ICOT Technical Report: TR-128

TR-12%

The Correciness of Two Traustation Methods
fram Definit Clause Grammers into Prolog Programs

by
K. Sakal, H. Hirakawa, Y. Tanaku
and H. Yasukawa

July. 1985

CH98s, 1COT

aita Kokusai Bldg. 21F {03) 456-3191~5

ID D | 4§-28 Mna 1-Chome Telex 0OT J32064
Minuio-ku Tokveo 108 Japan

-institute for New éeneratiun Computer Technology

The Correctness of Two Translation Methods
from Definite Clause Grammars into Prolog Programs

K. Sakai, H. Hirakawa, Y. Tanaka, H. Yasukawa

ICOT Research Center
Tokyo, Japan

ADBSTRACT

A least fixed poipt semantics is given for definite clause grammar similar to that for the logic
programming language Prolog. Two translation methods, namely, top-down and bottom-up
translation from grammars into Prolog are described and their correctness and completeness
are shown with respect to least fixed point semanties. Finally, the termination condition of
the hottem-up parser is discussed.

Keywords: definite clause grammar, Prolog, least fixed point semantics, parser, correctness,
completeness, termination.

1. Introduction

Grammar deseription and parsing are very important problems for natural and/or artificial
language processing. Prolog is a promising programming language for implementing lan-
guage processing systems |2, 4] since a grammar description language can be naturally in-
troduced as an extention of Prolog itself and parsing for a giver grammar can he treated as

an extention of program execution.

Definite clause grammar (DCG) [4] is a typical Prolog-based grammar description and parsing
gystem. DDCG is a natural extention of context free grammar, which is now very often used
to describe prammars for various languages. Beside:, since nonterminal symbols in DCG are
allowed to have parameters, we can express all kinds of control. For example, adjustment
of gender, tense, number, and even the number of occurences of some terminal symbols,
Therefore, it provides us with a familiar and powerful way to deseribe grammars. Moreaver,
since parsing i3 & form of extended program execution, the basic mechanism of Prolog
execution is fully utilized for efficient parsing.

As stated above, what is refered to as DOCG actually contains two ideas; grammar description
and parsing. In thiz paper, however, we will discuss them separately. Io what foliows, DCG

1 —

will be used to mean the grammar description only. The parsing technique is refercd to as
the top-down parsing of DCG.

Since an ordinary Prolog system is based on deptb-first serrch, top-down parsing, which
simply uses the Prolog execution mechanizm, often falls into infinite loops if there is a left
recursive rule. In writing a grammar, however, left recursive rules are inevitable both for
natural languages and formal languages.

Te relieve DCG from this shortcoming Matsumoto and others proposed another translation
method for DCG (3], Making use of the parsers generated by this method, called the
bottom-up parser (BUP), we can avoid infinite loops caused by left recursive rujes.

Many experiments have confirmed the correctness, efficicncy, and termination of BUF's. The
correctness of this translation method, however, is not very clear from the theoretical point
of view and there has not been much study of terminatiou of BUPs. In this paper, we
will show the correctness of a bottom-up transiation method for DCG, which is essentially
equivalent to Matsumoto’s, as well as the correctness of the top-down pareing. Next, we will
prove that the translation method generates a terminating parser for a grammar under a
certain condition. The condition is very natural and introduces fow constraints on actually
wriling a grammar.

2. Deflnite Clause Grammar

Definite clause grammar (DCG) was suggested together with a translation method to P'rolog
programs [4] from the resemblance between sentence generation by context free grammars
and the execution of programs written 1o Prolog. The framework of DCG iz described 1n
this section.

Assume that the following disjoint sets of sywbels are giver.

{1) An enumerable set of variables {denoted by strings beginning with an nppercase letter)
{2) A finite set of function symbols (Genoted by strings beginning with a lowercase letter)
{3) A finite set of predicate symbels (denoted by strings peginning with a lowercase letter)
(4) A finite set of terminal symhols {denoted by beldface letlers)

As usual, we define terms, atomic formulas (atoms), and clauses. Terminal symbolz and
atoms are called syntactic elements and denoted by greek letters {with: or witheut euflix}. A
DCG is a pair (R, §) such that

(1) R is s set of syntactic rujes of the form

S -

[TR - 1Y (n >=0)

where @ is an atom and each a; is a syntactic element.

{2) & iz & finite set of atoms called the starting atoms.

An atom plays the role of a nonterminal symbol in ordinary context free grammar. Let
r=a —+a;. .a, bearuleand s = & .. f 1801 Fm be a string of syntactic
elements. If o and S, have a common instance, i.e. there exist substitutions #; and #; such
that &, a0 = 0,8, we will denote it by

'
5 Dby, by &

where &' = 620,... 028,101, ...61a.0:06,,...9:6,. By appropriately renaming vari-
ables in r, we can select the same subsiitution & for both #; and #;. Then the above can be
written as

o=y ¢ 08 80 Bay .. P, 00 ,...00,

In what follows, renaming vartables in a rule is often implicit and notation iike the above is
wsed directly.

Fur a given set R of rules, s = s’ mearn: there exist a rule r € R and a substitution # such
that & =%, 4 &', and the symbol *= represents the reflexive transitive closure of =. If s"= &',
' is said to be derived from ¢ by R.

The language L((7) generated by a grammar 7 = (2, 5) is defined as follows:

L(G) = {w | w is a string of terminal symbols only and 1*4 w for some 4 € S}

Example 2.1

Let & consiet of the starting atom & and the rules

s — a{X)B(X)e(X),
afl] =+ a,
als(X)) — aa{X),
b{1) — b,
bls{X)) — bb(X),
(1) — ¢,
els(X)) — ec(X).

Thean,
LIG) = {a'b*e* |i =0} N

3

Remark. If all the atoms inp a grammar ¢ are ground, i.e. have no vanables, then G i3
equivalent to a context free grammar and, therefore, L{G) is a context free language.

Remark. If all the rules in B have no terminal symbels, then I{ is a Prolog program and
{~ | ¥*= ¢ (the empty string) } is the set of all successful queries.

3. Herbrand Universe and Herbrand Basze

Van Emden and Kowalski proposed the least fixed point semantics for Prolog programs and
showed that it agree with the operational semantics by SL-resolution [5]. In this section,
the least fixed point semantics for DCG is defined. The reader can easily see that it includes
the least fixed peint semantics for Prelog programs as a special case

The Herbrand universe HU iz the set of all ground terms For simplicity, we assume that
HT is not empty, i.e., there exists at least one O-ary function symbel (constant gymbol). The
Herbrand base HF is the set of all ground atems. We will define the exterded Herbrand
base HE' for DCG as Tollows:

HB = {a~ w | a is a ground atom and w is a string of terminal symbols}

For a given set D of definite clauses, the set function Tp on the power set F{HE) of HB is
defined as follows:

Tp(H) = {#a € HB | there exist a definite clause @ — a; ... a, and a substitution &
such that each o, iz in H}

Similarly, for a given rule set 2, the set Tunction Tx on the power set P{HE') of HE' is
defined as follows:

Te{H) = {fo s w, ..w, & HE'
there exist a rule & — o, ...0, and a substitution # such that, for each 1,
a, it a terminal symbol and w, = a,;, or o, isan atom and fa,; = w; € H}

The function Tp 1= clearly monotone, ..e. for all H and H'if F C H'then Tp(H) C Tp(H'),
and continuous, 1.e.

fe) [= =]
U Tp(H;} = Tpl U Hy) for any sequence H, € H, = - -,

=1 pema

and so iz T

Therefore, Tp has the least fixed point Mp, Le.
(1) Mp = Tp(Mp) and
(2) Mp C H for all zetzs H satisfying H = Tp{H)}

and Tg also has the least fixed point Mp. Moreover, Mp[Mg] is characterized also as the
least set H such that Tp{H)}[Tgr(H)} C H and is computed by

Mp=JTo'® | Mr=)70 |

LR i]

The least fixed point semantic Mp of a Prolog program agrees with its operational semantics
|5 In the terms defined above, 4°= ¢ if and only if é7 ¢ Mp for some substitution 4. We
have a similar theorem for DCG.

Theorem 3.1

For any atom 7y and any string w of terminal symbols, 7%= w if and only if 87— w € Mg
for some substitution 8. 1

This theorem can be easily shown in a similar way to [5] and the following corollary connects
between the least fixed point semantics Afg and the operational semantics L{G).

Corollary 3.2
For any grammar G = (R, 5),

L{G) = {w | there exists an atom ~ € 5 such that
fv+— w £ Mg for some substitution 8}

4, Top-down DUG translation

As stated befcre, the rule set of a DUG can be considered as an extension of a Prolog program
and the starting atoms as queries. However, the extended features can be embedded into
erdinary Prelog. In this section we discuss an embedding methed, now a standard part of
this kind of approach [1,4]. A DCG rule set is translated to a Prolog program, used as
both a parser and a generater. For this translation we need two new predicates degle, w)
and eg{w,y). The arguement o is an atom and w and y are strings consisting of terminal
symbuols. Therefore, strictly speaking, a lyped theory with two types 15 neceszary in the
following discussion. We will avoid the construction of such a theory, because there is little
fear of confusion.

The translation Td, called the top-down translation in contrast to the bottom-up transiation
discussed in the pext section, from rules to definite clauses is delned as follows:

For any rule r = a = a;...a,, let Xy, Xy be new variables not coutained in r.
Then Td(r) = &' — o} ...al,, where

o' = degla, X1 ... Xa)

o' = {dcg{a¢,X1}l if &; is an atom;
eqla,, X}, if @ is a terminal symbel.

For a rule set R, let

Td(R) = {Td(r) | r € R} U{eq(X, X) — ¢}.

Theorem 4.1

Let B be a rule set and D = Td(R). Then, for any ground atom 7 and any string w of
terminal gymbols, de,’y, w) € Mp if and only if v — w € Mg.

Proof:

Ounly-if part: Let

EQ = {eg(w,w) | w is a string of terminal symbols }
Since deg(w, w) cannot be in E@Q, it iz sufficient to prove that

Mp € H = {degl@,w) e HB |71 —w € Mg} EQ.

From the remark about the least fixed point before Theorem 3.1, it is sufficient to prove
that Tp{H) C H. Assume that 7 € Tp(H) Thenp, there exists a substitution # such that
«q == feq(X, X) or there exist a rule @ — a; .. @, and a substitution ¢ such that 7= fe'
and each fa’ isin H. In the former rase, obviously 7 € EQ. In the latter case, for each i, ay
is a terminal symbol and 8X; = o, o a, is an atom and there exists w; such that fe; — 8X ;.
Therefore fo — 68X, ... 86X, € Tr(Mg) = Mp. Hence 4 = deg(fa, 80X, ... 6X,) € H.

If part: Let
H = {7 w& HA' | degly, w) € Mp}.

It is sufficient to prove that Tr(H) C H. Assume that 7 w € Tr(H)} Then, there
exist a rule @ —+ &y ... @, 3 substitution #, apd strings wy, ..., w, such that 7 = fa,

—5 —

w = wy ... we, abd for each 1, &, i3 & terminal symbol and w; = ay, or o, 13 an atem and
By v+ wy € H. In either aase, fa) € Mp by setting X, = w,. Therefore

fa' — deglfa, 8X, ... 0X,) = degly, w) € Tp(Mp) = Mp.
Henee q»we H. M

Let G = (R, §) be a grammar and 7 be a starting atom. Then the above theorem guarantees
that the query dep(=y, w) to the derived program Td(H) judge: whether w is a sentence in the
grammatical category v and the query deg(y, X) generates sentences in 7.

Remark. Actually implemented Prolog systems do nol provide the striong type aod, therelore,
strings are usually expreszed by a list ip Prolog. In this case, concatenating a number of
lists like X; ... X, is not efficient. o' and o} below with difference lists instead of ordinary
lists are usually used in an actual implementation of the top-down translation.

o' = degla, Xo, X.)

a. =

. {zq{l’;_l. g | 0D, if @y iz a terminal symbal;
deglog, Ko, X)), if oy is an atom.

5. Bottom-up DCG translation

In actually implemented Frolog systems, the resolution is not necessarily complete, because
the depth-first search strategy for input clauses iz usually employed. In fact, derived Prolog
prograwms way fall iote infoite loops 1T there 15 a left recursive rule such as vp — vp, adv, In
writing a grammar, however, left reeursive ruies are mevitable both for natural languages
and formal languages.

In this section, we will discuss another transiation method, which iz essentially equivalent to
the BUP method sugpested by Matsumote and others [3] in order te penerate parsers free
from such infinite loops. Making use of parsers generated by this method, we can avold
infinite loops caused by left recursive rules. We call the method bottom-up translation due
to the similarity to the BUP. In compensation, we lose empty rules, ie rules whose right
hand sides are empty, because they may lead parsing into ap infinite loop. In epite of this
disadvantage, transiation methods like BUFP are promizing, becanse when writing a grammar
empty rules can be dispensed with far more easily than lefi recursive rules.

For bettom-up translation, besides our old friend eg{w,y) i the previous section, we will
employ two new predicates t[a, w) and nt{a, §, w), where the type of the arguments a and
& iz syntactic element and that of w iz string of terminal symbals

—7 —

Since there are no empty rules, a rule can have the form
o — Aoy .. . (n >=10).

This rule is translated inte a clause

h
where . {:{c,ﬂx, XY, if A is a terminal symbol

“lat(g, 6. x, .. X.Y), i fisanatom

{zq[n,, X, if @, iz a terminal eymbal
tla;, Xi), if a; 15 an atom

o' = nt{a, G,Y),
for some new variables X5, .. X, Y.

We will denote thiz translation by Bu. For a rule set ¥ without empty rules, let

BulR) = {Bulr) | r € R} | Heg(X, XY — ¢, nt[A, A, &) — e}

Theorem 5.1

Let R be a rule set without empty rules and D == Bu(R?). Then, for any ground atom <y and
any string w of terminal symbols, t{y, w) € Mp if and only if v — w € Mg.

Proof:
Only-if part: Let
Ht = {tly,w)e HB |7y —w & Mg}
Hnt = {nt(a,~, w) € HB | for any string of terminal symbols v
ifa—=viE Mg, then 7= vw & Mg}
Since t(v, w) cannot be in £Q or Hnt, it is sufficient to show that Mp C H = Ht|JHnt | JEQ,
tt, Tp(H) C H. Let 5 € Tp{H). There are four cages.
Case 1. There exists a substitution # such that feg{X, X) = 7. In this case v € £Q clearly.

Case 2. There exists a substitution # such that fnt(A, A, ¢) — +. Iz thiz case v+ € Hnt

clearly.

Case 3. There exist a rule o0 — Ay ... ax, and a substitution § such that 7 is a terminal
symbol, 4 = t{8G, B8X, .. 8X YY), #a's and fa' are in H. For eack 1, a, is a terminal

—f —

gvmbol and o; = #X; or a; is ap atom and fo; — 6X; © Mp and, therefore, fox v
f6X, .. 0X, € Mp Since fa' € Hnt, §G — f6X, .. 8X . 6Y € Mg, Thus 7 Hn.

Case 4. There exist a rule @ — Foy .. ap and a substitution § such that @ is an atom,
7= nt{#F, 0G 86X, 06X 8Y) fois and fa’ aresn M. Assume that #F — v. Then a
discussion similar to the above shows that 0G — vfX,; .. 0X0Y £ M. Thus 7€ Hnt.

If part: We will prove a stronger claim. If 7 — w & My and nt(y,4',y) € Mp, then
t{', wy) & Mp for any v, ', v, and y. Sioce it is clear that ni(y, 7,¢) € Mp for apy ground
term . This claim guarantees that ¢y, w) & Mp il 7 — w & Mp. Let

H={yw—we HB"| if nt{y,v',y) € Mp, then t{+' wy) € Mp for any 4" and y}.

It 15 sufficient to prove that Tr(H) C H. Assume that 7 — w € Tr({H). Then, there
exist a rule & — §(= ag)o; ...y, a substitution #, and strings wg, wy,..., w, such that
4 o= o, w = wpw;... w,, and for each 1, a,; 15 a terminal symbol and w;, = a,, or oy
12 an atom and fo; —+ w, € H. In either case, #a’ € Mp by setting 6X, — w, Assume
that ni{y, 7", ¥) € Mp. Since 8' — o ... a}a' € D, if we let #G = o' and 8Y =y, then
8" € Mp. If A iz a terminal symbal, 83" = i+, wow, .. . w.y) = (v, wy). If 8 is an atom,
88" = nt{68, 7', w1 ... way) and, since 68 — wo € H, t{', wow, ... way) = t{v, wy) € Mp.
Thus, in either case, o +— w is shown to be in H. B

Hemark., The following #' and o' and als, with difference lists instead of ordinary lists,
should be used in an actual bottom-up translation into Prolog:

§ = {fffllﬁ | Xo}, Z), if A is a termina! symbal
- Ant(8, G, X0, Z), if A is an atom

ol = {cq{l’.-_], las | X0, if @, is & terminal symbel
‘ tlag, Xy, X5, if @ is an atom
a' = ntla, G, X, Z),

and
Bu(R) = {Bu(r) [r € B} U{eg(X . X} — e, nt{A A X X) = ¢}

Ever with the bottom-up transiated program {called BUP), parsing of a sentence does not

necessarily terminate, sipee there may be a recursive ruie such as np — np. Now let us turn
te the termination of BUPs.

Let [be a Prolog program and s be a query, i.e., a string of terms. A D-execution sequence
for & is a finite sequence sp(= 5) =¥ 5, = - - = s, such that, for eack #(0 < ¢ < n}, there

—G

exists a definite clause o — ay ... o, such that

i = ﬁ.ﬂ] ..-.,&*I and dpae] = E{ﬂl ...ﬂ,ﬁ_ﬁl . ..ﬁ*}
where £ is the most general unifier of o and 3.

A D-execution sequence of length n is successful if s, is the emply string ¢, and fails if 1t
is not successful but has no extensions, i.e. &, — §F; ... 5 and there is no definite clause
whose head is unifiable with 8.

A Prolog program D' is said to termipate with respect to a query &, if the set of all D-
executions for s ig finite. This property guarantees that, even by depth-first search, the
program never [alls into infinite loops, i.e., it finds a finite oumber of solutions or fails in a

finite number of steps.

We will show the relative termipation of the actual versions of BUF with difference lists. A
unit rule is a rule of the form a« — @ where @ is an atom.

Theorem 5.2

Let R* be the set of all the unit rules in 2. If R* (viewed as a Prolog program) terminates
for any query, then Bu{R) terminates for any query of the form #(+, L, [}) where y iz a term,
L is a list of terminal symbols, and [| is the empty list.

Proof:

Let £k be the maximum length of the R*-execution sequences. By Kdnig's lemma, it iz
sufficient to show that the length of Bu(R}-execution sequences iz bounded. Let 55 = 5, =
--- = &, be any Bu({R}-execution sequence for #{y, L, |]) which is not suecessful. Each 5;
consists of three kinds of atoms, namely, atoms of the form

atle, G, X, Y) or HG,X,Y) or eg(X,la|Y]).

Let §; be the first atom of s, and n, be the number of atoms of the first form in s;. Then it
is easy to verify that, for each &;, X is a sublist L; of [and, mworeover,

(1) Lipg = Linigy <ng if 8,15 of the first form,

(2) length{Liy.) = length(L) — 1,nju; = n;+ 1 if § is of the second form,

(3} length{Liy,) = length(L,) — 1,nyo; =n; if &, is of the third form.

Since in cases {2) and (3)

Hength{Liy) + nepy < 2length{L) + n,,

+he number of & of the second and third forms is not greater than 2length(L). Tterefore, if
the length of Bu(R)-execntion sequences is not bounded and if we select a Bu(R)-execution

sequence long enough, 1t contains a subsequence s; = S;+1 T 0 = Fi4k such that
6. b5y 65 =k are of the first form, Liyoss = Ljg and njpiqy = nyqi for all
{0 < § < k). Sibce fjaqqq = fjgq and G4y is of the first form, s;+ 40 must have

been obtained from £;4,; by a definite clause of the form
nt{ay, G, Xo, Z) — nt{f, G, Xo, Z),

generated from the unit rule f; — a; Then we can construct an fi™-execution sequence
mE = Th_1 = - = 71 = 7o stch that each 75 is a common instance of oy and i1 {we
will omit the details of the construction). However, this contradicts the claim that k is the
maximum length of the R*-execution sequences. M

Since any context free language without the empty sentence has a grammar without empty
rules or looped unit rules, we can generate a terminating parser for the language by bottom-
up translation. In the general case, the termination condition of R* does not seem to be
very simple. In writing a practical DCG, however, we do not need unit ruies with looped
predicate symbols and the above theorem assures us that bottom-up translation geoerates
a terminating parser for a DCG without such rules

References

[1] Clocksin, W.F. and Mellish, C.S. (1981) Programming iz Prolog, Springer-Verlag

12] Colmerauer, A. (1978) “Metamorphosis Grammar,” Natural language communication
with computer {Bole eds.), Lecture Notes in Computer Science, vol. 83, Springer-Verlag,
133-189

[3] Matsumoto, Y., Tanka, H., Hirakawa, H., Miyoshi, H., and Yasukawa, H. {1983]) *BUP:
A bottom-up parser embeded 1z Prolog,” New generation Computing, vol. 2, 145-158

'4 Pereira, F C N and Warren, D.H.D. (1980) “Definite clause grammar for language analysis
- a survey of the formalism and a comparison with angmented transition networks,”
Artificial Intelligence 13, 231-278

i5| van Emden, M H. and Kowaiski, R.A, (1876) “The szemantics of predicate logic as a
programming language,” Journal of the Association for Computing Machinery 23, Mo
4, 733-742

