
module g which is reusable as f is discovered.

vX [£(X) = glZ}] {21}
(e} Eeuristics
{(ly Forced factoring of literals of g

This ie a unigue heuristic in the first phase of this method, which
is used to improve the efficiency of the resolution principle. That
is, if the resoclved clause contains multiple negative literals of g
and if they can be factored, an zttempt is made to forcibly factor
them so that the resolved clause contains only one negative literal
of g, If£ the literzls cannot be factored, the resolved clause is
deleted, becauze the clause to be finally resclved in the first
phase must not be an empty clause, That is, it must be a unit
clause of g, such as Formula (18).

{2) Determinaticn of =similarity of auxiliary meodules

This is & heuristic used teo find a set to advance the inference,
where the number of parameters in zuxiliary module h of £ and
auxiliary module k of g is assumed to be egual and h and k are
eguivalent. 1In the first phase, the two glauses Cl and C2 that
satisfy the following conditions are searched for among the resolved
clauses:

- Cl contains positive literal h(V! ¢f h and CZ contains negative
literal ~k{(W) ol k. @Qr, Cl contains negative literal ~h(V} of
h and C2 conteazins positive literal ki{W} of k.

= There is a permutation of the tuple, the class of the
corresponding elements of Vv and W is egual, &nd each of ¥ 1w and
W has a most general unifier o.

- If Cl centains negative literal ~g(Y) of o, and CZ contains
~g(2) of g, Yo and Zg are unifiable,

i ¥Yoshida, Module Retriewval

If the above conditions are satisfied, and if h and k (when
parameters are rearranged by permutation T) can be eguivalent, & new
clause can be resolved from Cl and C2. Even if multiple negative
literale of g appear in the clause, the new clause will not be
excluded, by the heuristics of (1) above. Verification continues
with Formula (22) added to the axiom.

¥V Lh(v) = k(Vr)l o (22]

Formula (22) is also used as one of the axioms in the second phase.
(3} Bandling of recursive definitions

etrictly speaking, to determine whether two recursively defined
modules are eguivalent, the mathematical inducticn on the data
structure of the twe must be used. However, it is difficult to do
so automaticallv with & computer, And one can often decide that the
two modules appear to be egquivalent without using such a precise
method. What must be noted here is how the recursive calls appears
in the body of the modules. The decision based on the style of
calling the subccntractors is the same as that of heuristic (2)
above. So the method similar te that cf (2) can be used to
determine the equivalence of recursive modules,

In the first phase, the two clauses Cl and C2 that satisfy the
following conditicns are searched for emong the resolved clauses:

- Cl consists of only negative literal "£(¥) of f and negative
literal ~g(2) of g.

- C2 consists of only positive literal g(®W) of g and negative
literal ~g{Z) of g.

- Both tuple & consisting of only constants (including a tuple
whose length is 0) and permutation 7 exist, (V¥ + A)w and W have
the most general umifier o, and (X + A) and Zo are edqual.

Kman the above conditions are satisfied, the first phase terminates
with Formula (23) congidered to be satisfied,

¥X [glZo) < D(X)] (23)
Recursive calls are processed in the same way in the second phase.

I+ will be shewn that this heuristie is correct for & module
recursively defined for the list structure. For simplicity, it is
assumed that both f and g have two parameters. The first parameter
is used for input and the second parameter is used for output, and
they are defined by Formulae (24) and (25).

¥xyy [£lx,v) Flax,vy)! (24)

¥xdy Lgix,y) = Glx,v)] (25)

In *he first phase, arguments x and vy of module f are fixed to
resclve the unit clazuse of module g using Formulae (26) and {27} as
axioms, and heuristic (3) checks that a clause as shown in Formulae
(28] and (29%) is resolved.

¥Yoshice, Module Retrieval

L]

LE (R, (26

Yygw [Glv,w) == giv,w]] {27}
~E(edr (x),y) veglx,yl (28)
gl{edr{x) ,y) v.glx,y] {291

1f the clauses of Formulaze (28) and (29) are resclved, then Formulae
(30} and (31} can be resclved from Formulae (24}, (25%), (26) and
(27).

UxVy [gix,y) " £lcdrix),v) = £ix,v)] (30}
YWy Cglx,y)= olcdrix),y) v fix,y}1 (31)

Mow, it will be verified that Formulz (32) is satisfied by using the
mathematical induction on 2 list structurs,

gxty [gix,v) = flx,v)l (32
{1y wWhen x is nil

Since literal g{cdr(x),y) means "Zz[ecdr(x,z) g{z,v)1", it is false
in this case, and Formula {(33) can be resclwved from Formula (31).

¥y [ginil,y)=> f(nil,v}] {33)
{2) When x is cdr(a)

Bssuming Formula (34), Formula (35) can be resolved from Formulae
(30 and (31).
Cglcdrial ,y) = flcdrial,y}] (34)

Ty

-

Yy (gla,y)= fla,y)] (35)
5. FROTOTYPE S¥YSTEM AND EXRMPLE OF REUSE

A prototype of the functional retrieval system using this method has
been realized using C-Frolog on & VAX11/780, The program consists

of approximately 2000 lines, and whether logical formulae are
equivalent is determined using ordered linear resoluticon (Chang et
gl. 1973). Of the heuristics discussed in Section 4, heuristies (1)
and (3) are used as regquired, if they are azplicable. Heuristic (2)
ig considered only when the rerolution principle comes to a deadlock.

This prototvpe operates as one of the modules ccompcsing the program
development environment (Sugimeoto et al. 1984}, wnose specification
description language is TELL/NEL. The prototype is also used as a
subcontractor of anoiuer module called the semi-zutematic synthesis
system. The semi-automzatic synthesis system 15 used interactively
by the software designer, This system functions incluode
specification description by TELL/NSL, translaticn of logical
formulae by parser, retrieval of reusable modules by the functional
retrieval system, reference and modification of the retrieved
modules, and storing of the modifieg modules into the library.

Figure 2 ig an example of synthesis of prograrm on_the_same_cclumn,
which reuses the module on_the_same_row.

la)

(k)

{c)

(d)

(£}

(g)

Fig.

(1)
(2)

{(3)

{4)

g Yoshida, Module Retrieval

New Specification (by TELL/NSL)

Queen Q1 and gueen gl are
on the same column of arrangement x
means that
1} The % coordinate of the position of gl in x 1is
the »_crordinate of the position of g2 in x.

end
Translated Logiczl Formula of (a)

¥gl,g2,x [on_the same column (gl,g2,x] =

®x_coordinate [position [gl,x]]
= x_coordipate [position [g2,x]7]

Retrieved Module Name
on_the_same_ruw

Translated Logical Fermula of (e

Ygl,g2,x [on_the 'same row [gl,g2,x] =
y _coordinate [positien[gl,x]]

= y coordinate [position [g2,x2]]

Assumption of the Eguivalence
¥x [x_coordinate [(x] = y coordinate [x 1]
Program of (c) (by Prolog)

on_the same row(Ql,Q2,X): -
position(QLl,X,Pl),
y_coordinate (P1,x),
position(Q2,X,P2),
¥ _coordinate (P2,X),

Modified Program of (a)

on_the_same column (Q1,02,X): -
Tositon(Q1,%,P1),
¥ coordinate (P1,2),
pﬁéitian{QE;H;P21r
x_coordinate (2,2},

2 an example of program synthesis

The user inputs specification (a) of the program to be obtained,

The semi-automatic synthesis system converts specification (a)
into legical formulaz (b} using the parser.

Then, the semi-azutematie synthesis system calls the functional
retrieval system and retrieves similar modules.

The functional retrieval system returns the name of the similar
module (c), its logical formula (d), the logical formula of
conditions under which the two agree (e}, and the program (f).

1c ¥Yoshidza, Moaule Retrieval

(5) wiewing (f), the user determines it to be usable, modifies the
program (f) based on (e}, and obtains the program (g).

(Y The semi-automatic synthesis system stores the generated module
inte the librarvy.

The user then repezts this cycle, if necessary, for further
refinement (gencrating auxiliary modules).

6. CONCLUSION

This paper presented a method for retrieving reusable software
modules by verifying the esuivalence of first-crder predicate
logical formulaze civen as specifications. As long as the
cpecifications are for programming environments that can be
ezipulated by first-crder predicate logical formulze, this methed
czn be applied, regardlecss of the implementation language.

Tris methed is not, however, sufficient to retrieve all modules
having specifications logically eguivalent tn those input by the
user. 1t is alse true that the specificatiorn. of the retrieved
rodules are not always equal to new specifications. This is mainly
because the auxiliary moddles ané the specifications of the data
structure to be operated by them are not referenced when determining
whether two modulss are eguiwvalent. TFor software development,
however, it is desirable to determine the usable modules at the
ezrliest possible stage to promote the reuse of modules, as well as
to enzble retrieval without complete detailed descriptions of the
specifications. Therefore, the objective of this method is not to
verify the logical eguivalence including specifications of the
modules (zuxiliary predicates and data classes) being referenced,
but to find similarities in their "reference formats." The method
ie based on the theory that if the reference formats in
cpecifications are similar, the interfaces based on the proarams
that implement them &sre zlso similar and, therefore, can be easilvy
used. 1In this method, the eguivalence of specifications of
auxiliary predicates is determined solely by how they are called and
how parameters are given. The recursive egquivalence is determined
solely by the format of recursive call without using mathematical
induction on the data structure. Using this method, a software
designer can use any part of the reusable modules at each step of
the stepwise refinement. The designer can alse further refine
unusable parts.

ACENOWLEDGMENTS

This study was part of the fifth generation computer project. We
would like o thank Tnetitute for New Gereration Ccmputer Technolegy
for giving us the opportunity to conduct thig =tady.

wWe would also like to thank Professcr Enomnfo (current
Ssuperintendent of the International Infermaticn Secirty Institute},
rzsistant Professor Yonezaki, and Assistant Sazeki of Tokyo Institute
of Technology for their valuable guicdance on TELL.

11 Yoshida, Module Retrieval

REFERENCES
Chang C, et al. Symbolic logic and mechanical theorem proving,
Academic Press, U.S.A. 18973,

Enomoto H, et al. Natural language based software development
system tell, ICOT TR-067, Tokyo, 1984,

Sugimote M, et al. Design concept for software development
consulation system, ICOT TR-071, Tokyo, 1984.

