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ABSTRACT

We present several representation theorems for logic
programs in terms of formal grammatical formulation. First,
for a given logic program P the notion of the success
language of P is introduced, and based on this language
thecretic characterization of a logic program several types
of representation theorems for logic programs are provided.
Main results include that there effectively exists a fixed
logic program with the property that for any logic program
one can find an equivalent logic program such that iL can be
expressed as a conjunctive formula of a simple program and
the fixed program. Further, by intrcducing the concept of an
extended reverse predicate, it is shown that feor any logic
program there effectively exists an equivalent logic program
which can be expressed as a conjunctive formula consisting of

only extended reverse programs and append programs.



1. Introduction

Since, needless to say the original work of Colmerauer and
Zowalski{[Co 70]1,[Ko 74]), a recent world-wide trend on FGCS
conception has been one of the primary subjects, there are
numerous work on logic programming languages and the theory of
logiec programs. It is well accepted that, among others, the
research on a subset of first-order predicate logic called Horn
clause logic has taken the central position in this area because
of its importance of providing an interesting formal computation
model for a programming language PROLOG. As is well-known, PROLOG,
based on the procedural interpretation to Horn clause leogic, has
an operational semantics determined by the resolution principle.
In the context of the semantics of predicate logic as a program-
ming language van Emden and Howalski ([EK 7€]) have studied on
model-theoretic, operaticnal and fixedpoint semantics of logic
programs, while using a Turing machine formulation Shapiro [ [Sh
84]) has defined and argued a kind of model-theoretic semantics of
logic programs.

In this paper we are concerned with establishing several
representation theorems for "logic programs(Horn clause programs)”
in terms of formal language theoretic formulation. In course of
the formal grammatical treatment of logic programs we introduce
the notion of the success language of a logic program over a
finite alphabet, which turns out to be another way of providing a
model-theoretic semantics for logic programs. Here, by formal
grammars we mean generative grammars of Chomsky, and it should be

remarked that the theory of formal languages(!Sa 73],[Ha 78,[HU



79]) has been well-developed enough in itself to make a lot of
contributions to other research areas such as the theory of logic
programming. This wi-. may be supported, for example, when we
think of the similarity between the refutation process in logic
programs and the derivation steps in context-free grammars, and
note that logic programs can be regarded as a kind of an extention
of context-free grammars. In fact, Shapire investigates the
computational complexity of logic programs using the similarity of
their operational behaviors to those of alternating Turing
machines.([Sh 84])

With the help of an enceding technigue it is shown that cne
can associate a logic program with a formal language (the success
language mentioned above) over a finite alphabet. This leads to a
semantic characterizaticn of logic programs as previously
mentioned, although that is not our primary concern in the
current paper. This kind of semantic approach to logic programs
has been already preceeded by the paper [Yo 85]. It has been
shown that any recursively enumerable language can be specified
as a conjunctive formula of two deterministic leogic programs and
one simple logic program that serves as a mapping on the szet of
words. The work in this paper is motivated by the result above
and extends it to present a variety of the ways of representing
logic programs.

In this paper we present several rep+resentation theorems for
logic progams which assert that there effectively exists a fixed
logic program (we may call it generator program) with the property

that for any logic program cone can find an eguivalent logic



program such that it can be expressed as a conjunctive formula of
a simple program and the fixed program.

Further, by analysing components in the representation
results, it is shown that the "filtering function" serving as a
homomorphism mapping and the "merging function" are sufficiently
primitive in the sense that for any logic program there is an
egquivalent logic program which can be expressed within the use of
combination of these two programs. By introducing the concept of
"extended reverse", it is also proved that for any leogic program
one can find an eguivalent logic program expressed as a conjun-
ctive formula consisting of only "extended reverse" programs and
"append" programs.

This paper is organized as foallows. Section 2 is concerned
with terminolegy, basic notions and results needed through the
paper. In Section 3 several representation theorems for logic
programs are established. Section 4 deals with the problem of
what cperations (predicate) is primitive for the representation
formula obtained in Section 3. Concluding remarks and the future
reseach direction are briefly given in Section 5. Appendix
provides a proof for Lemma 3.4 which i2 used in the text to derive

a representation result of logic programs.

2. Preliminaries

2.1 Formal Grammars and Their Languages

We now introduce a generative device which plays the main



role in all of subseguent sections in this paper.

Definition.

A generative crammar 1s an ordered guadruple G = (N, T, F,

SD} where N and T are disjoint finite alphabets, S5 is in N, ancd F
is a finite set of production rules of the form Q; -> 0O, such
that Q, is a word over the alphabet V = Nvw T and Q4 1s a word
over V containing at least one symbol of N. The elements of N are
called nonterminals and those of T terminals; Sy is called the
initial symbol,

4 word u gencrates directly a word v, in symbols, u=>v, if

and only if there are words u', u", Q,, Q. such that u=u'Qqu",
v=u'Qou", and Qq -> Q; belongs to P. Thus, =» i3 a binary relation

on the set V*lthe set of all words over V including empty word e).

*
We denotes V‘-{e] by v'. Let = be the reflexive, transitive

rlosure of =»*., The language L(G) generated by C is defined by

L{C) = { win T" | S5 =3  w }.

L{G) i=2 called a language over T {ocr on ).

Grammars are, in general, classified by the form of produc-
tion rules, which vields a hierarchy of corresponding language

families.

Definition.

A generative grammar is also called phrase structure grammar,

Let G = (N,T,P,S4) be a phrase structure grammar. Then, G is

called



{i} context-free if each production rule 1is of the form X -» Q,

where ¥ in N, and Q in U*,

{ii) regular if each production rule is of one of the two form
¥-»a or X-»a¥Y, where a in T and X,Y¥ in N, with the possible
exception on the production rule §3 -> e whose occurrence in P

implies that S, does not occur on the right hand side of any rule

El

in P.
Definition.
(1) Let G = (N,T,P,S5) be a context-free grammar with the

property that (i) every rule in P is of the form A -> ax, where A
in M, a in T, x in N ,and (ii)for all A in N, a in T, A->ax and
A-ray in P implies x=y, Then, G is called simple deterministic,
{2) A context-free grammar G = (N,T,F,Sy) is called linear LE P
consists of the rules of the form : A -» uBv, or A -» w, where A,B

in N, v,v,w in T*.

Definition.
Let L be a subset of T* for some alphabet T, and let X be in
{phrase structure, context-free, simple deterministe,linear,

regulart. Then, L is called an X language if L=L{G) for some X

grammar G. Further, a language generated by a phrase structure

grammar is also called recursively enumerable,

Let r » 1 and Tr= {a1,i"1a Further, let Gr = {{Sﬂ}, T, P,

e

Sy} be a context-free grammar, where T=TrkJ{E|a in T.), and P ={

Sg -» Spay8gasSy|icic<rt v (Sy-rel. Then, L(G,) is called the Dyck



language over 7T, and dencted hy =

r

Definition.

Let T be an alphabet. For each a in T, let f(a) be a word
(possibly over a different alphabet from T). Then, let f(e) = e,
Elxy) = filxlfly) (x,¥y in ™). The mapping f is extended to the
power set of T" as follows: for each L over T, £(L) = {f(w)}| w

5 -
in LY. The mapping f is called a homomorphism on T . Let f ke a

homomorphism on T*, and let ¥ bhe the alphabet of the range of f.
Then, a mapping £~ defined by
- . *
for L over K, £ 1{L} = {win T | f{w) in L },

is called the inverse homomerphism ol f.

Definition.,
A homomerphism £ on T is called
(1} a coding if for each a in T, fla) is a symbol,

i2) a weak coding if for e=ach a in T, fla) is either a symbol or the

empty word e,

{3} a weak identity if for each a in T, f£{a) is either the symbol a

itself or the empty word e.

Definition.

A deterministic generalized seguential machine(dgsm) with

accepting states is a &s-tuple A = (0Q,T,D,4,9,,F), where

2 :afinite set of states, T : a finite set of input symbols,
D: a finite set of ocutput symbols, 4 : transition function

from Q » T to Q =« D*, qq * the initial state in Q, and



F : a subset of 0 (a set of final states).

The function 4 is extended to Q =» T* as follows: for g in @, % in
T, ain T,

dig,e) = (g,e),

dig,ax) = (r,v)
where

¥o= WiWa

dlg,al=(p,wy), dlp,x) = (r,w,) for some p in Q, wy, w3 in D",
Let fA be a mapping defined by
falx} = y iff dlgg.x) = (p,y) for some p in F.

The mapping [, so defined is called a dgsm mapping of A,

Notation.
Let T be a finite alphabet. For a word w = a;... a, (n>0) in
1T, the {T)-version w denotes 51---5n. Further, w® denotes the

reverse an- a4 a.l .
2.2 Logic Programs and Their Languages

This subsection introduces the concepts of a logic program
and its aseociated language we shall deal with in the subsequent
sections. We assume the reader to be familiar with the rudiments

of mathematical logic.

Definition



A logic program is a finite set of Horn clauses, which are

universally guantified logical sentences of the form
A o<- By,..., By {n>0) (C)
where the A and the B's are atomic formulae. In the above clause
{C) » is called the clause's head, while B's are called the
clause's body., If n = 0, then we simply donocte it by A instead of
A <-.
Atomic formulae occurring in a logiec program are called

goals. A program is said to be dominated by a goal if the

predicate name of the goal occurs only once as the head of a

clauvse in the program.

[Notational Convention]

(i) We wuse uypper-case letters such as X, ¥, Z for wvariable
symbols and lower-case letters such as x, vy, z for ground terms,
For terms, letters t, 5, r are often used. The boldface versions
like P, Q are used for leogic programs, while normal upper-case
letters like P, Q@ are used for geals, and lower-case letters p,g
foer goal names,

{ii) For a logic program dominated by a goal, we sometimes refer

to the program in terms of the name of the goal. In such a case it

is assumed that the program name is the capital letter P of the

gixal name "p",

Definition.
Let P be a logic program and Q a goal, If there is a refuta-

tion of a goal Q from P, then we say P succeeds on 0, or Q

succeeaeds (in P,




In this paper we are concerned with logiec programs whose data

deomains are finitely generated by a fixed set of symbols.

Definition.

Let P be a logic program. The Herbrand universe of P is the
set of all ground terms constructable from the set of constants ©
and the set of function symbols F occuring in P, and we denote it

by D(F,C). Then, a logic program P is called a logic program over

€ 1if F comprises only one function symbol, and its Herbrand

universe is dencted by D{(C}.

As shown below, any Herbrand universe for a logic program can
be coded in an appropriate manner into the domain D(T) constructed
from socme fixed finite set of symbols T. In other words, any
ground term which possibly appears in a program can be taken as a

word over some finite alphabet T.

Lemma 2.1

There exist a fixed finite set of symbols T and a one-to-one
mapping £ such that for any logic program P with the domain D(F,C)
and for any gozl pPlXy,...,X,) there exist a logic program P' with
the domain D(T) and a goal p'(X) with the property that P succeeds

on plxg,...,x,) iff  P' succeeds on p'(x), where x=£(xq,...,%x.).

n
Proof.
Let 9q+93++.. be an enumeration of all function symols

occurring in D{F,C) of P. (Nocte that a constant k can he taken as

a O-ary function symbol as in k().)



Introduce a mapping ¢ from the set D{F,C) to the set of lists
as follows

for a term t = gi(sq,..0,8,)(m > 0),

clt) = (%,8%,8,c(8,),.uu,cl5,),81.

where "[" and "]" are the list notation ,%.%,8,% are

new symbols, and @i denotes a seguence @,...,8 of i @s,
Further, for an n-tuple of terms (Eyeeeart )y let £ be defined by

fltyseeesty) = flatten(lcl(ty),#,...,#,c(t)]),

where "flatten" is a mapping of flattening lists,

# is a new symbollargument separator).
Define p'(X) as follows :

piiX)c- flat(Xy, . X Ky PIXg e, X)) ——- (Cp)

where flat(X,,...,X,,X) succeeds iff X = P SIS SO F
Further, let P' be P v {Cyl}. Then, it is easily seen that P'
succeeds on p'[f{x1,".,kn}} iff P succeeds on plxy,...,x,) for X3
in D(F,C), Let T = (#,%,%,8,%,NIL}), where NIL denotes empty list,
then D(T) is the set of lists constructed from T and the unique
function symbol of the list constructor. Obviously, this

satisfies the desired conditions. O

Thus, it is sufficient for general discussion to deal with only

logic programs over some fixed finite set.

[Conventions]
("} In what feollows, it may be assumed that (ila logic program

over T has the domain of all lists constructed from 2 finite set

of  constants T, and (ii) otherwise specified, a goal is assumed




to be a l-ary predicate.

(2) As a notation, given finite set of symbols T and a word w =

a; -a on T*Ir the boldface w denotes the list wversion

Logic programs together with goals are classified by the

types of their associated languages.

Definition.

Let P be a logic program over a finite set of symbols T and
2 {=gi{¥X)}) be a goal in P.
{i} A language over T defined by

LiP,Q,T) = { win ¥ | P succeeds on g(w) }

is called the success language of Q@ in P. In this case LI(P,Q,T)

is often dencted by L(P,q,T). If P is dominated by p(X) or a
program "P" is named after the goal name "p", then we simply write

L{P, T} and call it the success language of P.

Further,
(ii} A logic program P is called X if L(P,Q,T)

is an X language for all geal Q in P.

(iii}) Let pl(X,¥) be a goal dominating P, and for = in T*. let
"

Epix) = {y in T P succeeds on plx,;¥) }. Then, a logic progam P

is called

(1) homomorphism if fp is a homomorphism,

(2) {weak) coding if fp is a (weak) coding,

(3) weak identity if fp is a weak identity,



on T*.

Finally,

{iv) Let P and P' be two logic programs over T, and let p(X) and
#'l%) be goals in P, P", respectively. Then P with p(X) and P'

with p'(X) are egquivalent if L(P,p,T) = L(P',p',T).

We end this section with presenting a result showing the
expressive capability of logic programs we are dealing with in

this paper,

It has been shown in literature ([Ta 77]1,[Yo B5]) that for
any recursively enumerable language L over T, there exist a logic
program P over T and a goal Q such that L is the success language
of Q in P. Conversely, it is shown that for any logic program P
over T and a goal Q, the success language L{P,Q,T) is a recursive-
ly enumerable language, which is proved by constructing a Turing
machine simulating the resclution process for Q from P and
accepting the success language of 0 in P ([Sh 84]1). (Note that a
language 1s recursively enumerable if and only if it is accepted

by a Turing machine.}

Hence, we have the following :
Theorem 2.1
The class of success languages of logic programs is egual to

the class of recursively enumerable languages.

1t may be possi:ble to state thalt the success language of a



logic program provides us a kind of model-theoretic semantiecs (or

denntational semantics) f[or logic programs.

3. Representation Theorems

In this section several representation theorems for logic
programs are presented. Most of them are easily obtained from

the corresponding results in formal language theory.

3.1 Generator Programs for Logic Programs

We shall show that there exists a fixed logic program from
which for anv logic program an eguivalent logic program can be
obtained in terms of the composition of simpler logic programs.

such a fixed logic program may be called generator program.

[1] Generator Program R

First we shall show that there exists a fixed simple program
which plays & role of generator for the class of logic programs.
Such a program can be obtained by making a slight modification to

"roeverse" program.

Lemma 3.1

For any recursively enumerable language L over an alphabet T

there exist a simple deterministic language Sp on K'K' (for some

- 13 -



alphabet K including T}, and a weak identity h such that L =
hi{wwF|w in K*} A Sp), where Sp = (x¢d7F| f(x)=y), £ is a degsm
mapping of A = {Q,K.D,d,qD,F} depending on L, h preserves the
alphabet of L and erases other symbols.

iSee Theorem 11 in [ER B0])

Theorem 3.1(Representation Theorem 1)

Let T be a fixed alphabet. Then, there exists a fixed logic
program Ry with the property that for any logic program P over T
with a goal pi(X) one can find an eguivalent logic program P' with
a goal p'(¥) such that it can be expressed by

p'(X) <~ rglX,Y), splY) (3-1)
for some simple deterministic program Sp.

Proof,

From Theorem 2.1 and Lemma 3.1, for any logic program P over
T with a goal p(X) there is a simple deterministic language Sp on
K*f* and a weak identity h such that L(P,p,T) = h({ww® | w in
K*) ~ Sp ), where Sp = {x¢dyF|f(x)=y), f is a dgsm mapping of A =
lQ,H,D,d,qu,F} depending on Li{P,p,T), and hi{a) = a (for all a in
T}, hia) = e {otherwise).

Construct three logic programs so that Mg, Iq, and 5p may
determine the language Hntz{wﬁﬂ; w in K¥}), h, and Sp,
respectively.

(1) Mp is defined as follows :
MplX) €= ml(s,,%X,[])
mi{s,,[2[X],¥) ¢- mif{s,,X,[a|¥]) (for all a in K)

mi(s,,[a|X],Y) «- mi{s,,[a]|X],¥) (for all a in X)



miis,, [1,0]1)

miis,,[alx],[al¥]) <- mi{s,,X,¥) (for ell a in K)
Clearly Mg determines the mirror image language, 1.¢&

-r

L(Mp, KV E) = wal | win X'},

(2) 1 is defined as follows :
ig(01,01)
iplla|X],[alY]) <- igp(X,¥} (for all a in T)
ip(X,lalY1) <- ipi(X,¥) (for all a not in T)

Ip is a simple projecticon mapping which preserves symbols from T

and erases others.

{3) S5p is defined as follows :

sp(X) <- s1(gq,%X,[])

51{q1,[a|x],Y} <= 51{q1,x,[a|Y]l (for all a in Kv{¢})

s1a, (%1, (4]¥]) ¢~ s1(geX,¥) (for all qg in F)

s1{gg,[1,01)

s1{ag, [wF|X),lal¥l)c-s1{p,X,¥Y) (for all d(p,a) = (g,w))
where A = (Q,K,D,d,qq,F) is a dgsm A given in Lemma 3.1.
Then, L(Sp, K¥K v 1¢,&1) = (x¢&FR| £(x)=y, x in X" }

Let P' be a leogic program defined by p'tK](-iT[x,Y}. mpl(¥),
sp(¥). It is easily seen that for x in T*r
¥ is in L(P,p,T) iff there exists y such that x = hiy) and

y is in Mg n Sp
iff there exists v such that

Iqp succeeds on igp(x,y),

Sp succeeds on splyl), and



HT succeeds on mTiy]
iff P' succeeds on p'{x).
Let Ry be defined by rg(X,¥Y) <- iplX,Y), mplY).
(Since T is fixed, Ry is a fixed program.) Thus, p'(X) can be

expressed as the desired form (3-1). O
[2] Generator Program Hﬂ

We show that a kind of "merge" program can also play a role

of generator as well as the program Ry.

Lemma 3.2

For any recursively enumerable language L over an alphabet T
there exist 2 weak identity h and a regular language R such that L
= hi{shufflel(kK)~ R), where K is some alphabet including T,
ShufEle(K) = (X997 %o¥p | %7 Xp=yq- vy in K}, R = £(k"), f
is a mapping induced by a dgsm B = (0, K,KvD,a,q4, F)
defined by a dgsm A =(Q, K, D, 4, gy, F) depending on L, d'(g,a) =
(p,aw) iff dig,a) = (p,w), h preserves the alphabet T and erases
cther symbols,

{See Thecrem 13 in [ER 801)

Theorem 3.2(Representation Theorem 2)

Let T be a fixed alphabet. Then, there exists a fixed program
Mg with the property that for any logic program P over T with a
goal pl¥) one can find an eguivalent logic program P'" with p'(X)

such that it can be expressed by



p'iX) <= mp(X,Y), rpl¥) (3-2)
for some regular program Rep.
Proof.

tnalogous to the proof of Therem 3.1, it suffices to show
that the following three logic programs satisfy the condition

stated in Lemma 3,2.

(1) MEq is defined by
mep{X) <- mel(X,[],[])
mel{[]l,x,XK)
mel([a|x}],Y,2) <«- mel(X,¥,[a|2]) (for all a in K)
mel{lal|X1,Y,2) <- mel(X,[alY),Z2) (for all a in K).
MEq determines what is called the twin shuffle language, i.e.,

- - - , *®
LIMEp, T~ T) = { xq¥q - Xp¥pl%- ¥%g=yq-- ¥g in K L.

{2) Ip is the same as the one defined above in the proci for

Theorem 3.7.

(3) Rp is defined :
Let A = (Q,K,D,d,pp,F) be a given dgsm in Lemma 3.2.
rplX) <- £lipg,%,[1)
ri{p,[a]X],Y} <- riipg.¥,[a|Y]) (for all dip,a) = (g,w))
rilpy,[w (X1, [al¥]) <- ri{g,X,¥) (for all d(p,a) = (ag,w))
rilpg,[1,0]) (for all pg in F)

L(Rp, K-K)={a,w;. .a w, |dlpg,a,- - ajl=(g,wq--. wy),q in F}

= F(K').



Let Mg be defined by

ITIG[X,Y'I €= lT'XrY’r J'I'IE‘T'Y}4
(Again, since T is fixed, Mgy is a fixed program,)
Further, let P'" be defined by p'(X) <- mD{X.Y}grP{YL

To complete the preof it suffices to check if the following

relation holds

for x in T*, P' succeeds on p'(x) iff x is in L(P,p,T). O

[3] Generator Program D,

It is demonstrated that a program which behaves as a checker
for well-pairedness can be a generator for the class of logic

programs.

Lemma 3.3

For any recursively enumerable language L over T, there exist
a linear grammar Gp = ({5}, T'v T', Py, 8) and a weak coding h
satisfying the focllowing properties that

() L = h({D, A L(G)),

(ii}) T i=s a subset of T', and hla) = a {(for all a in T},

hial= e (for all a in T'¥ T'-T),

(1i1) Py = {S => uySvy | 1€ien}pvis -> wl,

where w, uj, v4(1¢i<n}) are in {T”ﬂ“}*, D, is the Dyck

language over T'( r:the cardinality of T'), T'= {(a|a in T'}.

{See [HOY B85] for the proct.)

{Important Remarks]



{1} & linear grammar G;, which is called a minimal linear grammar

[Cs 62), depends on L, while h depends on only T.

{2} A eareful and patient ocbservation of the proof for Lemma 3.3

in [HOY 85) leads to the fact that by making a slight modification

one can obtain another G; with its additional property, that is,
{iv) none of the two among w, wuw;,v;{1¢i<n) is identical,

each of them is nonempty and w does not depend on L.

Theorem 3.3 (Representation Theorem 3)

Let T be a fixed alphabet. Then, there exists a fixed
program Dy with the property that for any logic program P over T
with a goal p(X) one can find an eguivalent logic program P' with
a geoal p'{X} such that it can be expressed by

p' (X} «- {iQ{}{,YJ, l‘lnP[Y] [3=3)
for some linear program LINp.
Froof.

From Theorem 2.1 and Lemma 3.3 for any logic program P over T
arnda goal p(¥) there exist a homomorphism h from (T' v T’}* to T*
and a linear grammar G; with the property described above, and
that » is in L(P,p,T) iff there is y such that hiy) = x and y 1is
in D.~L(G;), where r is the cardinality of T'.

Construct two logic programs Dg, LINp so that it may hold

that (i) L(Dg,T'vT'}=D,, and (ii) L(LING, T'vT')= L{Gy):

rr

(1) dplX) <= dyck{x,[])}
dyek([],[])
dyck([a|X],¥) <- dyeck(¥,[a]Y]) (for all a in T')

dyck([a|X],lal¥Y]} <- dycki{X,¥) (for all a in T')



(2) linp(X) <- Lin(pq,Xe[1}
lin(py,[w|X1,¥) <- lin(p,,X,Y)
(w is the word such that § -» w in Py}
lin(py,[1,01)
lin(pq,lug [X],¥) <= lin(py, X, (ug|¥])
(for all S -» uySvy in P of Gp)
lin(ps, [vy X1, Tug[¥]) - lintey, X, ¥)

{for all S5 -3 uiSUi in Py of Gp).

Since it is almost obvious that LlDT,T'UT'}c D,., we shall
check that L{LINp,T'*T'} = L(G;). Feor any x in L{(Gy), there is a
sequence of production rules TyreaaeT)e L su~h that

X o= Ujq o U WViE o Vi rj : 5—>uij5vij{1ijik}

and ry @ 5 - W,

Let x=xqwWX,, where Xq=Ugq 0 Uipr Xp=Vigre- Viqr then we have that
ling(x) succeeds if lin(p,,x%,1]) succeeds, and that
lin{p,,%qwX,,[]) succeeds if lin(pq,wx,,f(xy)) succeeds,

if linlp:,xz,f[x1}} succeeds,

if lin{py,[]1,[]) succeeds,

where f is defined by fle)=e, fiujx} =f{x}f[uj} for by in

i . *
I.u"l_l"l'I'l'lun]j X 1n {'I.J.-|,...,1.'ln} -

Thus, we eventually hawve linP{xJ succeeds,. The converse relation
18 straighﬁforwardly proved. Hence, it is obtained that
L{LINp,T'~T'} = LI(Gy).

Mow, let Dﬂ be defined by dD[K,Y] L iT[X,Y],dT[Y}, where
ip{¥,¥) is a predicate already appeared in Theorem 3.1 and Thearem

3,2, (Since T is fixed, so is Du.} Further let p'(X) <= dD{H,Y}r
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1inp[v}. To complete the proof, we have only to show that p'ix)
cycceeds iff % is in L(P,p,T), and this 1is easily checked in the
following way :
n'{x) succeeds iff there is y such that implx,y), dgply), and
linply) succeed
iff there is y such that h(y)=x, y in L(Dq,T' T'),
and y in L{Gg)

iff x is in L(P,p,T). O

[Remark]

(i) A program Dg whose success language is a Dyck language works
for checking "well-pairedness"” of an input string in Dg.

(ii) A program structure of LINp is guite similar to that of Sp in

Thecocrem 3.1.

Later we will discuss the close relationships among these
generator programs and what operations are really primitive for

expressing logic programs.

3.2 Decomposing Logic Programs

As we have seen in the previous subsection, a logic program
can he expressed as a conjunctive formula comprising a simpler
program and a fixed program consisting of two components.
Further, one of the two is guite simpler than the other in that it
just works as a simple homomeorphism( actually, a weak identity

mapping).
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We shall show a representation theorem for logic programs in
which for any logic program one can find an eguivalnt logic
program expressed as a conjunctive formula of two fixed programs
and three zsimple homomorphism programs. Exactly, one of the three

can be fixed.

Lemma 3.4

For any simple deterministie (context-free) language L, there
exist a coding ¥ and &8 homomorphism h such that L = f[h'1t¢D2!],
where D, is a Dyck language, ¢ is a (new) symbol.

(The way of the proof for Lemma 3.4 is similar to that of the
proof for the main theorem in [Gr 73]. See Appendix for the

proof.)

This lemma leads to another representation for logic programs

which may be called "decomposition thecrem" for logic programs,

Theorem 3.4 (Representation Theorem 4}

Let T be a fixed alphabet. Then, there exist fixed logic
praograms 1,0 and M with the property that for any logic program P
over T with a goal p(X) one can find an equivalent logic program
P' with a gecal p'(¥X) such that it can be expressed by

plX) <«- i[x,Y],m{Y},fP{Y,V],hF[v,Z},d{E} (3-4)
for some coding program Fp and a homomorphism program Hp.

Proct.
From the procof of Thecrem 3,1 there exist fixed programs MT

and Iq such that for a given logic program P with 2 goal p(X) one



can have an eguivalent logic program P' with a goal p'(¥X) such
that it is expressed by p'(X) <~ ip(X,¥), mql(Y), spl(¥), for some
simple deterministic program Sp. Further, Lemma 3.4 tells that
there exist a coding fL and a homomorphism hp such that L (=L(Sp,
kv R)}=f (hi'(¢D,)). Let I be Ip and M be Mp. Then, it suffices
to show that one can construct a coding program Fp, a homomorphism
program Hp and a fixed program D such that (i) D determines the
Dyck language ¢D,, and (ii) sp(Y¥) can be expressed as a conjunc-

tive formula of f£(¥,V), hp(V,2) and 4(Z).

Define Fp,Hp and D as follows :

£pll),01)

fp(la|X),[b|¥]) < fp(X,¥) (for all f;(b) = a)
hp(L1,01)

hpl[b|X), (% eeerxy |[¥Y]) <= hp(X,¥) {for all hp(b) = xq.-.%p).

d(X) ¢- unif(X,[¢|Y]), dyek(Y,[])
dyck([1,0])

dyck(laq|X],¥) <- dyck(X,[a;]¥Y])
dyckilas|X],¥) <~ dyck(X,[a5|Y])
dyck([&,]|X],la;|¥]) <« dyck(X,Y)
dyck([d,|X],[ay|Y]) <- dyck(X,Y)

where unifi(X,¥Y) succeeds iff X and ¥ are unifiabkle.
Clearly, L[D,{a1,az,51,52,¢}} = ¢D2, and it is easily seen that Sp

succeeds on sply)

iff y is in L{SP,KVK}
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iff there exist v and z such that f(v) = y,/hy(v) =z
iff there exist v and ¢ such that
Fp succeeds on fply,v),
Hp succeeds on hplv,z], and
D succeeds on dlz).
This implies that sp{Y¥) <«- fP{Y,V}, hp(V,2), d(2). Thus,
eventually, we have that p(X) «- i(X,Y), m(Y), fp(¥,V), hp(V,Z),

d{Z}. This completes the procf. O

[Remark]

The teaching of Theorem 3.4 is that using two fixed logic
programs M( a modified "reverse" program) and D (a "checking well-
pairedness" program) any logic program P can be reducible into
three homomorphism programs I, Fp and Hp that have a wvery simple

structure.
4, What are primitives 2

We have seen in Section 3 that several specific types of
logic programs can play a significant role as a generator in
expressing logic programs. In this section we shall discuss this
issue on generator in more detail.

4.1 Primitives for Generators

Getting back to the represcntation theorems, a generator
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program Ry in (3=-1) of Thegrem 3,1 was constructed from a weak
identity program Ig and a logic program Mg, i.2.,
rD{X} - digplX,¥), mqp(Y)
where
(0] ig(ll. 01
iptlal®],lal¥]) <- iplx,¥} {for all a in T)
iT{}{,[a|?]} - 1qlX,Y) {for 2l1ll a not in T), and
we observe that mg(X) can be re-defined as follows
1] mp(X) <- append(Y,Z,X), copy(Y,Y'), reverse(Yy', 2]
copy([1.01)
copy(la|X],[3]¥Y]) <- copylX,¥} (for all a in K)
reverse{[],[1]}

reverse([X|Y],2) «- reversel¥Y,T), append(T,[X],E).

Similarly, from an cbservation of a generator program My in (3=2)
of Thecrem 3.2 we have :
mﬂtkl ¢= 1plX, Y}, mET{YJ
where
[2] megulX) <- merge(Y,Z,X), copy(¥,Z)
merae( X, [1,X)
merge( ], X, %)
merge([a|X],¥,[a]2]) ¢<- merge(X,Y¥,Z) (for all a in K)

merge(X,la|Y),[&]2]) ¢- merge(X,Y,2) (for all a in K)

Further, a generater program Dy in (3=-3) of Theorem 3.3 is

analysed as follows :

dgtX) <= iglX,¥),dm(Y)



where
£3)  ap(X) < dyck(X,[])
dyeck{([],[])
dyckilalX1,¥) <= dyck(X,lal¥]) (for all a in T')

dyck([&|X],[a|Y]) <= dyck(X,Y) {for all a2 in T').

It is easily seen {that each generator contains a common homomor-
phism (exactly weak-identity) program Ip which serves as a kind of
"filter". That means the essentially unigue parts of generator
programs are mqlX), meq(X) and do(X).

Thus, 1t is possible to say that "append", "copy","merge",

"dyeck" are all primitives for a generator program in the

representation theorem. Hewever, noting that "copy" is a special
tvpe of 2 homomorphism program and "append" and "dyck" are

restricled versions of "merge", we may conclude that the filtering

function ("homomorphism") and the merging function("merge") are

fully primitive for expressing lagic programs,

4.2 Extended Reverse Programs

We shall show there exists a type of logic program which can
take the place of various basic programs appearing in the

representation results,

Let f be a mapping from T to x*. Then, consider a logic
program dominated by a predicate “({fl-reverse(X,Y)", which is

defined by (fl-reversz(x,y) succeeds iff so does reverse(f(x),y).



We call this extended reverse program. (Notice that if f is an

identity, then (f)-reverse(X,Y) is an ordinary "reverse"

predicate.)

Example 1.

et f be defined by fla)=a, f(b)=b, fle)=c. Then, (f)-reverse
(¥,¥) may be, for example, defined as follows:

(fl-reverse(X,Y) «- rev(X,[]1,¥)

revi[],X,X)

revifalx1,¥,2) <- revi(X,[alY],2Z)

rev([b|X],¥,2) ¢- rev(X,[b|¥],2)

revi[e|X],¥,2) <- rev(X,[c|¥],zZ).
Let p(X) <- append(Y,Z,X), (f)-reverse(Y,Z), then the success

. - x* N
language of this program {wwR|w in {a,b,c} } is context-free,

Mow, let us see the next one.

Example 2.
Let f be a mapping defined by f(x) = %%, for all x in T"
Then, it is seen that
{f}-reverse(x,y) succeeds iff reverse(f(x),y) succeeds
iff reverse{ER,yl succeeds
iff x = y.
Let P be a program dominated by p(X) <- append(Y,2,X), (f)-

reverse(¥,2). Then, the success language L(P,Tv T) is {ww| w in

* i ] ¥ i
T } which is context-sensitive,
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Thus, (f}-reverse can define a number of different classes of

logic programs by varing a mapping £,

Now we wish to call back one's attention to the representa-
tion thecrems. In the representation formula (3-1) of Theorem 3.1
a logic program can be expressed by
plX) <- rglX,¥Y), spl¥}, where
(0] rD[K,Y] L= iT{K,Y},mT{Y}
(1) splX) <= s1ig,,%,[1)
s1(gq,lalX),¥) <= sllgy,X, [al¥]) (for all a in K v {¢})
s1(gq, [E[X],[¢]Y]) <«- sl{geX,¥) (for all g¢ in F)
stlgg,[1,01)
(2} sii{g,[wR}X),la|Y]) <- s1ip,X,¥}) (for all dip,a)=(g,w))
where A=(Q,K,D,d,9,,F) is a dgsm.
Let fp be defined by foalzélfDr all a in T). Then, it is easily
seen that

mplX)<- append(¥,Z,X), (fq)-reverse(Y,Z) --= (Fy).

Further, letting [P be a mapping defined by [P{x]= f(x), where [

is a dgsm mapping induced by A, then we have

splX) <- append(Y,2,X), ({p)-reverse(Y,2} ~--- (F5).

Recall the representation formula (3-3) of Theorem 3.3 in
which a logic program can be expressed by

p(X) <= dg(X,¥), linpg(¥)

where
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(2) linp(X) <= lin(pq,X, (1)

for each rule S-»uSv in P; of Gp,

lin(pq,[ufX],¥Y) <- 1in(py X, (u]¥])

lin{p.l,[wi}{],?f] <~ lin(p,,X,¥) (S->w in Py )

lin(py,[1,01)

lin(pg,[v|X),[ul¥]) <~ lin(py X,¥).

GL={{S},T',PL,S},PL={E->u1Sv1,...,5->un5vn,s-:w].
Let f be defined as follows:

£(u) = vR for all S->uSv in Py

flun') = flu)f{u') for all u,u’ in {u1,.",un]*
Here we claim that

ling(x) succeeds iff append(y,wz,x) and {f]-reverse[y,z;

succeed for soﬁe V2.
Since L{LINg,T'WT') = L(Gp), which is proved in the proof of
Theorem 3.3, for the purpose of verifying the claim it suffices to
show that = is in L(Gp) iff append(y,wz,x) and (f)-reversely,z)
succeed for some v,z in T'*. For any x in L[GL}, there is a

seguence of rules Iy,...,Ip.Ip such that

and rp * 5 =3 w.

Hence, let X=XqQWXoy where Xq=ujq..- Ui, Xo=5Vip - Viqs then we
have that append(x,,wx5,x) succeeds and (f)-reverse (x1,z2: is
invoked. By the definition of £,f(x }=f(uj; --uy,) = “113--“ikR

={viy - vi1!R=x2R- Since (f,)-reverse(x,,x;) succeeds 1ff reverse
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{f(x;},xz} succeeds, we have thalb (f)-reverse(x,,x5;) succeeds.
The converse relation is proved in a similar manner. Thus, we

eventually have
linp(X) <- append(Y,[w|2],X), (f)-reverse(Y,Z) --- (Fj3)

it should be noted that for a homomorphism h, if one define a
mapping £ by fy,(x) = htx}R, then (fyl-reverse(x,y) succeeds iff
h{x)=-y. Hence, a weak identity program Ip dominated by ip(X,Y)

and involved in all the representation results is expressed by
LplX,Y) «- [fy)l-reverse(Y,X) --=  (Fy)

Summarizing our argument on the use of extended reverse
programs for expressing various types ¢f basic elements in the
representation results, from (Fq),(F,),(F,) and (3-1) we obtain

another representation theorem for logic programs.

Theorem 4.1(Representation Theorem 5}

Let T he a fixed alphabet, Then, there exist mappings fy, f;
with the property that for any logic program P over T with a goal
plX) one can find an equivalent logic program P' with a goal p'(X)
such that it is expressed by

p'(X)<-(fp)-reverse(Y,X),appendlZy,%,,Y), (fq)-reverse(2,,25),
appendEW1,W2,Y},[fP]-reverse{w1,W21,

for some mapping FP‘
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5. Concluding Remarks

Through the formal language theoretic formulation, we have
shown several representation theorems for logic programs. First,
we introduced the concept of the success language of a logic
program, and associating a leogic program with its =success language
we gave a formal language theoretic semantics of logic programs.

Further, using the language theoretic semantics several repre
centation theorems for logic programs were provided in which some
types of fixed logic programs called generator programs play
central roles in the representation.

Then, it has been considered the problem of what operation is
primitive for the representation of logic programs. It was shown
that the filtering function by a homomorphism and the merging
function are sufficiently primitive in the sense that for any
logic program one can find an eguivalent logic program which is
expressed within the use of combination of these two programs.

Finally, by introducing the concept of an extended reverse
predicate, it has been proved that one need only "append" and
"axtended reverse" functions in representing logic programs.

For the future research in this direction, using a model-
theoretic semantics in terms of the success language one may
discuss many issues on the properties of a logic program such as
program transformation, program classification, program synthesis,

and so forth, some of those which we are about te work on.
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APPENDIX [The proof of Lemma 3.4]

We show the fcllowing: for any simple deterministic grammar
G, there exist a simple delerministic grammar G,, 4 coding £ and
a homomorphism h such that L{G) = £(L(Gy)) and L(Gy) = h_1[¢D2I.
This immediately completes the proof.

Let G = (N, T, P, 53] be a simple deterministic grammar such

that L = L(G), where N = {A;(=55),...,Aq}. We may assume that 5j



does not appear in the right-hand side of any rule in P,

Construct a simple deterministic grammar Gz = (N,T',P',84) as
follows : T' = {[A,allAn -3 ax in P}, P' = (A -» [BA,alx | B -> ax
in P}. Define £ by

f{[a,al) = a for [A,al in T'.

Then, it is obvious that Gy is simple deterministic and L(G) =
f{L{Gy)) holds.

Now, since G is simple deterministic, one can define a homo-
morphism h from T'% into {a;,a;,a;,a5,¢} by

hilag,al) = 3,3,%8,a;a,0%a; - .. aqay)lay,

if A - aAjT-- Hjm in P and i #£ 1,

h{EA1,a]] = ¢a1azjma1--- aTan1a1,

if JE.L-I =} aﬂj1 - Ajm in P;
h(lAg.,al) = E1£2i§1 if A, -» a in P and i 47,
!-.I-{[h-],a]} =¢ if A1 - a in P.

It suffices to show that L(G_ )} = h‘1{¢Dz} helds.
We claim the following: for by,...,bp in T, BiqeesssBy, in N-

{A1}, we have

K L
Ay ==0p b1...bkﬂi1J.hir {r>0) in & iff

o
(1) hiby. .- byl=éy,. vy is a prefix of a word in ¢D,,
and
(2) redldy; - v} = ¢a1a21ra1 .- a1a2i1a1,
where "red" is a mapping defined by

redie)=e,

red(¢) = ¢,
for i=1,2

red{xai]=red{x}ai:
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red[xﬁi}=red{x)51 1f redi(x) not in {a.l,az,é’“az]*{ai}Ir
redixa;}l=x" if red{x)=x"'a;.

(Note that =

indicates the k step left-most derivation, il.e., K
consecutive rewriting steps in which the left-most nonterminal is
slways rewritten, and it 1s well-known that any word generated by
a simple deterministic grammar has the unique left-most derivation
for it. Further, from the property of a simple deterministic
arammar, the length of a word generated exactly equals to the
number of derivation steps used. A mapping 1mage redi{w), the
reduced word, is the final resultant obtained by repeatedly
cancelling all pairs aigi* j

1+ should be noted that the claim suffices to prove the
lemma. We shall prove the claim by induction on the length of
derivation steps.

[ k = 1 ) Suppose that A, ==> by or Ay => bjAj .- A There

ic*

exists A, -> by or Ay - byhAgq- A dn P'., Then, hi{by) = ¢ or

ir
hib,) = ¢a1azlra1 a1a211a1. Clearly condition (2) heolds for
either case. Conversely assuming (1) and (2) for k=l gives us that

hiby) = ¢y, is a prefix of a word in ¢D2 and ch{4F1} =

¢a1a21ra1- a1a213a]_ From the way of construecting h, 1f

red(gyq) = ¢ {r=0),i.e.,y; is in Dy, then we have Ay -> by is in
b', leading to A, ==> bj. Otherwise, h(by) = yq = ¢ajap‘Tay

aja,’la; implies that Ay -> byAjq - A, is in p', This verifies
the case k=1.

[ Tnduction step ] Suppose that Ay ==b§ by By By Ay (r»1) and

Aga -2 bk+1ﬂj1 -Ajmimhﬂl iz used at the (k+i)-th step. Let

niby 1 )=¥e,q- By the induction hypothesis,



red(¢y, Yi) = ¢a1a21ra] aIazi.Ia.l. Then, we have
red(hiby br,e)) = redidyy vy ,q)
- ¢a1azira1-- a1a212a1a1a2jma1 --a1azj1a1.
(Note that yp,q = 5152i151a1azjma1 .-a1a2j1a1J
This also implies that h(by--- by, 4) is a prefix of a word in ¢Dj.

Since Ay ==}E+1 by . by 4A 1---HijiE"'AirP the 'only if' part of

3
the proof is proved.

Conversely, suppose that we have hiby - -Dby,q) = ¢y1. C Yiea
is a prefix of a word in ¢D, and red[¢y1u.yk+1]=¢a1azira1

a1a211a1. From the construction of h, we have a partition:

red($y; . vy = ¢ajarFa, - aa,Pay,
red(yy,q) = hiby,q) = 5152t51a1azisa1...a1azi1a1, where
there exists Ay -» by, q Ay Ajg in F'.

But, since redl¢y, - yy,q) i3 a word of the form ¢a1azira1 T

a1a2i1a1 there must bhe some cancellation between the two, which
implies that ip = t. By the induction hypethesis,

Ap =>F by DLAL - Ay,
and applying Ay -» bp,q Ajq -  Rjgr we have

Ap =Pt By BrgBig o Agg e Ry

This completes the proof. g
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