ICOT Technical Report: TR-121

TR-121
Constraint-based Logic Database Management
: Structuring Meta-Knowledee 1n Database Management
oy

H. Kiakami (Fujitsu Laboratories Lid.)

T. Miyachi, 5. Kunifuji and K. Furukawa
(ICOT}

June, 1985

€983, 1COT

Mita Kokusal Bldg, 21F [03) 406-3191—~35

|[:DT 1-28 Mita 1-Chome Telex 1COT 132064

Minato-ku Tokyoe 108 Japan

Institute for New Generation Computer Technology



Fage 1

Constraint-based Logic Database Management
: Structuring Meta- Lnuuledﬂe in Database Management

T. Miyachi+, 5. Kunifuji+, K. Furukawa:, and H. Kitakaomits

t  Institute for New Generation Camputer Technology (ICOT)
t1  Fujfitsu Laboratories LTD,

Abstract

The semantic representation of knowledge and active unlization of structured
meta-knowledge are very important for constructing intelligent knowledge assimilation
funcrions and database management functions. This paper focuses on the profiles of the
functions of ‘constraint’ for the representaton of the semanties of objects in the real
world. A Constraint-based Semantic Model for a logic database (CSM) using Horn logie
expressions is proposed. C5M makes it easy for one user to describe static and dynamic
semantics of the objects so that znother user can understand them just as easily.
Assimilating knowledge to meet the user's needs is also easy. Furthermore, users can also
manage objects in the real world by managing the logic databases. Easy implementation of
a prototype system of CSM logic databases using Prolog was achieved and it was confirmed
that a logic programming language is suitable for building an intelligent darabase system.

1. Introduction

Advanced intelligent functions are required for the datahase management systems
necessary to build intelligent database systems. These intelligent {unctions can be
classified inte three large groups: 1} Knowledge utilization functions. 2) Knowledge
acquisition functions. ,,} Knowledge representation and management functions.

Several studies have been conducted on  knowledge utilization functions [L84 W81} and
knowledge acquisition functions [D79,5hakl K84 BK82,M84]. In this paper, we propose a
method and a database model for knowledge representaion & Management functions.

The Knowledge Management & Representation functions are essential for accumulating
knowledge and extending knowledge utilization. One of those functions is as follows.
The database management system obtains and manages knowledge according to purposes or
aims declared by a user for maintaining the database consistently. So users can know the
contents of all the databases and the semantics, derivations and functions of knowledge in
the databases.  They can also assimilate requisite knowledge from other user's databases

according to their purposes semiautomatically, Meta-level knowledge is used in such
functions. Thus, we need to structure meta-level knowledge to build the intelligent
knowledge management functions mentioned above. ‘Constraint’ represents impotant

meta-level knowledge for the management of logic databases. Some research pertaining to



Page 2

‘constraint’ has been carried out [Ca76, NG76, SS80, F80, BP&3).

In this paper, we propose a method for structuring meta-level knowledge based on
constraint to manage logic databases consistently, Section 2 discusses semantic expressions
necessary for a2 logic DB system to reflect the real world.  Section 3 proposes a
‘constraint-based semantic model’ for an object-oriented logic database that treats
‘constraint’s as objects and discusses its knowledge assimilation procedure. Section 4
reports on examples of execution runs of programs written in Prolog.

Research reports referenced in this paper are: M84, which established the suitability of
using Prolog with a logic DB system for knowledge assimilation processing; SMB4, which
proposed an easy method for designing a Prolog-supported negative knowledge processing
system; and Ki84, on related knowledge accommodation processing. We also refer to  ths
research on integrity constraints by [St75].[NY78],|HS78],[BBCED], and [CD83] as well as
some research on DB models [Co70},[Ch76],[Shi8l], and [HMS1].

2. Expressing Semantic Relationships in a Logic Databases

Things existing in the real world are called "objects.” Objects change and act
continuously. Actions zre also regarded as objects. A world in  which objects exist i
called an "object world:" knowledge in the object world is called "object knowledge.,"  The
data managed in usual databases is object knowledge. Necessary conditions on objects and
relationships between objects covering action are called "meta-knowledge.” Meta-knowisdge
differs from object knowledge in describing the controls on object knowledge.

The meaning of an object and its relationships with other objects are important when it
changes or acts. The value of an object is determined according to the results of
evalualing completed actions. Therefore, it 1s very important to describe an object’s history
and meaning together with its environment, conditions, and the degree of importance under
which it changes or acts, A wide variety of meta-knowledge is incorporated based on the
aims and intentions of the users, so the meta-knowledge must be carefully structured to
describe, manage, and utilize it effectively.  The standard descriptions of aims and
intentions can be facilitated for the users by structuring the meta-knowledge. Morzover,
intelligent logic database management systems can contain opinions on each object and
opinions for managing the logic databases. We extend the concept of ‘constraint’ to  deal
with the management of logic databases.

2.1 Constraint profiles

A constraint is a restrictive condition orn the validity of object knowledge covering
actjons. Thus descriptions of constraints must cover state changes caused by actions.
Moo crecisely, they have to describe the worlds, environments, times, conditiens for
changes, and actions before and after the change occurs. An  advantage of state change
descriptions over procedure descriptions is that the former are more declarative and more
comprehensive. The ‘basic constraint’ is expressed in the following format allowing
descriptions of the necessary conditions for state changes (See Figure 2.1).

«Constraints==<Pre-Conditions>, {<Pre-State> ->> <Post-State>), <Post-Conditions>



Fage 3

<Pre-Conditions>, <Pre-State>, <Post-State>, Basic consiraint

and <Post-conditions> above are goal strings (Pre-state) =>  (Fost-state)
written in a logic programming language | Pre-Conditions | [ Post-Conditions |
equivalent to DEC 10 Prolog. The predicates -

(MIN, MAX, AVERAGE)} are also available in Fig. 2.1 A basic constraint

CSM. The procedural mezaning of the basic constraint is presented below, The

statement "An action satisfies the correspending <Constraint>" means that the following
have been carried out in an object world:

1} Check whether <Pre-Conditions> are  sausfied.

2) If <Pre-Conditions> are satisfied, fetch «<Pre-State> determined by evaluating
<Pre-Conditions>.

3} Re-evaluate <Pre-Conditions> for determining <Post-State> using the information of
<Pre-State>.

4} Create <Post-State> and replace <Pre-State> with <Post-State>,

5} Check whether <Post-Conditions> are satisfied in the new object world.

Using the basic constraint <Constraint>, an object constraint <QC> stipulating the
validity of a piece of object knowledge is defined as follows (See Figure 2.2):

<QC> = <Pre-Constraints> "("<Constraint>")" <Post-Constraints>
<Pre-Constraints> = nil | <0OC>
<Post-Constrainte> 2= nil | <0OC> ... (S1)

(I

<Pre-Constraints> above represents the Pre-Consirainis Constraint  Posi-COnsStrainecs

descriptions of necessary conditions or | |- 1 | 0O = @ Ci Cn
constraints which are checked before a - L] D -
particular <Constraint>. <Post- - - - -
Constraints> represents the Fig. 2.2 An object constraint

descriptions of necessary conditions or constraints following a particular constraint.
Therefore, the staternent "<OC> is satisfied” means that the conditions of a particular
constraint and of its preceding and subsequent constraints are satisfied. By allowing
necessary limiting conditions to  be described before and after <Constraint>  like this, the
relationships between elements of object knowledge, or indirect causality, or embedded
causality can be described.  This makes it possible to structure meta-knowldge preciscly by
expressing relationships betweeen the constraints,

(Example 1)

Pre-Constraints: An employes is promoted from rank A to the manager class (MC) and his
salary increases. {a)

Constraint:  His authority is extended. (b)

Post-constraints:  His equipment such  as telephone sets increases.  (c) (See 4.2 (b))

The possibilities for causal relations can be described here. They are the possibilities



Fage 4

that (a) causes (b) and that (a) and (b) cause (¢). The causalities are (1) (a) causes (b),
{2) (a) and (b) cause (c) in example L

2.2 Constraint types

Constraints are broadly classified into the following two types:
a) Existential Constraint (EC)

There are conditions for preventing the existence of an object in an object world from
generating a contradiction in that world.
b} Action Constraint (AC)

The conditions to be satisfied by an object world for a change in the state of an object
existing in that world.

(1) Existential Constraint (EC)

An EC is a necessary condition for preventing the existence of an object in an  object
world from producing a contradiction in that world [M84].  Since it is a condition for the
static existence of an object in an object world, an EC is defined as follows.

<EC> = <State>, <Consistency Conditions>

<State> is the description of the state of an object existing in an object worls
<Consistency Conditions> is a set of necessary conditions for preventing the generation of
contradictions in an object world. An EC can be reparded as the basic constrains
independent of <Pre-Condition> and <Pre-State>. It represents necessary conditions {or
defining the framework of an ol:rjr,ct world and stipulates the static state of an object in
that world. The concept of an EC is identical to that of an 'integrity constraint’ used in
lngic databases.

(2) Action Constraint (AC)

An AC can be described as an <OC>. We believe that the following four profiles of
constraints are indispensable for managing lopic databases.

{a) Transition Constraint (TrC)

Generally speaking, time-sequenced multiple actions are generated in an object world. A
T:C stipuiates conditions for the validity of the ordering of these actions. A TrC is
specified in an chject constraint by the order of

constraints {See Figure 2.3). Thus, the TrC is | £2 ' | E
identical to <Constraint> when the actions in goe | la-a| - o ‘
an object world are independent of other c olio g . EI

constraints and time-bound SeqUEences. "

Fig. 2.3 A transition constraint
{Example 2) Example 1 is also an example of a TrC.



Page 5

(b) Dependency Constraint (DeC)
When multiple actions take place 1 an ohject world, some of the actions may depend
on their new instances determined by other actions. A DeC stipulates the conditions for

an ———

the validity of dependency between these i

actions. A DeC is specified by shared t,rj:..—,@ @@ | | @@ | | @
i i i i 0O L O]9 g)jg o

variables in the object constraint and expresses {

causalities between actions (Ses Figure 2.4). Fig. 2.4 Dependency coRstraints

(Example 3) In example 1, the employes's new salary is calculated from his new rank (MC)
and department. The DeC is represented by ‘emplovee(EN, Rank), department(EN,
Dept_name), new_salary(EN, Rank, Dept_name, New_salary).’

{Example 4) When an automaobile is replaced with a new one, the gearbox changes from
manual to automatic; thus the driving method also changes.

{c) Class Constraint {CIC})

A CIC is a constrain: effecrive for all the members of bre-State  Post-Stare |
a real or wirtual class existing in an object world. Tele
Unlike a TrC, the CIC is not applied to respective COOQ‘- =
members of an object class but to the entire class. A |:!
CIC is specified in the description of actions according to
pre-state and post-state (See Figure 2.5). Fig. 2.5 A class constraint

(Example 5) When the salary of an employee at rank A increases 10%, the salaries of all
the rest of cmployees at rank A also increase 10%.

(d) Time Constraint (TiC)

A TiC stipulates the velidity of an absolute fj' > e NN time
or a relative time for acticns [Sho84.851 (See : hwie= | o
- 9 EE] = (=g
Figure 2.6). = A0 =5
¥

Fig. 2.6 Time constraints

(Example 6) Constraint C2 is applied 3 minutes after constraint Cl is applied.
(Example 7) Constraint C8§ is applied at 8 o'clock everyweck day.

Other relationships besides those in the above profiles can  be described by
predicatenames in Horn clause logic expressions.

3. Compound Worlds and Semantic Expressions in a Logic Database

It is wvery important to represent objects in  the real world accurately in the logic
database. If this is achieved, we can manage the objects in the real world by managing the
logic database. In this section, we draw a comparison between the real world and a logic
DB reflecting it. Generally speaking, a DB 1s used for multiple purposes and consequently



Fage &

has one world corresponding to each purpose. The DB worlds corresponding  to purposes
are called 'unit worlds;’ a set of unit worlds is called a ‘compound world' A compound
world is created for a characteristic shared by many unit worlds. A compound world
represents @ sub-real-world containing objects that will be interrogated by users. (See
Figure 31.) Objects in the real world are expressed as reflected objects (RO) in a DB.
The meanings and aspects of ROs in a particular unit world differ from those in other
unit worlds, while the characteristics of a unit world depend on the meanings of ROs and
on the relationships between ROs. To specify each unit world, therefore, means to  specify
the conditions to be satisfied by ROs.

(Example 8) In 2.1 (Example 1), ‘rank and salary management world, ‘authority management
world,” and ‘equipments management world’ are compound worlds as well as unit worlds.
If there 1s a ‘parttimer’s rank and salary management world as an unit world, the
compound world for managing all employees might consist of “rank and salary management
world” and ‘parttimer’s rank and salary management world.'

Real World Logic Database (Knowledpge Base)

Compound World 2 Compound

World 1
Unit World b
TUnit World a

Fig. 3.1 Correspondence berween real world and logic database

Sub-Real-

Sub-Real-
Waorld 1

.~

3.1 Constraint-based semantic model

A constraint-based database model is useful for representing the real world semanticaily
in a logic database.

This section proposes a Constraint-based Semantic Model (CSM) for logic databases,
Using constraint OC, the CSM expresses not only relationships between the contents of a
Jogic database but also relationships between the semantics of these relationships to rcflect
sub-real-worlds in compound worlds in the database. The CSM is a database model with
the ability to express the static and dynamic semantics of relationships between objects.

Definition of CSM:

Let DI, D2, .., Dn be n {n>0) domains (not necessarily distinet). Relation R of degree n
1s defined as a subset of the Cartesian product X{Di:i =12, .. .n}. As an interpretation
model, this relation R is used with the well formed formulae of first order Horn logic o
define a logic database L.  The constraint-based semantic model of a logic database is



Page 7

given by the binomial relation:<{Ll, 1.2, ., Lp}, {0Cl, OC2, .., OCg}>, where LI to Lpisa
set of logic databases. (OC1 1s (51} described in Section 2.1, and each Lj's interpretation
model is Rj.}

The CSM can express semantically the following three types of objects:

1} Horn logic expressions: This represents the semantics of objects in a sub-real-world as
static semantic relationships between relations in the logic database.

2) Scenes, actions, and sequences of scenes: These represent the semantics of changes or
actions extending over many cobjects in the real world, expressing OCs declaratively to
provide necessary conditions for compound worlds in a logic DB.

3} Dynamic semantic changes bused on real values in unit and compound worlds in a logic
DB: These are also zapressed as OCs.

Fipure 32 1s a conceproal diagram  showing semantic  relationships (SR1 to
SRq) stpulated by expressing auributes and their values.

- I . 3 _\
Semantics Relationship: SR \

\ (by OCs(ECs and ACs)) )™

A

Fig. 3.2 The concepr of descriptions of semantics and relationships between relutions in CSM.

To express these variously changing objects existing in the real world, the CSM has the
following five functions:

1} Expressing meta-knowledge (OCs) declaratively, using first-order Heorn logic.

2) Adding OCs to a logic DB to expand the represented real world.

3) Changing relationships between OCs with easc.

4) Combining frecly extensions with intensions into a semantic network.

5) Expressing abstract concepts by using relations, attributes, and instances.
(Expressing relations, attributes, and instances as objects.)

The results of prior research  and our CSM are compared below in terms of ability to
express constraints.  The prior research refers to work on the "Integrity Constraint,"
“Integrity Checking,” and the "Trigger” in "Inteprity Checking” [MG78], by the Nicolas
group, Existential Constraint (EC) and Transition Constraint {TrC) were studied as  ‘State



Fage 8

Law’ and Transition Law.  Part of the research on the "Trigger” [Ca76] is on the time
constraint (TiC). The CSM has EC and AC (TrC, DeC, CIC, TiC) explained in Section
2.2 to express the real world. These include the above functions. However, when using
Prolog, the expressiveness of the time constraint (TiC) is not available to the CSM.

3.2 Consistency

Preventing contradictions in a DB is important for the knowledge assimilation
procedure. In a DB designed using the CSM, the presence of noncontradiction under
Clark's conditions (sufficient conditions for guaranteeing consistency of Negation as
Failure) can be defined in detail. If noncontradiction is detected in a2 DB, the DB is saic
to be "consistent’ and satisfies the conditions shown below, FEach demo(W,G) statement in
the conditions corresponds to a "W |- G’ defined in first order Horn logic and means that
G 1s proved from W in first order Horn logie.

<Consistency check>

non_contradiction{Cempound_world R-objects) ->
demo(Finished_Constraints_list, Pre_Constraints),
demo{Compound_world, Pre_Conditions),
demo{Compound_world, Pre_State),
demo(Compound_world, Pre_Conditions),
substitute_state(Compound_World, Pre_State, Post_State},
demo{Compound_world, Post_Conditions},
non_contradiction{Compound_worldl , Following_Constraints),
not{demo(Compound_world, not(Existence_Constraint))).

Compound_Worldl is defined corresponding to Following_constraints in the OC.

Some dependent characteristics between constraints stipulating the consistency of a logie
DB exist globally to be checked for DB consistency. These characteristics
are called "Consistency Checking Dependencies {CCDs)." When new knowledge is stored
in a DB, the action constraint to be checked first AC(a) is stored, and it specifies the AC
to be checked next (AC{b}). Since checking AC(b) is requested by requesting checking
AC(a) in this situation, AC(b) is said to be 'dependent’; on AC(a). This relationship is
expressed as "AC(a) => AC(b)." Constraints expressed by OCs make up a tree structure
and are checked by the "depth first’ method.

Each EC is checked after the corresponding

AC 15 checked  (See Figure 3.4.). Here, ACl {Action Constraintl)

it is assumed that unique AC is dezermined

corresponding to  each new item of ACL ACS ACH
knowledge. By referring to CCDs, the user /\‘-\ //\\

can determine what meaning an added OC  AC3 ACE ACT  ACB

has in the DB and how this OC is related

with other OCs. CCDs can be used to ACS ACIO

evaluate the applicability of OCs to the real
world. Fig. 3.4 Checking action constrainis



3.3 Assimilation management of a logic database

Knowledge can be assimilated to a DD determined by the CSM-defined semantics of
objects and inter-object relationships semi automatically according to the aims of the users.

There are two kinds of knowledge: Input knowledge and knowledge about this input
knowledge, and stored knowledge. This section explains how knowledge is assimilated t0 a
logic DY determined by CSM-defined object seTnantics. Basically, new knowledge 1s

assimilated through the checking done by related OCs. Each OC 1s acuvated by a calling
predicate with the history of the related OCs and compound worlds.  The knowledge
assimilation procedure consists of the following three steps:

1) Detecting new knowledze that will produce a contradiction if added to the DB and
elitninating it from knowledge to be assimilated.

2) Adjusting knowledge items in a compound world to keep them consistent when new
knowledge is added.

3) Adusting the DB (a set of compound worlds) to keep it consistent when new knowledge
is added to it

These steps are devided into the 10 substeps below.  (Step n is detailed into substep
ni.} Procedures consisting of combinations of these are also possible (See Figure 3.5.).
1a) Contradictory new knowledge is detected (by a check using an EC) and 1s not added to
the DB.  {la)

2a) New knowledge is assimilated to the DB and no other changes occur in the DB.

7b) New knowledge is assimilated to the DB and then propagating changes occur in a
compound world. (Ic)

2¢} New knowledge is assimilated to the DB and then a change a occurs in all members of
a class in a compound world. (Id)

S/ lw
\/ ] [ b [
Compound v:f;m /

—
\ Diatabasze 1
l pt
[ Compound
| World 3 |
Compound ‘ "1\ Compound
World 2 ! HWorld 4
JOUH | I
H\“}_-,.E_:: | - —@ 'L @ ‘
. . .

Fig. 3.5 The processes of knowledge acquisition



Page 10

2d) New knowledge is assimilated and then a change occurs in a compound world at a
specified time.

Ze} New knowledge is assimilated to the DB and then a combination of the changes
mentioned in 2b) to 2d) occurs in a compound world.

3b}) to 3e) New knowledge is assimilated to the DB and then the propagating,
class-dependent, time-dependent, and compound changes mentioned in 2b to 2e occur i

the DB. (Ie)

In Figure 15, the nodes outside Database 1 represent user's requests for knowledpe
assimilation. Changes resulting from the requests can be retrieved by the user. On the
cther hand, each node inside Database | corresponds to a change or an action. An arrow
between nodes indicates the flow of propagation or influence of a change or an action.
The check in step 1) is done on the flow indicated by each arrow. The user should
confirm the results of this check if he needs to know about changes made by knowledge
assimilation in the DB. In this way, consistent knowledge can be added to the DB,

Each constraint described by an OC works successively after receiving the history
of related objects and compeund worlds. They can be easily described and changed
and can clarify the semantics of a object.

(Example 9) In 2.1 (Example 1), the rank and salary management world corresponds to
compound world 1, and each of the management worlds of authority and of equipment
corresponds to compound worlds 2 and 3 respectively (See Example E).

3.4 Advantages of a CSM-controlled database system

A CSM-centrolled DB system has functions to reflect users’ purposes or aims thus
supporting their intelligent activities and knowledge management. The functions are: a)
The users can make brief declarative descriptions of the semantics of each object in the
real world in the logic database using OCs. b) The database system can assimilate new
knowledge and its related knowledge according to the users’ intention and aims. ¢) The
users can manage objects in the real world by managing ROs in the logic database. In this
Section we discuss the two interesting functions: 1) the knowledge acquisition function and
2) the function for managing the design and life cycle of a logic DB system.

{1) Knowledge acquisition function

In a CSM-controlled DB system users need only describe the meanings of knowledgs
items corresponding to applications by using constraints (OCs). Then the DB system
semi avrematically acquires the knowledge according to users' aims. (See Figure 3.6.) The
same constraint is used to contrel not only addition but also deletion of knowledge.
Knowledge acquired by the DB system includes knowledge users have learned unconsciously
and knowledge they have failed to learn. These two types of knowledge may be used to
mazke up common sense. Learning like this is possible because learning stimulated b, the
assimilation of element knowledge is repeatedly sripulated by multiple constraints (OCs).



Page 11

Knowledge Base
Knowledge 4

kKnawled ge 1 Knowledge 2

Knowledge 1 Knowledge 5 .
Inrut Knowledge 3 ~~ 4 Common
k \ ~=7 sense A

! Knowledge 6~

1

Fig. 2.6 Semigutomatic assimilation of knowledge and common sense

(2) DB design and life cycle management function

An intelligent activity support system should have a function to support not only the
DB manager bur also users in DB system (DBS) design, DBS management, and
applications programming. (See Fig. 3.7) Users need only
describe the meanings of objects in a logic DB, then the life cycle management function
edits and outputs the deseriptions of users’ aims and the contents of 2 DB to facilitate DBS
redesign and management evaluation.

N -
/

b

(i
/(DBS Desigﬂ/)ﬁﬁ $ W
/j DBS M.magerpeni/( Writing Application
/ Programs

o

S~

Fig. 3.7 Unifving design and management of DIS and creation of app lication programs

4. Knowledge Assimilation by the CSM

The CSM can assimilate knowledge about input knowledge to a logic DB where the
meanings of objects and semantic relationships between objects have been defined. This
chapter explains how to use the CSM  with the logic programmng language Prolog to
manipulate a logic DB.



Page 12
4.1 Syntax of semuntic expressions

In a logic DB  knowledge is expressed by facts (extensions), rules (intentions), and
constraints (OCs: ECs and ACs) (See Section 3). Constraints are meta-knowledge items
expressing the meanings of objects and inter-object relationships and thus are expressed
according to syntactic rules different from those for extensions and intensions.

The following conditions must be satisfied to specify OCs:
a) Each object must be expressed independently.
b} A declarative expression format must be used.
¢) Procedural interpretation must be pessible,
d} Expressions must be brief,
These conditions must be satisfied because:
- If a} is sarisfied, OCs can easily be added, modified, and deleted.
- If b} is satisfied, OCs can easily be interpreted and expression mistakes can be detected.
- If ¢) is satisfied, operations executing OCs can easily be interpreted.
- If d) is satisfied, the users’ burden of describing OCs is reduced.

{A) Existential Constraint (EC) syntax
ECs are defined in statements including references to the relevant compound worlds and
objects as well as a message indicating the detection of a contradiction as follows:
check_EC(Input-object, Compound-world, EC, ‘contradiction indication message’)
ECs in check_EC frames are defined according to the following syntax:
<ECs> = <EC><ECs> | <EC>;«<ECs> | <EC>
<EC» n= <Ls» —-» <L>
=Lls> = <L> <Ls> | <L>;<Ls> | not{<Ls>) | <L>
<L> u= not{<L>) | <G>
<G> = <goals of Prolog=>
Descriptions in Prelog themselves are wifs. Goals of Prolog can use the wifs.

(B) Action Constraint (AC) syntax

An AC 1s defined in a check_AC frame according to the syntax below. The details of
an AC are described as goal strings in Prolog.

check _AC{ Input-object, AC_ID,
lzactions{ Pre_State -=> Post_State ),
local_conditions{ Class_Constraint_Acttributes,
Pre_Conditions, Post_Conditirns ),
compound_world{Unit_World_Name_List), time{Time_Constraints) ],
global_conditions(Global_Pre_Conditions, Global_Post_Conditions),
action_constraints{Pre_Action_Constraints, Post_Action_Constraints),
Importance ).
Glebal _Pre_Conditions 2= [[World_Namel, Pre_Conditions]PrCR]
Global_Post_Conditions ::= [[World_Name2, Post_Ceonditions]lIPoCR)
Pre_Action_Constraints ::=



[y
Bk

Page

[[Pre_World_Name, Pre_action_Constraints|PrAR]
Post_Action_Constraints o=
[[Post_World_Name, Posi_Action_Constraints|PoAR|

In a check AC frame, the first argument specifies the identifier of an AC. The second
argument specifies new input knowledge.  To wupdate knowledge, the second argument
should specify new relations and  old relations in the format "updare("oldtuple’, newtuple’).
To request the elimination of knowledge, cld relations should be specified in the format
"remove (tuple”)".

The third argument describes the contents of an action as:

a) Actlons
1} List of preaction states of objects
2) List of postaction states of objects
b} Local conditions: necessary conditions in each unit world
17 Class constraint areribure lst
2} Preaction environment attribute list
3) Postaction environment list
¢} Unit world name list
d) Necessary constraints related to time.

The fourth argument specifies a list of necessary conditions extending over many worlds
before or after the action in the database. The latter term specifies final conditions the
database must sauisfy. This term provides a means to check whether an action has been
completed eppropriately and the resulting changes made. An example of this type of
constraint 1s the limit of the toral budget over the whole dawabase,

The fifth argument specifies conditions related to other actions. The former term
specifies a list of necessary preceding actions and a list of prohibited preceding actions for
an action using corresponding constraints.  The latter term specifies a  list of constraint
numes representing knowladge assimilation objects which should rtake place successively. As
a result, the successive occurrence of actions is described, so is the shift of a scene. A
transition constraint is specified by their order and a dependency constraint is specified by
the variahles they share,

The names of constraimts applied to preceding actions should be written to represent the
preceding actions. The sceme or propagation process before the object acrion is
conditioned by this AC,

The former term in the fourth argument and elements a-1), b-2), ¢), and d) in the third
argument specify the scene before an action.  Class constraint attributes specified by b-1)
in the third argument themselves become the objects of a class constraint. The elements in
a} in the third argument specifly changes made by an action, and b-3) provides Necessary
conditions after these changes.

The sixth argument specifies whether an action assimilates important new knowledge. If
it 15 important, the history of the knowledge can be described and stored for later
reference.  The history description format is "sys-memory (ID, history)".

Examples of ACs are given in the next section.
A question-answering module for inserting constraints into datahasss  was easily



Page 14

constructed.
4.2 Knowledege assimilation Prolog program execution examples

This section presents examples of executing knowledge assimilation programs under the

following three conditions:

1} Facts are input.

2) The DB satisfies Clark's conditions (sufficient conditions for Negation as Failure) [C178).
3} Consistency has the meaning explained in Section 3.2.

The programs are written in Prolog because it allows declarative expressions. ECs and
ACs can easily be expressed in Prelog's syntax. ECs and ACs are quickly searched in
Prolog by the hash function by refcrence to a predicate name and a first argument.
Examples of programs applying an EC and an AC are presented below together with
necessary consistency check functions for knowledge assimilation.

{a) EC application example
MNecessary function:  Preventing the assimilation of new knowledge to a knowledge
base generating acontradiction.

New knowledge: A baby (Yoko) was born to the couple Norio and Yumiko Yamada at
hospital H. The hospital has registered Yoko as their second daughter after making 2
genetic check on her. Execution result: The result of the check is found erroneous, and
the messege 'Dr. Gregor Johann Mendel says "No!™ is output. This is because a baby
having blood type B cannot be born to a couple one of whom has blood type A and the
other type O. (See Figure 4.1}

Database
Norio {type A)—Yumiko {type 0}
Contradiction

2 ]
Yoko (type B) Tomoko (type A)

Fig 4.1 Contradiction check usingan EC

Input inguiry and output message:
| %- assimilate([family] blood_type(ycke,b),[parent]).
— A new knowledge is assimilated !!!
yes
I 7~ assimilate([Tamily}father{yoko,ncrio},[parent]).
--- Input conflicts with the Integrity constraint !!
Dr. Gregor Johann Mendel says " NO 1"
EC format:
check_EC(father(X F), [family],
{blood_type(F FT) married(F M) blood_type(M MT),
blood_type(X,BT),genes_match(FT ,MT CBT)-->member(BT,CBT)),



Page 15
'Dr. Gregor Johann Mendel says " NO 1 ™).

An EC dsfined in this format specifies the blood types of the parents and the baby as
well as possible blood types of the baby. The EC to be applied to the relation "father”™ 1s
based on the fact that the beby must have one of certain possible blood types.

(b) AC application example
Old knowlcdge:
- Relanons: emploves(E , ENAME, Rank, SAL, DEPT), imediate_superior(E ,
Imediate_superior, I_S }, aveSAL{Rank, AVERAGE_Salary), rate(DEPT, Rate)
- Yamada is an employees at rank A.

- AC stipulating that "ACH if an employee is promoted from rank A to the manager
class {MC), his salary increases to ‘average salary of SMC: SMC = MC x
departmental_rate’ after checking ‘(his new salary) < (the salary of his immediate
superior),” "ACl: if an cmployee 15 promoted from rank A to MC, his authority
expands to that of MC" and "AC3: il an cmployee is promoted from rank A to
MC, he gets new equipment” (See AC formars).

New knowledge:  Yamada is promoted from rank A to MC.

Corresponding  unit-worlds: 1)  rank and salary management world, 2} authority
management world, and 3) equipment management world.

Execution results: Yamada's position is updated to MC, his salary to SMC, and he 15 given
suthority MC (including permission to enter RoomX1).  Then he pets a telephone as

his egquipment.

In this example, the management system automatically performs the necessary actions for
retaining consistency in the corresponding worlds when Yamada is promoted and his
authority expands. The user need only check the updated results.

Input inguiry and output message:

{ 9- assimilate([emnplovees] rank_up{Rankemp(EN,n_vamada Rank SAL DEPT },mc},[Al).
— New Knowledge i1s emp{4 n_yamadame 1176 researcher)

— New Knowledge is authority{me,4,n_yamada,researcher)

— New Knowledge is equipments{telephone 4,n_yamada)

— Do you check constraints 7 no.

AC formats:

ACL check_AC(rank_up(RANK, emp(ENO Ename,a SALDEPT),me), acl,
{[actions([emp(EN Ename,z2 SALpre DEPT)] ->>
lemp(EN Ename,mc SALpos DEPT)]},
lpcal _condittons([],
idept(DN, DEPT, DeptRate)],
[{(SALpas is 1200 = DeptRate / 100}]),



Page 16

compound_world([employees]), time([]) ]],
global_conditions([], {[lemployees), [immediate_superior(EN, Immediate_superior,I_SN},
emp(I_SN Immediate_superior, R S_sal,S_dept), SALpos < S_sal]]),
action_constraints{|], {[{authority] [authority_check(EN Ename me)]]]),

1)

AC2: check_AC{authority_check(EN Ename,mc), ac2,
[[actions([] ->> [authority(mc EN Ename researcher)]),
local_conditions(]}, [[[employees]emp(EN Ename mcSAL, researcher}]], (1),
compound_world([zuthority]} time([]} 1],
global_conditions([], {1},
action_constraints([], {[[equipment),[equipment_request(EN Ename mc)]] 3},

Y

ACY: check_AC(equipment_request(EN Ename me), ac3,

[[actions([] -»> [equipment(telephone EN Ename)]),
local_conditions([), {}, [equipment_check(EN Ename mc)]),
compound_world{[equipment]),time{[]} 1],

global_conditions([], []),

action_constraints([], 1.

1)

5. Summary

We stated that structuring meta-knowledge is indispensable for developing an  intelligent
logic database management system to assimilate new knowledge and manage logic databases
according to users’ purposes and aims. We offered a Constraint-based Semantic Model
{C8M) for structuring meta-knowledpge based on "constraint.”  Users of a CSM-controlled
DB system n=ed only describe knowledgze and each object-associated scene semantically and
declaratively. Then, the system assimilates and manages data and knowledge for them.
If ueers express the design of a DB in CSM-supported formats, the CSM not only designs 2
T but also manages it and creates application programs. A DB can easily be modified
when a new purpose or meaning is generated, because users can easily look up the
eemantics of a reflected cbject (RC) in the database. The CSM  also allows the flexible
axpression of abstraction using relations, attributes, inter-instance relztions, and their
meanings. We investigated the constraint types required by CS5M and the expressive power
of CSM, The knowledze assimilation ond management functions use the “depth first”
method to check Consistency Checking Dependencies (CCDs) between tree OCs (ECs  and
ACs). By this method, the functions can determine what new knowledge is to be rejected
and retain consistency when new knowledge is input into each compound world and  each
database,

Our future targets are:
- Implement the controls of time constraint using a logic programming language like ESP.



Page 17

- Improving the efficiency of constraint check.
- Transaction manzgement for each OCs,
- Improving the expressibility of OCs,

= Acknowledoements ®

Cur hearty thanks go to ICOT Research Center Director Mr. K. Fuchi who gave us the
opportunity to conduct this research, researcher Mr. H. Kondo who helped us so much,
and to the staff of the 2nd Research Laboratory.

* Feferences *

[BBCR0O] P.A. Bernstzin, B.T. Blaustein, and EM. Clarke; "Fast Maintenance of Semantic
Integrity Assertions using Redundant Aggregate Data,” Proc. of the 6th VLDB
Conf., Rio De Janeiro, pp. 126-136, 1980,

[BBGT8) C. Deeri, P.A. Dernstein. and N. Goodman; "A Sophisticated Introduction to
Database Normalization Theory," Proc, of the 4th VLDB Conf., Berlin, 1978

[BKS2] K.A. Bowen, R.A. Kowalski; "Amalgamating Language and Meta-language in Logic
Programming," Logic Programming (K.I1..Clark and S-A Taernlund eds.), Academic
Press, pp.153-172, 1982,

iDP50] J. Barwise and J. Perry; "Sitvations and Attitudes,” MIT Press, 1983,

[Ca76] JM. Cadiou; "On Semantic Issues in the Relational Mode! of Data” Math.
Found. Comput. Sci.  Mazmkiewiez. Vol.45, Berlin Heidelberg New York,
Springer, 197€.

{CD83] AB. Cremers and G. Domann: "AIM - an Integrity Monitor for the Database
System INGRES,” Proc. of the Sth VLDB Conf., Flerence, pp. 167-170, 1983,

[C176] K.L. Clark; "Negation as Failure," in Logic and Data Bases, H. Gallaire and J.
Minker (eds.), Plenum Press, New York, London, pp.293-322, 1978,

[Co70] EF. Codd; "A Relational Model of Data for Large Shared Datz Banks," Comm.
ACM 136, pp.377-387, Jun. 1970,

[Ch76] P.P. Chen; "The Entity Relationship Model-Toward a Unified View of Data,” ACM
TODS, Voll, No.l, Mar. 1976,

[D79] B, Davis; "Interactive Transfer of Dxpertise: Acquisition of New Inference Rules'
Artficial Intellipence 12, pp. 121-157, 1979,

[F50] R.Fagin; "Horn Clauses and Database Dependencics,” Proc. of the 12th Annual ACM
Sympesivm on Theery of Computing, pp. 123-134, 1980.

(KB4] H. Kimakami, S, Kunifuji, T. Miyachi, and K. Furukawa; "A Methodology of
Knowledge Acguisition Systems,” Proceedings of 1984 International Symposium  on
Logic Programming, Atlantic City, ppil-142, Feb, 6-9 1984,

[HME8] M. Hammer and D. MecLleod; "Database Description with SDM: A Semantic

Database Model," ACM TODS, Vol6, No.3, Sep. 1981
[HS78]) M. Hammer and 5. Sarin; "Efficient Monitoring of Database Assertions,” Proc. of



Page 18

1978 SIGMOD Conflerence on Management of Dara, NY, 1575,

[L54] D. Li; "A Prolog Datobase System,” Research Studies Press, 1984,

[M84] T. Miyachi, S. Kunifuji, H. Kitakemi, K. Furukawa, A. Takeuchi and H.
Yokota; "A Knowledze Assimilation Method for Logic Databases,” New Generation
Computing, Vol. 2, No. 4, pp. 385404, 1984, also in Proceedings of 1984
International Sympeosium on Logic Programming, Atlantic City, pp.118-125, Feb. 6-9,
1684,

[NGT78] J. Nicolas and H.Gallaire; "Data Base:  Theory vs. Interpretation,” in Logic and
Data Bases (1. Gallaire and J.Minker,eds.), Plenum Press, New York London,
pp.34-54, 1978,

[NY78] J. Nicolas and K. Yazdanian; "Integrity Checking in Deductive Data Bases." in
Logic and Data Bases (H. Gallaire and JMinker,eds.), Plenum Press, New York
London, pp. 325-354, 1978,

[R78] R. Reiter; "On Closed World Databases,” in Logic and Data Bases (H. Gallaire and
J Minker, eds.), Plenum Press New York London, pp.55-76, 1978.

(3ha8l] E\Y. Shapiro; "An Algorithm that Infers Theories from Facts,” Proc. of the Tth
LICAIL Vancouver, pp. 446-45], 1981

[ShoR4] Y. Shoham; “"Fazcts end Counterfacts in Temporal Reasoninng," Technical Fepaort,
Yale University, 1984.

[Shof5] Y. Shoham; “"Notes on Temporal Reasoning," Technical Report, Yale University,
Submitted to IJCAIBS, 1985.

(Shifl] D.W. Shipman; "The Functional Data Model and the Data Language DAPLEX, ACHM
TODS, Vels, Mo, Mar, 1981,

[SM84] K. Sakai and T. Miyachi; “Incorporating Naive Negation into Prolog,”" Proceedings
of Logic and Conference, Monash Univ, Jan, 1984,

(5t75] M. Stonebreaker: “Implementation of Integrity Constraints and Views by Query
Modification,” Proc. 1975 ACM-SIMOD Conference, pp. 65-78.

I8820] G. Sussman and G. Steele; "CONSTRAINTS — A Language for Expressing
Almost- Hierarchical Descriptions,” Artificial Intelligence 14, pp.1-39, 1980.

[WEel] DIi. Warren: "Efficient Processing of Interractive Relational Database Queries
Expressed in Logic,” Proc. of VLDB, pp. 272-281, 1951,



