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ABSTRACT

This paper describes a methoed for reasoning about a system deseribed in Quantifier
Free Temporal Logic (QFTL). Propositinal Temporal Logic is complete and the formulas
are represeted in the form of w- graph which is semantically eguivalent to the formulas.
We extend the concept to the formulas of QFTL and the mechanical theorem proving
method is proposed. QFTL iz a subsystem of Temporal Predicate Logic which contains free
variables and not contain quantifiers Basic idea of a mecharnical thecrem proving methed is
to construct the w- graph which is semantically equivalent to the formuls, and check the
emptiness of the graph, It i2 a refutation procedure. Failure of making such a model verifies
the unsatisfiability of the formula. However, this procedure is incomplete , which is due to
the incompleteness of QFTL.,
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1. INTRODUCTION

Temporal Logic [MP) is an extension of first order logic to include a notion of time. It
is a branch of modal logic [HC], the relation between worlds is considered as a temporal one.
And it is an appropriate methodology to deal with the logical description and reasoning on
time.

In the usual temporal framework, some temporal operators are used, whose intuitiopal
meanings are as follows :
0P (always P) : P is true in all future instants
<P (eventually P) : P is true in some future instant
oF {next P) : P is true in the next insiant

There are a lot of applications of Temporal Logic in bardware description of dynamical
systems and concurrent programs, for instance, on the verification of fairpess,eventuality,
invariance, termipation and so on.

However, they mainly treat Propositional Temporal Logic (PTL) and do not treat
Temporal Predicate Logic since the logic is awfully complicated. Especially, there are
few researches on the mechanical reasoning method. But the introduction of variables and
function symbols can extend the expressive power and also remove the annoyance of writing
many similar formulas.

In this paper, PTL is extended to that including free variables and function symbols. We
call it Quantifier Free Temporal Logic (QFTL) . In QFTL, as for individual variables, only
free variables are permitted syntactically. And they are interpreted as umiversally bound.
Therefore, P(z) where z is a variable denotes that P(z) is true for all z.

A mechanical ressoning method called w- graphs refutation is proposed with which
unsatisfability of the (set of) formulas can be checked by means of the w-graph. An w-graph
is introduced a model which is semantically equivalent to the formula of PTL and from it
an W- automaton can be defined. In QFTL, w-graph is a kind of model scheme, which is
also semantically equivalent to the formula. This algorithm is sound but incomplete. It is
because of the incompleteness of QFTL. We will show it by esimulating Turing Machine in
QFTL and using the unsolvability of the halting problem.



2. PRELIMINARIES
2-1 PTL
At first, we will define a syntax and semantics of PTL. Formulas are defined as follows

(i) an atomic formula {i.e. a propositinal variable)

(i) P, PV @ FnNQ, PoOQP = @
where P and @ are formulas

(iii) 0P, oP, 0P where Pisa formula

Axiomatic system is defined as follolws :

Axioms
Al o 2@ 2P D o)
A2 pPOPF
A3 o-P = -oF

A4 ofP D Q) D {oP D oQ)
A5 ©oPF D oFf

A6 ©OP D ooP

AT olP D oP) D (P D DP)

Inference rules

R1 (PL tautology)
P is an instanee of a tautelogy in PL

P

R2 (modus ponens)
P_PDQ

e

R3 (necessity)
P_
oP

|Definition 2.1
A formula which does not contain 0, ¢, © as symbols is said to be a semi-atomic-formula
and abbreviated by SAF.

Semantics is given based on Kripke model. [Kripke]

[Definition 2.2]

(1} A complete assignment for I” is a function whick assigns a truth vaiue (T or F) to
every propesitinal variable of P

(2) A mode! M for P is an infinits requence of compiete assignments

M= HUJKIIKEJ
and M; is a shifted sequence of M ;
M;=K; Kiq1, -

We defipe truth valus assignment in the wsaul way. Let @ be a subformula of P, and
M be a model M = Kg, Ky, .... We define K; as assigning either T or ¥ to @, inductively.
If @ is propositinal variable, @ has already been defined. ~@ is assigned T (F) if and only
if @ is assigned F (T) Q A R is assigned T if both @ and R are assigned T, otherwise it is

2



assigned F. OQ is assigned T by K, if every K, {7 >1) assigns T to Q; otherwise it is assigned
F. 0Q is assigned T(F) by K; if and only if Ky, assigns T(F) to @. We define @ vV R as
(=@ AP}, @ 2 Ras~(@ A -R) and 2@ as 0.

2-2 QFTL
QFTL is an extension of PTL to include free variables. All free variables are interpreted
to be bound by universal quantifiers, which means that a formula P(z) implicitely indicates

vzP(z). QFTL has more expressive power than PTL. Besides, it is easy to apply it to
mechanical proving, since it has neither local variables nor existential quantifiers.

In this case, a concept of term is introduced.
(i} an individual variable
(i} f(ty,....,tn) ~where f is a function symbol and ¢,, ..., ¢, are terms
An atomic formula is defined in the form of p(t;,...,ts) where p 13 a function symbol and
ty,...,tn are terms

Formulas of QFTL are defined as same as that of PTL.

Uzually a model structure is defined by a non-empty demain and aszsignments to the
individual variables and to the predicate symbols. We take the Herbrand Universe (N) as a
non-empty domain.

[Definition 2.3]
For a given formula P and its X, a complete assignment for P in X is defined az a function

to every n-adic function symbel of P we assign a mapping from ¥ to ¥

to every n-adic predicate symbol of P
we azsign a fet of ordered n-tuples of members in X
(Asz for constants, since we have the same symbels in 4, we assign them, respec-
tively.)

Model and shifted model are defined similarly with the case of PTL.

Let @ be a subformula of P, and let M be a model M = Ky, Ky, .... We define K;
as assigning either T or F, inductively. If @ is an n-adic atemic formula p(a;,...,6,) where
dy,..., @, are elements of ¥, and if ¢ is the set of ordered n-tuples K assigns to p, then @ is
assigned T by K, if a1, ...,8n € ¢ ; otherwize @ is assigned F, Assume that @, R are formulas
which contain no variables. The assignment of =@, @ A R, 0@ and 0@ 15 defined as same
as that in PTL. If P(zy,...,2.) is a formula which contains variables z3, ..., Zn, P(Z1, .., 2n)
is assigned T if and only if Pla;, ..., 0s) is assigned T for all 0y, ...,8, in ¥,

Note that all variables in P are interpreted as global ones. Namely, a variable has a
uniform interpretation over P,

2-3 Provability and consistency

[Definition 2.4]

In general, for a formal system A,

(1) We eall the finite sequence of formulas in the systern A & proof such that, each of
which is either axiom or the conclusion of an inference rule whose hypothezes procede
that formula.

(2) If P is the last formula in a praof, we call the proel a proof of F.
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(3) If there is a proof of P in A, then P is provable, in A and denoted by +—4 P. When no
confusion results, we cmit the subscript A.

(4) P is consistent iff not [—4 2P.

(5) A finite set of formulas {F}, ., P,} is consistent iff not |—4~{Py A ... A ).

{6) An infinite set K of formulas is consistent iff no finite subset of K' is consistent.

(7) A formula(set) is inconsistent Iff it is not consistent.

2-4 Satisfiability and validity

[Definition 2.5]
For a formula P of a formal system A and a model
M= KU! Hll L]
(1) P is said to be true(false) in M if P is assigned T{F) by K.
(2) If Pistrue in a model M, we say that M satisfies P, and denote it by M = P,
(3) P is satisfiable if there exists a model which satisfies P.
(4) P iz unsatisfiable if it is not satisfiable
(5) P is valid if it is true in every model and we write =P



3. PTL AND w- GRAPH

An w-graph is introduced in order to give a graph representation of a formula of
Temperal Logic[FST]. To simplify the problem, at first we will consider formulas of PTL.
A formula of PTL is decomposed into a sequence of formulas each of which holds at each
instant. An (- graph represents a behavior on time of the formula. It is shown later that
an w- regular automaton equivalent to the formula can be define from the w- graph.

3-1 Decomposition rule

When a formula P in PTL is given, it is transformed into the logically equivalent form
of W ;(A; A OF;) where A; is a SAF. It is according to the {ollowing decomposition rule
based essentially upon the tableau methods[Wolper].

oP =P pooP ;, oF =»FPV ooP

[Definition 3.1]
When a formula P is decompozed into the form of V' [(A; A 0B,}, B, is said to be a
state, and A, & label to a state B;. And P is said to be an initial state.

Furthermore, two special vectors as flags are added to each state. These vectors are
called r-vector and h-vector both of which guarantee the realization of eventualities. r-vector
indicates the current realization of positive eventualities, and h-vector indicates the history
of realization. Each vector consists of k elements where k is a number of positive eventualities
appearing in the given fermula P, and each element has a value of 1 or 0.

Each state is in the form of {;r, h] where I iz a formula, r, h are r-vector and h-vector,
respectively. It is said to be a state-with-condition.

|Definition 3.2]

A formula P is converted into the logically equivalent form P’ by eliminating 2, =
and removing - to the innermost position. Let o@ be a subformula of F'. If ©Q does not
bave = on the immediate ghead, @ is 2aid to be a positive eventuality. If @ is true at a
state, it is said that this eventuality is realized at a state

For example, assume a formula (¢P 3 o(@ A ~oR)) vV ~0F which is equivalent to
o-P v ¢(@ A ~¢R) Vv ¢85, ¢(@ A ~oR) and o-5 are positive eventualities.

The values of r-vector and h-veclor are formally defined as follows.

(1) r-veetar r=(ry, ... Fy)
(i) r; = 0(1 <VWi<k) for the initial state
(ii) If B does not include 2 F; at a subformula, then r; =1
{iii) It B inculdes ©F; as a subformula
if ©F; is realized at the state, then r, == 1,
otherwise, r;, =10
(2) h-vector k= (hy,..., As)
(i) hy = 01 <Wi<k) for the initial state
(i) Ifr; =1,then h; =1
(iii) If r¢ = 0, hy is defined according to the h-vector {(A},... AL} of the preceding state-
with-condition
if Y =0or k= l{1ZVj<k), then by =0
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otherwise, h; = 1.

We will show an example of decomposition of Do P A Do@ with these vectors. [O0FP A 00@;(0,0),(0,0)]
=={P A @ A OlooP A D0Q;(1,1),(1,1)]}
v {P A ojooP A po@;(1,0),(1,0)}
v {@ A oloeP A oe@;(0,1),(0,1)]}
v {o[oeP A oo@;(0,0},(0,0)]}
Assume that the element of h-vector corresponding to the ¢F; is 0. Then, by the definition
of h-vector, F; is not realized yet at the state. Therefore, the following condition should
be satisfied :
HIB;r, B O oF;
Iz the above example, the following conditions must be satisfied :
-ooP A 00@,;(1,0),(1,0)] D oF
[ooP A 0o@;(0,1),{0,1)] D o@
HloeP A we@;(0,0),(0,0)] 2 ¢F A 0@

3-2 w- graph

An - graph is a finite digraph whose nodes corresponds to the states-with-condition
and edges to the labels. It is constructed as follows.
Construetion of an (- graph

(1) Create a node corresponding to the initial state-with-condition. We call it an initial
node.

(2) According to the decomposition rule, transfrom P into the form of V {A: A OBi).
If there exists the node N; corresponding to the state with a condition [B;;r, k], make the
edge labeled by A;. If not, make a new node with the edge labeled by A;.

(3) Take each node N; as an initial node and execute the above procedure (2).

This procedure terminates in a finite time, since there appear a finite number of states with
a condition, The - graph of DoF A tioQ is shown in the Fig L.

[Definition 3.3]

(1) For a sequence {Ng, Ny, ..., N} of nodes of an w- graph where Ng is an initial
node, and there exists an edge from N; te N4, directly, the sequence is said to be a path
of length m. (m might be infinite)

(2) I all the elements of the h-vector of a node are 1, then the node is said to be an
w-pode, otherwise, it is said to be a t-node.

3-3 Fundamental theorem
Next, we will show a correspondance between an w- graph and the formal system of
PTL.

[Lemma 3.1 _
For any formula P in PTL,
P = v Ao0mB)
where A; =g A oly A . A 0™ ey (each Iy is a SAF), B; is a formula and m is finite.

Proof) If P is decomposed m times according to the decomposition rule, it is denoted by
the finite disjunction of the paths of length m to the graph. If we relate A; to the path and
B, to the state, the lemma holds.

[Lemma 3.2}
If P is consistent, there exists formulas @, R which satisfiy the following condition.
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) F@ AO™R D P
(i) @, 00 R are consistent formulas and m is finite
where @ = go AOgi A .. A O™ g (gi is SAF)

Froof)

Let all the states which appear through the decomposition of P be {¥;,v2,..., @}
If we assume ¢ = 1 A @2 A - A %a, then it is trivial, then (P 2 Op If we assme
that j=-00p,; {1 <¥i<n), then = A J_, "o, holds. Therefore, P 2 Dp A o0y,
D folze. It means that P is inconsistent, which is a contradiction. Thus, there exists
£ such that Doy, is consistent. 'We can take R as p,. Furthermore, let (g, 91, ..., Qm—1)
be the path which reaches the node corresponding to @, then @ is consistent. Moreover,
@ A o™R O P holds from the lemma 3.1.

From lamma 3.2, P is consistent, there exists a path which visits some node infinitely
often on the corresponding automaton.

[Theorem 3.1] (Fundamental Theorem)
If a formula P is consistent, there exists a path which visits an w- node infinitely often
on the eorresponding fo- graph.

Froof) Assume that all the paths that satisfy the condition of the lemma 3.2 visit @ - nodes
only finite times. From the lemma 3.2, there exists By such that DoBy is consistent. Let
oF be the pesitive eventuality whose corresponding element of h-vecior keeps 0 after some
time, then |-By D oF, it required. Therefore Do F; is consistent, namely, not ~on-F;.
On the other hand, F is pot realized, since the value of h-vector is always 0, which indicates
that |-©¢0-F holds. This is a contradiction. Hence, there exists a path which satisfies the
condition. '

In the lollowing discussion, it i= thown that an w- avtematen an be defined based on
the w- graph, and that there exists a one to cne correspondance between PTL and the class
of the w- regular language accpted by the w- automaton,

3-4 w- automata

An w-regular automaton [MacNauton, CGJis an automaton managing the infinite length
words over the input alphabet, while a usual one treats finite length words.

|Definition 3.4]

(1) An w-regular automaton is a five tuple (5, X, 6,5, F); S is a finite set of states, I
is a finite input alphabet, § is the transitive function from § + & to 2%, §; in § is the
initial state, and F', which is a subset of 29 is the set of designated state sets. And the
language accepted by this automaton is said to be an w-regular language.

(2) Let!bean input word (sequence) ; I = I17Z 45, € ¥ where ¢; € Z(¥i>1), and In{l)
be the set of all states the automaton enters infinitely many times in reading the input
word. The word [ is accepted by the automaton iff IH € F;In(l)(VH=¢. We call a
member of F' a final state.

{3) For the above {, we denote by [, the shifted word [sequence) I, = M5, 8.

For an w- graph, let 5§ be a set of nodes. X be an input alphabet, S; be an initial node,



and § be a set of function euch that N; = [;N; where {;; is a label of the are from the
node N; to the node N;. And let F be a set of - nodes, then < 5,1, 5,6 F > is an
w- automaton.

3-5 Canonical model

The completeness of PTL is proved, for example, by Wolper based upon tableau
methods [Wolper]. We will show the completeness of FTL based upon the Henkin's proof
of the completeness of first order logic. The basic idea in Henkin's proof is to costruct a
maximal consistent zet for any consistent formula and show that it can determine the truth
walue of the formula. As for PTL, we will construct a caoonical set, namely, a system of

maximal consistent sets.

|Definition 3.5

f1) For a consistent set §, il §{J{P} is inconsistent for any formula P not in 5, S is said
to be 8 maximal copsistent set and abbreviated by MCS.

{2) Let Gy, Gg be MCS's, For any formula P, if ©F is in Gy il P is included in Gz, G2
is said to be a successor of Gy,

{Definition 3.6}

{1) A sequence of MCS's M* = Ky, Ky, K3, ... which satisfies the following conditions
is zaid to be a capomical set :

[T} For sny #(¢+ >0), K4 is a successor of K.

[H] If «P € K, Lior there exists K,(j>1) such that P € K.

{2)We will construct a canonical set starting from P similarly to the methed in [HC] .
But it is insufficient only to construct a sequence of MCS’s. We need the condition [I1] since
the sequence might include a set which is not & model. It is essentially because an axiomatic
gystem of PTL includes an inductio: on time as an axiom AT.

(3) For a canonical et M* = jz defined as follows :
M*e P iff PEKq

[Theorem 3.2)
A canoopical set M* iz 3 model, that is, =, is equivalent to = defined in section 2.

Proof)
(i) If P iz a propositional variable, it is trivial from the defipition.

(i1} If we assume M" » ,~P, then =P € Ky holds from the definition. Since Ky is consistent,
not M* =,P. On the other hand, .| we assume not M" =.P, then P € Ky. Since Ky is
maximal, -F & Ky. Therefore, M* + .—F helds.

(iii) If we assume M*® =, P v @, they F W Q€ Ky Sicee Kp is maximal, either P € Ko
or @ € Ky holds. {Suppose P € K, and € & Ko, ther ~F € K and ~Q € Ky since Ky
is maximal. It means Ky iz inconsistent.) Thus, either M® =, P or M" ».Q hold: by the
induetion hypothesis. The only if part can be proved in the same way.

(iv) If we assume M* =,0P, then 0P £ Ky holds. Then P € K by the condition [I}.
Therefore M7] =.FP. The only if part can be proved in the same viuy.

(v) ¥ we assume M™ =,0P, then OF £ K. Sioce Kp is maximal, 0'P € Kg(vi=0).
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Therefore, since P € K,(Vi>>0) by the condition [I, M} =.P holds. On the other hand,
if we assume not M* = 0P, OP g K. Since Ky is maximal, -0P[ = o-P) € K.
Then there exists K;{7>1) such that -P € K; by the condition {II]. Since K; is consistent,
P g K; . Thus, there exists j such that not M; =.P holds.

From the above discussions, M* is a model . 1

3-6 Completeness

[Theorem 3.3]
If a formula P iz consistent, there exists a model which satisfles P.

Froof] The given formula is decomposed into the sequence of consistent formulas (Fg, Py, ..., P, ..

where 0o P, i consiztent by the lemma ... Let {; be the label from F0<i<m) to Py ,.
At each step, formulag are given in some enumeration. The procedure is divided into 2 steps.

(Step 1) We will construct MCS of SAF's {or each ¢ independently by taking {};} as an initial
set.

(1) 87 = {l}

{2) For the k-th formula ay,

g1 — Stl{ax} (if 5% |J{as} is consistent)
' FU{es} (otherwise)

(3) 8 = U* 5%
Finally we can get a sequence (=, 5z, .., Sn, ..., Sm). It is extended to an inifinite sequence
B= [Sll S!J rreg 'S'l-l L] Sm, Sﬂ-: eeg II'r:"'ll"l"ir s!l-p ]
The above B is said to be a basic structure, B; denotes the é-shilted sequence {5}, Sisq,...)
of B.

|Definition 3.5]
For a basic structure B of a consistent formula P, if there exists a path { = (lp, {;, ...} in the
- graph of P that satisfies the following condition, it iz said that | iz deduced from B and
denoted by Bi—L

(i) the path visists - node infinitely often

(ii) K U} is consistent for any 1.

{Step 2) Next we will add any other formula according to the foliowing rule.
(1) K®=&;
(2) For the k-th formula 5,
K1 ={H: U{BAe} (Bt}
' K} U-{8:} (otherwise)
(3) K = U K

By the above procedure, M" = (K, K3,...) can be gotten.

[Theorem 3.4]
M* iz a canonical set

Froof) It is trivial that K; is MCS for any ¢ As for the condition [I], it is shown that
oF € K iff P € K4y for any P 15 satisfied in the follwing way. If we assume there
exists a formula P such that oF € K; and F & K, bold. Then not B, ,}-P. Therefore,
not B,—oP, which means P € K,41. It is a contradiction. The only if part can be shown

9
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in the same way. Furthermore, by the procedure of (Step 2), for any formula, either of
eventualities of a nor —a i3 realized at some K;. Hence, the condition (II) is satisfied. i

[Thecrem 3.5] (Soundness)
If |- P, them =P.

Proof) It is proved inductively on the structure of P. If P is an axiom, it is trivially
valid. Assume that @ is deduced by P, =P = @. From the induction hypothesis,
=P, =P 3 Q. Therefore, =@ is satisfied by the induction. As for R3, it is proved

similarly.

[Theorem 3.6} {Completeness)
P iff =P

Proof) It is clear from the theorem 3.4 and 3.5.

Note that compactness theorem fails, while completeness theorem holds in PTL. Consider
the infinite et of formulas § = {¢=P, P,oF,c0P,.....}. Every subset of § has a model,
but § doesn’t have a model.

3-7T PTL and w- regular language

We will show that a formula of PTL is semantically equivalent to the language accepted
by the corresponding - automaton.

[Theorem 3.7]
MeP iff INel(d,) M=l
where L{A,) denotes the set of languages accepted by the w- automaton correspond-

ing to P
Proof)
(1) (=+) From the lemma 3.1, P = V [‘m(A; A 0™B;). Suppose m = 1, then
P = v ™M (A AoB,). Since M =P, there exists i such that M = 0B, holds. Therefore

M =A; and M =0BH,. Since it is satisfied with respect to any B;, M; = [; holds for any 1.
If we assume | = (lp, Iy, ...), then M w1, | € L(A;) bolds.

(&) From the fundamental theorem, there exists ! such that -l O P. From the
completeness of PTL, =1 2 P. Thus, if M =i, then M =F. |

Fundamental thecrem iz corresponding to the fact that the class of W- regelar language
is represented by the Kleene closure |J7_, A;BY (where A, B, are regular expressions). A
path it represented as I; A Olz A . A O™a A O™F00L 4y

Furthermore, P = Y fﬂlﬂ (where N i finite; holds. Therefore the following
correspondance hold between formula:z in PTL and w- regular [anguage.

cP == L L(Ag)

oP == L L{A;)

P AQ == LIA; N L{A;)
- P <= I¥ — L(A,)
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4 QFTL
4-1 QFTL and w- graphs

We will extend the concept of w- graph to that for QFTL defined before. As for the
formulas of QF TL, w- graph is a kind of model schme which is also semantically equivalent
to the formula.

|Theorem 4.1]
MePlz) iff MeAyy

M e Ay denotes that there exists {(z) € L{Ay)) which is true in the model M

Proof)

For apy a in X, left-hide-side of the formula says that P(a) is true in the model M
and right-hand-side means that there exists {{a) in L{Ag(s)), which is true in the model M.
Therefore it is sufficient to prove the following condition for any a € ¥ ;

M = Pls) iff 3lla) € L{Als)) s.t. M =1(a)

Since FP(a) and {[a) are propositional, it indicates that the theorem iz reduced to PTL.
]

4-% w-graphs refutation

A finite refutation procedure called w-graphs refufation is proposed. It is a procedure
to check whether or not a (finite) set of formulas { P, Fy, ..., P} is unsatisfiable by means of
w-graphe. It is analogous to a resolution principle in frst order logic. w-graphs correspond to
clauses. Similar to the resolution principle, we repeat a procedure to generate resalvents from
the set. We select an appropriate substitution to cut arcs in w-graph, that is, to make arcs
to include a complementary pair as a result of making the product of those graphs, which
corresponds to finding a most geoeral unifier. It is a useful metbed since basically we have
only to find a substitution to cut arcs. If ¢ (i.e. the lapguage accepted by the automaton
is empty) is generated, it is unsatisfiable. However, different from the resolution principle,
it doesn't always generate ¢ from an unsatisfiable set. It is due to the incompleteness of
QFTL, showo later,

Let {1 be an w-graph and & be a substitution, then {lo denotes the w- graph obtained
from 0 by applying a substitution o.

|Definition 4.1]

Let (14, (17 be two w-graphs with no variables in common, and &y, o2 are some substitu-
tions. If {13 be the product w-graph [FST] of (3o and {lzoz is (5 (13 is said to be the
resolvent w-graph of [1; and (1.

Mote that if we assume that o), o2 are some substitutions and that £y, {12 are the graphs
corresponding to the formulas Py, Pars, respectively, then the resolvent w-graph of £1; and
{1z corresponds to the formula of Pyoy A FPaoa.

The algerithm is as follows :
w-graphs refutation

For a (finite) set of formulas {Fy, Py, ..., P},
{1) make an w-graph {}; corresponding to F; for
each i (1<i<n) and let the set be

11



Sg = {1y, 11z, ..., (1.}
[2) let § = 55
{3) select two w-graphs {1; and {}; (1<¢,7<n)
(4) rename the variables so that {}; and {1; do not
bave variables in common
(5) Ter [); and {1y, find appropriate substitutions
o, 05, to cut arcs, respectively
(6) let the resolvent w-graph of {1,y and {105 be {i
(7)if 0 is ¢, then stop
it is unsatisfiable ;
otherwise, let § be § | {01}
(8) go to (3)

For example, consider the unsatisfiability of the following formula of QFTL

o(P(z) O oP(fiz))) A Fls) A O-FP(f(fla)))
We will do the refutation procedure on the set of formulas.

{o(P(z) D cP(f(z))), PFla), o-P{f(f(a))]}
Let each formula be Fy, Fa, and Fa, respectively. At first we will construct the w-graph
{1y, (12, and N3 corresponding to Fy, Fa and Fy, respectively (Fig 2.1}, Second, we construct
the w-graph 0;; by substituting o for z in F;. The resovent w- graph of 0,; N0 N0,
(Fig 2.2) is not empty. Next, we construct the w-graph {132 by substituting f(s) for z in
Fy, and make the resolvent w-graph of {3y, 012N 02M 05 (Fig 2.3). Since this graph is
empty, the given formula is unsatisfiable.

4-3 Turing Machine

As for QFTL, the completeness theorem fails. We will show it by using the concept of
Turing Machine(TM).

TM is defined in various ways. lo thiz paper, we will consider the deterministic TM
together with two tapes, an input tape and an oulput tape, either of whizh has the left end
and no right end. Initially all the squares of the cutput tape contain 0. 1/0 format consists
of string of 1's. The string of 1's of length n -+ 1 denotes the integer n. At each instance,
TM does the following behaviors with its two heads, read head and write head.

(1) read the symbol from the input tape

(2) write the symbol on the output tape

(3) move both heads

TM is formally defined as the 5-tuples
TM = (A, 5,Q, 5, H) where
A : a finite nonempty subset of tape symbols
5 : a finite nonempty subset of states
@ : & finite nopempty subset of rules of action written in the form :
{qlalr”?} -+ {q’ragrdhdib
where g, ¢ € § are a present state and a new state of TM, respectively. #,,8; are
present recognized symbols of the I/O tape, respectively. % is a new symbol of
the output tape. 4y,d; denoles the direction in which the read/write head moves,
respectively. It takes the value either of L(left}, Riright) ar §(still}. S5 € 5§ denotes
the start state and Hf © 5 is a set of final states.

4-4 Simulation of the behavior of TM in QFTL

12



We will simulate the behavior of TM in QFTL. For example, we will consider the TM
which computes the function f(n) = n 4 1.
A=1{1,0}, S=1{9.91.G2,93}
So=qo, H = {m}

< 2,00> — <q,0LL> (1}

_ ‘:QI-LD:”’ -+ <q2I1ISJL} {2]
= <@10> - <@LLL> ()
{*J"hn:n} - {qﬁlulsrs = (d]

These rules are represented in QFTL.
(1) o{(Qe A Fu(u) A Ni(u) A Pz(v) A Na(v))
D 0(@; A Pi{u+ 1) A Pav+ 1) A Na(v + 1)}
(2) o{(@1 A Pi(u) A Ey(u) A Palv) A Na(v))
D o(@a A Py(u) A Falv+ 1) A Ealv 4+ 1)}
(3) 0{(@z2 A Pi(u) A Ey(u) A Pa(v) A Na(v))
D o(@2 AP {u+ 1) A Palv+ 1) A Ea(v+ 1)}
(4)0{(Qaz A Pi(u) A Ny(u) A Py{v) A Nz(v))
D o(@s A Pi(u) A Falv) A Na(v + 1)}
where Qg, @1, @2, @2 mean that the states of TM are qp, g1, 42, g, respectively. Py(u), Pz(u)
denote that read/write head point the u-th square of the 1/O tape, respectively. Ej(u), Ez(u)
denote that the symbol in the square of I/O tape are 1, and Ny(u), N2(u) dencte 0, respec-
tively.

Furthermore, the rules of action implicitely mean that if oeither of the lefi-hand-sides
of (1) ~(4) is satisfied, TM halts at the state @s. We describe it in QFTL, too. (It iz trivial
that we can.) Conjunction of the rules is denoted by D Initial condition [ can also be
described. For example, n = 2, it is given as follows.

Nila) A Ey(a+ 1) A Ey{a+2) A Eyla+3)

A Ny(a -+ 4) A Na(v) A Qo A Pi(a) A Py(b)
where a, b are constants.

A part of frame axioms F* are determined as follows,

OQaV Qi VQaV Q]
o] Ny(z) v Ey(z)]
0| Na(z) v Ez(z)]
Moreover, mutual exclusions (e.g. =(@a A @1) ) must be added.

At lazt TM can be represented by D A F A T,
4.5 Ineempleteness of QFTL

[Theorem 4.1] (halting problem of TM)
For any input w and any TM, there is no algorithm to determine whether or not TM
will eventually halt.

As ig well known, the halting problem of TM is unselvable. It is reduced to the
unsatisfiability problem of QFTL, that is, the condition that TM will eventually halt is
represented by the following QFTL eentence :

DaF AT A-8Qa is unsatisfiahle
and the condition that TM will not halt forever is represented as :

13



DA F AT A -0O-Q; is unsatisfiable
[Theorem 6.2] QFTL is incomplete

Proof} Since we define TM as a deterministic one, there 15 a unique state of the w-graph
corresponding the formula D A F A [ at an instance £ . Let 5 be the set of models which
satisfy D A F' A L. Then, either (1) VM € 5, M = 0Qs, or (i) YM €5, M ==D=Q, iz
satiefied. Therefore, either of the followinge holds,
VM€ S,
MeDAF AT AN-0Q, (1)
YMES,
MeDMAF AT A -OQa (2)
For any model M, 2.t. M & S, both of the above (1) and (2) hold. Thus,
mDAF AT A -0Q; 15 unsatisfiable
or =D AF AT A -O0-@; is unsatisfiable
bolds. Assume that QFTL is complete, then
(DA F oA T A —oQ;) is provable
or (DA F AT A ~D-0Q;) is provable
holds. It means that there exists a finite procedure for determining whether TM will halt or
not. It does pot depend on the input, and apy TM is described in QFTL similarly. Therefore
the halting problem of TM is solvable, which iz a contradiction. Thus, QFTL is incomplete.
I

It follows that tne.< are ne decision procedure for unsatisfiability of the formula in
QFTL.

14



5. CONCLUDING REMARKS

5-1 Conclusion

The reasoning method called “ w-graphs refutation” which can check unsatisfiability
of the QFTL formulas is presented. An w-graph is proposed as a tool by which mechani-
cal reasoning is done and it is shown that there exizis semantically equivalence between
QFTL formula and the w-regular language accepted by the w-regular automaton (w-graph)
corresponding to the formula. Termination of the w-graphs refutation iz equivalent to the
provability. However, the algorithm is nct complete. It is due to the incompleteness of
QFTL.

5-2 Additional discussions

Although QFTL iz incomplete, we can consideer some significant axiomatic systems.
For example, the following sytems 7 and 7' can be defined. In these systems, a sentence in
the form of P(z)—>@{y) is treated, which menas VzP(z) 2 Yy@Q(y)>

The Axiomatic System 7

Axioms
FAl (instantiation)
P(z) —= P(t;) A Plta)
where t,,t; are terms not appearing in P

Inference rules

FR1 (PTL tautology)
P O @ is an instance of & tavtology in PTL

P—@Q

FR2 (modus ponens)
P—>Q @Q—>R
P—->R

7 bas the same power with w- graphs refutation, which means that a formula is provable
in 7 iff ¢ is generated by the tw- graphs refutation. 7 is a weaker system in which the
following formula cannot be proved :

R(z,y) = 0C(u,v) A {oL(z, f{y)) A o(P(z) A O0-P(f(y))) }

where
Clu,v) = L{u, fu)) A {L{u,v) 2 L{u, f{v)) }
Ao L{u,w) 2 L{f{u), flv]) } A ~L{u,u)
7' is an extended system by adding to 7 the inference rule of induction such
Ak o

FR3 (lnduction)

P—> 0oF
P—= 0P

We will illustrate the proof of the above formula in 7.
Proof) Let Q(z,y) be o[P(z) A o-~P(f(y))).
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We will show a sketch of the proof
b @z,y) = | P(z) A 2-P(fly)) ] v 0@z, v)
- @Ufy), fl2))

—=> [P(f(y)) A o-Q(f%(2))] v 0@(f(¥), J(2))

Therefore,

7 @z, ¥) A Q(f(w), f(2))
—>0Q(z,¥) v o@(f(y), f(z)) (1)
On the other hand, since
b7 0Q(f(y), f(z)) —> ool P(f(y) A C-P(f3(2)}],
= 0Q(f(y), f(2)) —> 0o P(f(y)) hoids.
Therefore,
=z 0Q(f(y), () A @z, y) —> coP(f(y)) A oQ(z,y),
which indicates
g 0Q(fly), fl2)) A Qlz, y)}—> 0Q(z,y) -(2)
From (1) and (2},
b7 @(z,9) A 0Q(f(y), S(2)) A Qlz,y)
—> | oQ(z,y) vV oR(fly), flz)) ] A Q=,y)
—>|o@Q{z,¥) A @(z,y)] v 0Q(z,y)
~>0Q(z,y)
On the other hand,

7 @z, ¥) — @z,¥) A QUIW), J(2) A Qlz,9).

Therefore, |—7 Q(z,4)—=0@Q(z,v).
Applying FR3, we get |7 Q(z,y)—>0Q(z,v) .
On the other hand,
l=7: 0Q(z,y} —> oo(P(z)o-P(f(y)
—= noPz) A onP(f(y)
—3 false
Therefore, —7 @[z, y}—> false
Thus, |7+ Rz, y)— false holds. 1

It is easily proved that 7' has the same power with Manna's system [MP|, if formulas are
restricted to the type of QFTL. It means that if YzP(z) O vyQ(y) is provable in Manna's
system, then Fz)— Q(y) is provable in 7', and vice versa.

Authers are to improve the w-graphe refutation so that it is equivalent to F'. It means
that if the tentence is deduced by using FR3, we can check it in a finite time by the w-graphe
refutation. For example, the following method can be considered to be adopted. Let 11 be an
w-graph corresponding to the given formula. For a non-final state appearing in the w-graph
of f{ay/z)()-..[1((an/z) and a non-final state in O{ay /) ... [ B(6n41/2), if both of every
pair of arcs connected those states are the products of instantiations of the same formula,
such as P(a;) and P(a;)P(a2), ther ehminete that state from Q{a;/2)[) ... 10641 /2).

ACKNOWLEDGMENT

This research was s.pported by FGCS as a subproject of *Intelligent Programming
System ". The authors would like to thank Dr. Yokoi and Dr. Furukawa for the chance of
this research.

16



REFERENCES

[CG] Cohen,R.S. and Gold,A.Y., “Theory of w-Languages 1: Characterization of w-Context-
Free Languages,” Journal of Computer and System Science, No.15, pp.168-184, 1977,

IFST] Fusacka, A., Sexi, H. and Takahashi, K., “Quantifier Free Temporal Logic and w-
regular Automaton,” a paper of Technical Group on Automata and Languages, pp.69-
79, TGALEB3-62, IECE, Japan, 1984.

[HC] Hughes,G.E. and Cresswell, M.J., “An Introduction to Modal Logic,” Methuen and Co.
Ltd, 1968.

[Kripke] Kripke,5.A., "A Completeness Theorem in Modal Logic,” The Journal of Symbolic
Logic, Vol.24, No.1, March 1969.

[MacNaughton] MacNaughton R., *Testing and Generating Infinite Sequences by a Finite
Automaton,” Informatin and Centrol, Vel.9, pp.521-530, 1986,

{Manna] Manna,Z., *Verification of Sequential Programs : Temporal Axiomatization®
Department of Computer Science, Stanford University, September, 1981,

[MP| Manna,Z. and Pnueli,A., “Verification of Concurrent Programs, Partl ; The Temporal
Framework,”™ Department of Computer Science, Stanford University, June, 1981,

[Wolper] Wolper, L.P., “Synthesis of Communicating Process from Temporal Logic Specifications,”
Department of Computer Science, Stanford University, August 1982,

17



f :4- node [ :initial nede

Fig 1 w- graph of 0oP A 0o



1P{zJ

e O
truz [\I—'P[z} P(f(z)) | Pla)
|

=P(f(f{e)))

e . OO
@i‘) O

Fig 2.1 w-graphs (1,017,113

Pta}ﬁF‘UULa}JV Pla)=F(f(a)}=P(f(f(a))) Pla)-P(f(f(a)))

fnn-ﬂfumt_g e} -Pla)~P(f(f(a))

4 (¢ Kfrix (
N ‘:\"::f"\\__"______,__.f’?\ ) O
P(a)P(f{a))~P(f{f(a)))

P(f(a))~P(f{f{e))]

| ~P(a)P(f(a))P(f(/(a)))

©

-

Fig 2.2 w-graph 07 0211 Fig 2.2 w-graph Oy 1 0:2[102[10a



