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aBSTRACT

Ietafl ow-based iz1

entation models to support two types of
logie pProgrEmmi g

lezimages and the machipe architecture are
presented, Tne logino procams are compiled into data flow graphs
uzing primitive operzizrs as thelr nodes and interpreted by the
machine to exploit mralilsiis included in these languages. Basic
unificaticon primitives zad rnondeterzinzte coptrol primitives are
discussed,  The =moulailico reswlts of the machine and 1tz performance
conoiderations are also resented.

1. INTRODOCTICH

The logie progr=mming lizoguage inherently possesses unification and
nondetercinate control funciicoz required for inference processing.  In addition,
it also has the potential for mrallel processing. In the koowledge information
proceasing areas at which the fifth gereration combuter systema are aiming,
parillel processing may be us=vcidable in order to solve complicated problems
within practlicsl time consirzints. The logic programming language, therefore,
kas been selected as the kerze! language for ICOT's fifth gemerction computers.

FL1 (Fernel Language ver=icn 1) ia a parallel version of the kerpel language
including twe Ltypeas of bk=: largusges: AND-parcilel Prolog and OR-marellel
Prolog, - aND-mmrallel Fraolog facilitates the implesestaticn of AND parclleliss by
irtrodusing a pguard mecoa==. OF-parailel Prolog focuzes on OR parsllelism,
where esch proecsss can mmlve smelis independently.

Twe eaxecuticn nmodels cf theze lengueges are Iintroduced: cne 1a an
interactive resolution mods: for MID-parallel Proleg and the other 12 an
independant resclution model for OF~paraliel Prolog. In the interactive
resoluticn @model, [procegses interactively comounicate variahie bindings
{measages) by using the guard aschaniss. In the independent rescluticn mnodel,
processes invoked search izdependent solution sets for given goals and the
solutions obtained are merpged Into streams,

The machine Lz based on t=e data flow model, where programs are represented
by data flow prapbhs. Moces and directed arecs in the graphs correspond to
operators and data paths alers which eperands are sent, respectively. Executieon
of the graphs 13 performed = a data driven manner.  That is, each node becomes
executable ooly when all the czerands are arrived on ita input ares; it performs
the operation and put= the res=its on its oubput ares without side-effect. Thias
functiomality of the operztors= 2aa close =imilarity to the functiopmal languages
and well suited to parallel rzcsssing [7) [3] [9] (2].

The data flow model hasz =—3¢ =loilsrity to the leogle programming languages
described above, Executicz of leogie - programs 1s performed in a goal driven
manner; @& clause in the pro—==s i3 initiated wheo a goal is glven and returns
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the results to the goal.

Toe programs written in these languapges are compiled Into data flow  graphs
corresponding to the machine language codes of the pareillel inference machine.
The machine is bazed oo the unfolding interpreter [3), in which unigque
identifiers are assipned te all the active procedure instanessz and, thus, =211 the
active operators iz these procedures can be executed 1n parallel. Seversl
primitive cperaters are introduced to impletent unification and pondeternminate
control funectiens included in these languages [13].

The machine is constructed from multiple processing elementz and structure
menories interconrected by 2 petwork. Each proceszing elexent interprets the
data flow grepos in parsllel and tracsfers packets to/from other procsssing
glements or the structure pexcories, wWhich store the structured data and are
responsible for the atructure aceoessing command packeis from the processing
el ement s, FPerformance evaluation results from the softéare sioulater shos that
about ope nillien HUPS (Head Urifications Per Second) cz2n ke achieved by

exploiting parellelism, Conziderations for dinereaszing performance are zl sc
ciscussed. ’

The targebh languagss are cutliped in Sectien 2 while Sectlion 3 describes
imp! ementation achemes for these languages. The machine architecture and its
simulation results are shown in Sections 4 and 5, respectively.

2. PARALLFL PRO.OG

The target lanpuzges of the pachiipe include o typea of logle programmiop
language=s 1in ¥L1: OR=parzllel Prolog apd AND-parellel Prolog. Eolh languages
are ba=ed on Horn logic, &8 asubset of first-crder predicate loglio. Inforonel
cescriptions of these laIJE‘LlEl:EEB are given in this section.

2.1 QR-parallel Prolog

OR-parzllel Proleg programs eonsisat of Hern claeses with additiensl seguenos
conirol coperators, such 83 AND-sequential or AND-parsllel contrel operatorsa.
Eaoh plause haz a follewing Term:

H:" El: \!I‘-E: E-'i-l-l- &EI;;

where, symbs' ':-!' means implilcation, and the left and ripnt sides of this symbal
z-e called tne hesd and hody respectively., H is a head Ziteral, and Bi (71<=id=g]
zre body literzls, The beody consisztz of an arbitrary number of body literals
cspnected by logieal AND operators, T™wo types of logieal AND operators are
introduced to specil'y whether sequential or parallel execution ia performed. The
amerator '&' specifies the AND-sequentiazl eorptrol of the body literals from left
te right =fdes and the cperator ',' =r=cifies AND-parallel contral of the bady

AR ]
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The weop-am is inftiated wihen 8 eoal statement (2 clause consizting oenly of
bedy -iterals) is giver. If the parallel AND cperators are specified in the geal
statemant, the body literala (called goal literals] on both sides of the
operators will be executed in parallel, Otherwis=e, the pgoal lfiterals are
erecuted sequentially froe left to rignt. Unification is attempted between each
goal literal and the head literals in the program; 4if multiple clauses exds=t,
tneir head unification with a geal literal may be -performed in parallel
{ok-parallel), FBut the candidate clauses ucifiahle with the goal literal are
limited to the clauses whooe head predicates are the sape as that of the goal
iiteral. Suek 3 subset of eclzuses 1s called a definition of the goal predicate.
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The elau=zes whose head unificalion succeeds proceed Lo further wnification taldng
their btodies az npew goals, or they retun the solutions to the goal if their
bodies are empty.

2.2 AND-parallel FProleg

Severzl languages have been proposed to realize AND parsllelism, They
inetudes PARLOC [S5], Coneurrent Prolog [16], CGHC (Guarded Horn Clauses) [171, and
=0 Of. Common feztures of these langeapes are that they exphasize AND
paralleii= rather man OR parelleli=m, anc that they provide &n inter-procoos
communicatien facility by shoring logicel varlables among AND processes (goals).
The instances of these variazbles (the messages) are sent freom processes to other
processes uaing the grard mecheEni om,

GHC was selected as a basie language of KLY because it has clearer semanties
and provides npcre efficient implementation than Concurrent Freolog, it and has
more powerful deseriptive powes than PARLOG [171.

AND-parellel Proleg programs consist of guarded clauses such as:
B :- G, G2, ..., Gm | B1, E2, ..., Bn.

where, H znd Bi (1<si<=n) are 2 bead and body literzls, respectively, as in
OR-parsllel Proleg. GJ (1<=j<=a) are called guard literals, and '|' is called a
ecmmit cperztor. The left =mide of the commit operator is celled & guard and the
right =side of the commit operatcr is called & body.

"If a goel literal is given, erly opme clause whese guard suceseds can procsad
te it= body execution. The commibt eperater performs mutually exelusive contrel
smong the clauses in the invoked defimiticn 28 in the gusrded command [8]. 1In
the=ze languages, the guard cr body literals are executed in parallei. In order
to implement the interactive communicztion znong the AND processes invoked [rom
these guzrd or body literals, read-cnly variahles are intreoduced, or unificstion
directions are specified. A variable shared azong AND processes can be changed
toc a read-ooly verisble 1if & process wants Lo recsive the variable instznee
{message) from the cther pocess. If 2 resd-only vardable i3 unified with a
mon-variazble term, the veriable 4instance is read befeore unifileation. IF the
variabie is not instamtiated, the unificaticon opersticn iz =uspended until the
variohie iz bound to arother non-variable ters by otker unification cperation.
Thus, the interactive message passing 1s achieved zmong processes.

2.3 Inviaible and Viaikhie Streams

In OR-parallel Prolog, esch goal literal execution will produce a set of
aolutions. Thesze =clutionz may be returned to the gozl in a rondeterminate
manner, OR processes will return the solutieons to the gozl im the order in which
the =olutiens are obtzined. These solutions are merged into & stream by stream
merging primitives. Tne stream here is called ap invisible stream, because the
structure of the stream 13 pobt 'wvisible' to the prograc directly. Figure 2.1
shows an exaople of & goal where the instances of wvariable X obtaiped by the
execution of the literal p(X) are sent to the pext literal g{X).

In AND-parallel Pralog, however, the streams are 'viszible! to the
Programmera. The programmers may code the programs that explicitly genarate or
conzume the streama, which are implemented a= structured data containing unbound
variabhl es as their elements, Such streazs are called visible streams. Flgure
2.2 shows an exmmpie, where a producer invoked by the literal pi(X) geperates a
visible stream represented by a 1ist and a consumer inveked by the literal glX)
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reads itz elegents.

In contrast to OR-parsllel Prolog, at =est one instance i3 bound to the
varizhle X znd it may be 2 =tructure represssting a vizible stream.
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Fig. 2.1 Copmuniczation on an Zmvizible Strean

vizible strez=

[x1,2x2,%3,...]
_-—

?- p{X) . eix

fig., 2.2 Communieation on & 7izible Stresm

3. IMFLEMENTATION OF PARALLEL PROLLG

In this =ecticn, the implementation =chemes to expleit three types of
parallelis=r (0R-parzlleli=m, MD-parsiteli=n and lew-level parallelism in
prificaticn) incoluded in OF-parzllel Proles and GHC are described.

2.1 Implementaticn of OR-parallel Prolcg

The independent resoclution model  Jor OR-parallel Proleg and its
impiesestztion are described below,

{1) Yendeterminate Strean Merpge

Multiple sslutions may exst fer 2 gvez geal in OR-parzllel  Prolog. Toe
crder 4in which these soliticpms are retiormed to the goel is nondeterminate. The
sgiutierns found may be returned to the goel In the corder they are obtzined. Thails
nondeterminiem iz called "don't Mknew reondeterminisn,® To implement this
nondeterginisn, the definition i3 compiles Into a cata flow graph &as shown in
- 3.1. I & gosl literzl is given, e multiple elavses in the defim tion
are irqvoked and unification with the goal is attempted. The selutiens, if found,
are merpged into a2 imvisible stream in a necdeterminate manner.

Strezsm merging is  performed by = roreate-stream” primitive and
Pappenc-stresn™ primitives, The coreate-sream primitive is initiated by the
arrived goal literal and creates an empty siream., The stream is represented by a
stream head pointer (SHP) and a stresm tz2' pointer (STP) to the current tail of
the stream. The contente of STP are initis'ized to the address of the 3IHF cell
23 shown in Fig. 3.2 (al.
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Each eppend-stream prigitive receives the addrezs of the STP eell and a
solution of the clause, If the splution iz not Przil® (i.e., unification
sucoeeds ), the append-stresn primitive appenda a new solutien to the current tail
pointed to by STP and updates the contents of STP as shown in Fig. 3.2 (bl;
Tailed pynificaticn does nmot affect the stream.

v i I_ t

Eezd | | vl Eesd | l

junification 'i I Lu:;;:‘izat:;.on. ]

[ 1 o

| |

I [

— 1 | . I
Bady | Body

imrocstion | invocaticn

s e

|
o zppend- i
i A\ ztregn 1
@ pointer to | 1 |
SHP eell | — —
i r -— - - -
tc gosl lat ol ause —-th clzuse

ig. 3.1 Strezm Merging Scheza in CR-parsllel Prolog

sztrezo body

e — [
SHP_Tempiy”  SHP sl | e
P 77 P .
Kl_..— L I : 15t =zolution
I
T =
y ' ;
o I_-._l A -tm2nd molution
STF| %] STP| -\ - ~
(——
\.7. 'l Mempty N
III" 5
t-p-th szalution
{2} Initial State {b) Stresm with Appended Elements

Fig. 3.2 The Structure of an Tori=ihle Stresnm

The consumer of the stream (i.e., the goal waiting for the solutiona from
the definiticn) will receive tne =zddress of STP immediately after the
create-streem primitive 1=z executaed and try to read the contents of STPR. Ezch
memory cell werd in the strean has a tag field specifying whether the contents ef
the memory word are valid or mol. The Mexpity” tag indicates that the word 1is
empty (i.e., no write operation to the werd has been perfcrmed yet), The
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Ppending” tag indicates that scme read operations are performed to the empty werd
{the read operations re suspended and the suspended read requests are chaired
inte the memcry word until the write operation to the werd is performed). Other
tag values indicate the data type of the data written into the word.

The rezd operation of the 2HP will get a streax head address if some
solutians have obeen appended to the stream, it i=s su=spended otherwise.
Suspended operzticns are activaied when & write operatien i3 performed by the
append-strezn  primitive. ™e eonsuaser process, then, braverses the strean and
g2ts the solutions frem the invoked defind tion.

Ls the stresm structures are stered in and distributed to the structure
memeries, the stream merging primitives are implesented as the structiure
manipul ztion commands to the structure memories. In order to manzge the =streznm
structure, the reference count method [1]1,[2] can be zdopted. It is also used to
reclzim the structure mescries in the machime [12]. A reference ecount ieid is
appended to escn STP eell, which I3 shared among the ¢lau=es in the invoked
definition. The reference pount is imitialized te the npumber of the cl auses
invaked, It is decremented by cne each . time an append-stream operateor is
executed, and 15 incremented by the omber of the caild el auzes imvoked from  the
body literals,

17 the refersnee count reaches %90 Zero by decresenting, the append-strods
stor writes "fail", which indicates the end-of-stream, intc the cell pointed
by 577, aod the 3TP cell becomes garbage. I 211 the claczes fzilszs (i.e., 17 tae
stres is still empty when the refgrence count is zero), the contents of ine 5.7

cell zre sat to "fail": otherwise, it is set to the first cell address of the

(2) Compilation of the Clzauses

Verizhles in each clzuse may be assumed zs the data path memes  aleng which
the instaneces of the varizhles are s=ent. L data flew graph 13 obtaiped by
eonrecting the seme variables with directed zres. Flgure 3.3 shows the graph of
the f1llewing clause:

p(X,Y) = al(Y,Z) & ri{Z,¥).

Tha instzrce of the veriable ¥ in the exmople 1 used a5 the first argument ot
the first body literzl q(X,Z) and the instance of ¥ iz psed as the second
arzument of the body litersl r(Z,Y), BHecause the &ie body litersls are connected
by @& seguentizl AND operstor, the Instance ef I, whicn is obtained as the sccond
argument of the literai gi(¥X,I), i3 sent to the rext literal riZ,T).

If the parallel AND operator, on the other hand, is uzed 4in the above
slzuse, the unbound variable 7 iz shered by tweo parallel bedy literals a=s shown
in Fig, 3.4, In order to azsure that the two ocourrences of 2 are bound to the
=ame instance, the unbound variable I is changed to a shared variakbie Is befcre
twn toor literals are called (tne subseript 's' indicates tnat the wyariable i=
shared). The shared veriable is distinguished from a non-shared variable by its
data type =nd dynamically created by a "share” primitive,

Tae two goal literals, thus, have the shared varlable Zs a5 their arguments.
The invoked definition will geperates bindings for the shared variables if they
are bound to the terms other than non-shared variableas. Tess bindings are
returned to the goal as the stream elements and are used to checkding of the
shared variables in the gosl for consistencey.
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argument s.

A soluticn %o be returned to the goal (or to be appended to the stream) is
constructed of the

final

instancas of the given goal literal zrpuments
fellewed by a binding environment fer the shared variables inclueded in the
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goal

e goal gets the selutiens from the streoam, decomposes thes into the

ipstances and the binding enviromment, and then performs conslistency checking or

rext goel literal

irvocation, followed by constructing new solutions and
returning thes ta the parent goel.
frem gosl i
l —
l J, | i y
pli, %) :- giil, 2 & r{2,¥%).
|'r||. i |
‘ imztancs of ¥ \ y ¥
< eonssruct
sciution
i instance of X o
! & it invizitl e
o strezm
to goal
Fiz. 3.2 Connection Grach of 2 Cauze with Sequential Body Literals
T ¥
frem gosl — ¥
I
r »
l-' l y ¥
PR, T e glX,Z} ' riZ, Y.
| instznea of ¥ T
' o canstruct
\ solutions
instance of I g
[ - Plinvisivle
® ) etream
v
to goal
Figz. 3.5 Conmnmection Graph of & Clause with Parsllel Body Literals
{3) Head Unificatien
Parzllel iz inciuded in head unification can also be exploited. If a goal
literz]l have multiple arpguments, their unifiecation with corresponding head
arguments can be achieved in parallel, and if a pair of arguments Lo bDe unified
are

structures, their

substructures can

be al=o unified in parallel. If the

arguments passed froo the goal are the structured data, such as list= or vectors,

these structures are
two structured data,

be eliminated.

shared instead of beeing eagerly copied;
copled when copying ia necesszary.

they are lazily

Only when the unificstion is performed between
the pontents of these structures are accessed,
copying overhead via the petweork or redundant starage for copied

Therefore,

structures can
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A probles in thia =chere ia lateney for structure aecesses. Lateney msy  be
increased 23z the pmber of processing elements increases, In order to expleit
parallelise, the processing element musat issuve multiple remote acceas reguests
without waiting feor their responzes, In such an eovirenment, the requests and
resgonases are saraged by their identifiers since responses may not be returned to
the processing element in the order in which the requests were issuved. The dats
flow model implements thisz tyvpe of control in a mtwal way, and can also exploit
supn  low-level parslleldise in head unifiecastien becauvse it iz assured of
indepandence of operationa or instruetions [2] [4].

A olzuze 15 compiled inte & data flow graph, where hesd unification is
performed by oultiple uvnifly primitives., Figure 3.5 shows a data flow graph when
toe Ffollowing ¢lause is given:

pllX,al,b,¥) := ...

A unify operateor 1o provided for each of the thirese arguzents of the Lead
literal: they are executed in parallel, Each unify operator haz an I {(instanpce)
port and E {envircmment) port; the I-pert for output of & cocmmon instance cof the
input opersoda, and the E-port for outpot of 2 binding emvirorment of =shared
variable=s dnctuded in the input operands, The hinding enviropment 15 orezted
only when =shared varisbles are bound to non-variasbhle termz or to other sharad
variahles; it 1= represented by a list, whose elements are paipr lisis
constructed of the shared wvariables and their instamces. For example, 12 the
given gozl litergl is p(le,Us],V,Us), wnere Ua i= a =hered variable, then tne
common instznee and the bkinding emviromment produced by the unify orerator of the
Tirst argument zre [c,a) and [[Uslall, respectively. ‘The eovirumment shows that
the =shared variable Oz 1= bound to a econstant instanee 'a'. The failed unify
‘eperators gemerate "fail" symbols to their output portas.

L nen-shared variable c2n be unified with amy team, and their cocomron
instanee 1=z alwsys the terz bound to the varisble, Thercefare, when the bheaqd
arpument i3 a variable &@s in the third argupcent in the example, the uwnify
gperater can be omitted, 88 mown by the brokeo line in the figure. The =impler
example shown in the Fig, 3.3, where 211 the hesd argurents sre npen-shared
veriables, does no head unification; the arguments passed from the gosl literzls
are zent to the body directly.

The check-consistency primitive in Figz. 3.5 receives the E-poart ocutputs of
the uppify primitives, and perforcs consisteney checldng for the bindings of the
snzgred veriables: 1t sezrches iwo envircrments whether they have bhindings for
same zhared wvariabties, apd, if =0, tries to unify both instances for the siared
variables and crezte a mew emvironment. Thoe consistency checkding is eagy 1 2%
least ope of the epgviropcents ia pll aor fall.

The variatle ipstances cbtained by the unify primitives are supbstituted for
the shared variable inciuded in the minding erviromment. This substitutien iz
executed by "subatitute” primitives. A 2ubstitute primitive repiaces the =hared

zrizilan in the instance witn the binding envirgment, i1f the instanee includes

snared varlables and if the envirommnts is a list containig their binding; it
outputs "Fzil®™ if the envirorment is "fail® (i.e., head unification fails), or
outputs the instance directly, otherwise., Their outputs are sent to the npext
stage: execution of the body if the body exists, or returning of the solution if
the body is empty. Body execution is suppressed if head unification failsz. The
procedure call primitives inveke the definitions only when the finasl envirconment
obtained by the check-consiateney primitive is not ™lail™.
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Fig., 3.5 Data Flow CGragh Representaticn of Head Unification

3.2 Implexentation of GHC

The ipterzctive rescluticn model for GHC &nd its implementation are
described belew. '

(1) Resd-enly Tagsing Scheme

In GHC preograms, oply a clause whose guard succeeds Iirst for the given goel
can proeseds its body execution. This nondeterzinism is cslled "don't care
pondetermini =, ™ When the definition i= irveked, a sezaghore flag shared among
the clauses in the definition i3 created. The clause whose guard succeeds (d.e.,
its head unifieation with the goal succeeds and the invocations of 211 itas guard
literals are successfully terminated) performs a test-and-set operazaticen to the
snared semaphore flzg. If the result of this cperation is also suceesaful (i.e.,
if the oeolause exeputed the operation i1s a first one whose guard succeeds), the
ol auze can erecute 1tas body; procesasing of the other clauses is termipated. The
number of ipsztances bound to a variable 1s restricted te one; because the other
candidate clauses are excluded by fthe pguard mechanis=m. The variable in
iND-parallel languages, therefore, can be represected by (a2 pointer to) a memery
cell,

The main difference between Concurrent Prolog and GHC 1s that Conewrrent
Froiog uses read-cnly annotation, while GHC uses a guard mechani=zm teo control the
direction of urnification. That is, in Coneurrent Prolog, 1f & wvarlable with
read-only annotation (read-cnly variable) i2 unified with & non-variable term,
the instance bound to the variable is read before wnification 1is performed.
‘Thusz, this wification 4is =uvspended until the varlable is instantlated to a
nop-variable term. If a varlable without read-only annotatien is uvnified with a
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term, the term Is writlen to the variable cell. In GHC, cn the other hane, a
variable in the goal literal czonok be bound to & noo-variable tera, or to
arnother variable contained on the gosl 1literal, in the guard of the invoked
elausze, Such unifieation is suspended until the verishle in the gosl literal is=
tbound. Synchronizetion between the read and write operations is rezlized by the
pemory tagsing schene described in Subsection 3.1.

There are several implenentziion schemes to support the gusrd mechanise in
GHEC [14]. One of them £z & complete compilation scheze, where 21l the
-

5

enification cirections are analyzed in compilation time, and codes are generated
using wunidirectional wunification primitives as in Kermel PARLOG [6). In this
scheme the compiler is complicated because it must analyse guerd nesting levels
of &l1 elzuses by traversing the whole predicate imvoestieon tree and detergine
ell the directionz of unificaticon. The separzie compilation of programs reguired
to develeop large prograss may be difficult.

The pext L5 & peard syvoten mmber scheme, where 211 the emvircments are
managed by guard system numbers. A new guard systex number iz allocated when a
new definition is invcked and i= restored to its parent pumber when the conmit
oparzter is xecuted, The guard system nwmbers are associated with all the
variables included in the imvoked clauses snd the emvircoment to which each
veriable belongs iz compared with the current enviromment when unificstion to toe
variahle is zttermpted.

Tne pointer coleoring scheme distinguishes variables belonging to the goal
literals from those belonging to the current guard by coloring. If ucification
i= attempted belvween a goal varizhble and a veriable in the Zmvoked clzuse, the
czllee's variable is changed to 2 colored varizble, which points to the eriginzl
variables. The colared varizbles are treated like the read-only wvarianles in
Conecurrent FProlog. If a ecleored variable is unified with 2 term, the instancs
bound to the variable iz read befeore wnification. The commit operztor restores
the eolored veriablies to thelir criginel varizhbles,

The latter two schezes have the drawback of overhbead caussed by alleocaticen
and dezllecation of variable c¢ells and by extra merory zeeesses to gt the gaerd
svstem numbers of the ariginal variables. The lzst zethod i:s cre we propose to
ioprove on by reducin overhead. It 13 an extension of the pointer colering

ng
scheme and is czlled & read-only tagging scheme, in which every wariable has &
t=g specilying iis read-only level.

In the tagsing schene, each variable peoourrence has its read-only level,  As

gesgribed above, - Congurrent Proleg glves only one level read-only control by
vEing read-only annotation, while GHC permits arbitrary read-only level as =siown
in the following takle:

Table 3.1 PRead=only Leveis in AND-parallel Prolog

Fommm e ———— +— e m e —————————
iRead-only | Sexanties in I Serantiesa-fin |Notation in |
i Level {Concurrent Prolog! GHC lthis paper |
e e e —————
| 0 | bt [ X I X f
| 1 ! X7 | %7 ! X |
! 2 | X7 | XT? H xrr H
i 3 ! X7 H X177 b xree ]
1 ) 1 | '|
1 # ] - i L M

| . i . | . | . |
: * ; - } - : - I
= e e o . + - +

{The =ymbol '7' indicates a rezd-omly tag)
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Fig. 3.6 TFRead-only Levels of Variables

The read-only levels of the goal variables are incresented by one before the
definitions are invoked, and decrerented by one when the commit cperztor of each
inveked clzuse succeeds, Figure 3.0 shows an exzople of the data flow graph  and
the literzl grpuments of the fallewing goal and clauses:

- pilX), g1{X].
pilXx) := p2(X) | a2(¥).
(X)) = p3(X) | Q3(X).

In the figure, '"+1' and "=1" speciiie the Ilncrement z=nd decrement operators of
the read-only levels respectively, In this e:mople, the read-only level cof eacn
variable instance sent from the head litersl to the body litersl is decremented,
fallowed by being incremented Jjust after the decrement ocperation. These
seguences of the decresent znd inerement operators, therefore, can be eliminated
by the compilee.

It should be poted here that no variable cell allocation is necessary for
the calleels wvariables uwnifled with the caller's variahbles. Memary cells are
dyramically allocsted only for varishles not included in the head literals while
appeered as the arguments of the guard or gosl lLiterals., These variables are
represzented by the pointers to the e¢ells, whose read-only levels are zero. They
are called writable variahbles.

There 1= a probler of the decrement operatien overhead in this scheme. If a
variable instance sent frem the guard to the body i3 a structure whose components
include read-cnly variables, the decrement operation must traverse whole the
structure and decrement all the read-only levels of these variahles. This
operaticon may degrade the performence. For example, if the following goal and
clause 1a glven:
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T= piXJ.
(X} 1= Y= f(2), Z=X | r(Y).

In the guzrd of the clause, the writoble vari g
f{Z) while the wvariahle I is= bound to the read-only variable X'. Thus, the
degrecent operztor soould chapge the structure S{X") to the new structure fF{X).
In order to execute this operation faster, if it-e writable veriskles are bound to
the read-only variables, the unify primitive gererztes a decrement variable list
including the writzble wvarishles as its elsents. The decrement operztor
receives thia lisxt and perforos decrement oper:ztion only for the=e variablesz, In
the actwal rprograms, vunification szweh &3 described zbove may be rare coses,
Therefore, almost a2l]l the decrenent variable 1=t are nil &nd the
operators are =soply executed,

Yis bound to the =tructure

w
=
=

=
-
=

degrement

It i= difficult to represent arbitrary rezd-cnly level in the tag, Mcosuse
the tag field length to specify the level may be limited. So, the pointer
coloring scheme can be used a5 well, If the pactipe permits N levels in the tug
fieid, & variable with read-only level less than N+1 can be represerted in a
straignbforward manrer, I the verizble's read-cply level is incresenbed to H+1,
hen 2 mezary cell is sllocated and the rew variakble iz resre=zented by the
pointer to the zllocated menory cell into which the original veriable is writien.
The pew wvarizhle is tagged to #hiow that indirect menory access is necessary to
et the oiginel variable., This type of variakle is ealled a2n extended variaitle,

In zetual programs written in GHC, aimeost 211 the pusrd nesting levels ars
zerg or one; fes clauses invoke the user-defined of auszesz frex their guards. The
number of maximoe rezd-conly levels recresented by the tag can be restricted to
one, Thus, three different tags are sufficient to represent variables: a
writable varlable {(a variable with read-only level zerg), a wariazble with
read-cnly level one, and an exiended veriahble, ) '

(2) Optimization of GUC Inplementaticon

Many =trean parzllel programs in GHC cazn be conzidered as producer-consuser
problezs, where gproducer processes produce & sequence {airezm) of messsger &nd
consuner fprocesses receive the messagea fr= them, GHC and the oiber
AD=pzrelliel lznmuzges use loghesl varighles for pesssgs pessine. Ezon logicel
variatle can be bound to only one inztance and me7 e ipmedistely discarded after
the consumers read the instanee from it,  That iz, the 1ife span of ezch logical
variable £z very ghort and frecuent memcry sllocztlon and dealleoeation for  the
logiesl varigbles are npeceszary,

The main idea of this subsection i3 to invizemlize the detailed structure of
the stream from the prograemer's point of vies znd to develop a more efflcient
stream structure and primitives instesd of wsing legieal variables directly.

(z) A Zizple Producer-Consumer Progrem

The exampie shown below is a GHOD pregram of a  produger-constumer problem,
where the produocer Invoked by the 1iterzsl p(0,X) zenerates a =equence of ilntegers
and the consumer invoked & the literal g(X) consimes them:

7= Fanx}l q{xj-
p{K, X} = M1l := 8+ 7 | X = [N1¥], p{it,T].
g{[N[Y]) 1= print(N) Paltl.

The stream in this program 1a represented by & li= whose first element 1is a
nmber and the second element is the rest of tSe stream. The clause 'p' will
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allocate 2 pew pemory cell for lopieml yariahle 'Y each time it is irwvoked and
the clzuse 'g' will discard the memory cell alter 1t reads the inastance of the
varizatlie,

Tn order te hide the actual representation and impl exrentation of the stresn
rem the prograz, we can rewrite the above program &8s folloes:

2 preate_stresmlHead, Tail), p(0,Tail), of Head).
pi¥,Tail) = N1 := B+ 1| stresm(Tail, N, NewTail), p(H¥1,NewTail).
gl Eead) := streax(Head, N, NewHead), print(N) | a(Newlead].

where the predicates 'creaste stream' and 'stresm' can be definmed as follows in
the 'pure' logical interpreter:

X,
1.

create stream(,¥) :- true |
sooeami X, V,¥) - true | X = [vl

=7 4

L]

The 'creste_strezm' clzuse succeeds when it is invoked, while the 'stream' clause
tries to unify dite first head argument with 2 list comsiructed frao its szecond
and third head arguments, The execution of the 'streaz' predicate in the body
(as 4in thne clzuse 'p') will append 2 pew elesent 'N' to the streem and return a
rew stream pointer. The execution of the 'streaz’ prediceate in the geard (as in
the clause 'g') will read and deccmpose the stream inte its first element "H' and
the rest of toe strezm.

We czn use more efficient, bBuilt-in predicates e-teddad in the sSystem
instesd of these user=defined stresm handling predicates. They can be
implemented as streex merging primitives . deseribed in  Section 3. The
‘eregate_strean' predicate creates an empty strieam. ‘The stezm can te represented
bty & structure as shown in Fig., 3.1. In ecrder to reduce mperory alloeation
overnesd further, the predicate can allocate a contipueus memory block Cor the
atream buffer as shown in Fig. 3.7 (a) [15]. The pointer of the block may be
bound to the wvariables '"Head' and 'Tail'. These pointers are then sent to the
clzuzes 'g' ané 'p' respectively. The tstream' predicate zimply increments these
pointers and returns them when it 1= invcked.

{b) The Mcitiple Froducer Problem

Thiz stresz implemerntaticn can be proved to be more efflicient for multiple
producer probleos. In the following goal, the producers "pl' and 'pé' generate
streams which are merged into & single strean consumed by the predicate 'q':

- mergal(¥,Y,Z), p1(X), p2(¥), all).

The predicate 'merge' merges two streans 'Y' and 'Y intoe a stream 'I' in a
nopdeterpinate manner defiped as follews [17]:

perpe([1,¥,2) :=- true | 2= 1.
merge(X,0],2) 1= true | Z = XL
merge ([BIX1,Y,Z) = true | 2 = [HW], perge (Y, X, W),
cerge(X, [(EiY1,Z) = true | Z = [HIW], merge (Y, X,W).

In the 'pure' logical imterpreter, the goal literals p1(X) and p2(X) will produce
the independent streams 'X' and 'Y' and the goal literal merge(X,¥,Z) will co@y
their elements intc a new stream 'Z' while walting for the arrival ef the
£l ement .
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This merge predicate can be impl emented vsing an extended verzsion of the
built-in predicate "oreate_streanm':
merge(d, Y, 2) :- true | create_shared streac(Z,X), Y = X.
The predicate "creste shered stresm' creates a shared stream as shewn 1in Fig.

3.7 (b).

stream
buffer

|
7
Head — f% Fead f///

Tail X :—-—L-’— Teil——— ]_ STF_!\-’“ T r

s

(2) Non-:ztared Stream (b) Shared Stream
Fig. 3.7 Heprezentation of & Streanm
The producers "p1' and "pE" may share the current strear tail pointer

Eagh 'stream' predicate e2ll in these producers will append a new element
memory word pointed to by STP and increment the contentsz of STP.

-
o

0
O

)
5 "f

{c) The Bounded Eulfer Comruniczticn Program

We can extend the strezx handling prediczte=s to econtrol bDounded bDuffer
communi ca tion, The 'erezte stres=' prediecate In the Tollowing goal creates a
bounded buffer and buffer size counter initialized to 10.

7- create _streaom(Head,T2il,10), p(Tail), glHead].

The buffer zize counter iz =hazred zzong 211 the proceszes invoked by this po=t,
Tahe cresteg procszzes execube semechore operations on the counter. The producsr
rocesses invoked by the predicste 'p' will test and decresent the current buffer
aize counter when they try to append new elerenmts to the stresm, They may be
suspended if the counter is zero. The cocoaumer process invoked by the predicate
gl will tes: and inerement the counter after it reads a stresm element.

L, MACHINE ARCHITECTURE

The copvern.lsnal processor besed on the vor=llewmann model, in which both
prosrax  codes and dzta are =ziored In the menory unit, fetches &nd interprecs
prograz codes gequentially. If such processers are used as the procsssing
elements of the dlstributed, parallel inference machine, the context ssitching of
processes or packat communication overhead, caused by frequent remote accesses of

shared structurea or shared variables, will signifiecantly reduce the systez
performance.

#z described in Section 3, the data flow machine provides independence of
operations executing in parallel, The machine can exploit parallelism easily in
such a distrituted processing envirooment. The abstract machine architecture i=
shown by Flg, 4.1. The machine is constructed of frocesaing elements (PEs) and
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strpuptore menories (ZMz) interconnecied by petworks., Each PE has severzl stages,
The packets trazzerred betwesn these stages include result packets and
executable instruciizn packets. £ result rpacket econsists of three [ields:
activity ddentifisr, destiration, and dztia fialds, The activity identifier
specifies the irmvczes procedure instance to which the result packet belocgs. The
destiration specifiss the destinstion instruction address of the result packet.
Tt slap specifies wihether the destined instructicon receives a3 aingle operzsnd or
twa operands (i.e., tne irstruction iz executable on Errival of a2 =ingle operand
or tuo operprds)}. Te data field contains The aoperand data to be s=ent Lo the
instruction.

Meowork ‘

i
|:.:.‘ |E’E

L
- sulvn R
=] - R -

Z; Processing Element
H: Structure Memory

z. 3.1 Absizot lMachipe Acchitecture

Figure 4.2 deZc=z the configuration of each PE. FAU (Packet Queue Unit) is
a4 first=ip first-cu: cueue memcry to store the result packetz form the Token Bus,
Ty {Instructieon Cozzrel Opit) recedives the result packets frem POU and checks iF
the destimation iz=tructicns are executable or mot (i.e., if their operacds are
ready or not)., Ap iz=truction is executable if it receives 2 single gperzad, ar
if the partper c¢perand is glready in the cperand memory in the ITJ when 1€
receives two operasis. In the latter ecase, the ICJ s=earches 1n 1tz operanc
memcry whether the rpartner operand with the =zze activity Identifier and
destinetion 25 the rescit packet exiats or mt. If it does, the partner is
reqaved from  the cgerand menory; obtherwise, the resulti packel is stored in the
operand mezcry. nis sezrching 4is performed zssoeciatively by  hardeare hazh
gecsvming the activisy identifier and destination address a5 the key fieid. IT
the instructien is emoutable, the ICT fetches the dnstrueticn code in it=s
ipstruction mesory 258 constructs an executable instruetieon packet and =zends the
packet to the rext =izge, one of ARls (Atomie Processing Unita}, wvia the
Tnstrustien Buz. * ™e APJ interprets the instruction packets and sends resuli
paskets to the FI0 iz fta PE or other PEs, wor sends structure access ccmzand
packets to SMs viz the Token Bus., The SMs are respensible for the structure
access commands, pestam structure sanipulation operations, and return results to
the destination spe~fled by the commands.

-petusl dimple-eszztion of the experimental wmachine is currently Deling
developed using the bieracchlca retwark shosn in Fig.4.3 [10]., The machine
inelyudes elght PEs, seven SMs, and one host computer used to monitor or defug the
sysbem, Packets z-e transferred between the modules (PEs and SMsz) via Token
Buses controlled by §is  (Metwerk Nodes) that arbitrate the packet sending
requests from the z:dules and send the packets to the other modules, The APJs
and SMsz are Iimpleseszed asz ploreprogram  contral units uwaing bit-slice
cicroprocessors or —e=al hardware to recocgnize the data tag., The ICls are al=a
cicroprogram contreilss to implement hashing hardeare.
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Fig. 4.3 Configuratisn of the Experimental Machine

5. PERFORMANCE CONSIDERATIONS

5.1 Eimulation Hesulta

A software simulator for OR-parallel and Concurrent Proleog was developed and
machine performance evaluated [11].  In the =oftware simulator three types of
retworks are assued. An Inter-PE network 13 used to transfer result packets
betveen processes being executed in PEs. A PE-3SM Network i3 used to trapsfer the
structure commands or thelr result packets between FEs and SMa. Finally, an
Inter-SM rpetwork 413 uszed to transfer the structure commands between SMs. The
Inter=-PE and Inter-SM Netwaorks are two-dimensional mesh netwarks and the PE-SM
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Yetwork is a mullti-stage metwork,

The =loulztor is an event-driven =simul ator impl ementing the functiomal units
described above and netWweork nodes as independent proessses.  Thelr typlesl
rrocessing times assumed are given in Table 5.7, It iz also assumed that 211 the
It0z in the =ystem eontain the complete data flod graphs in their Apstrueticn
merories, and the 2llocation of new procedure instznees iz performed with no
dynamic program loading overhead {but the conbtrol overbeed to allocate new
procedures to FEs iz taken inte account).

Table 5.1 Typical Procesaing Times of the Onits

e S o e

+ e e e e e e
! Uit | Item ITime(Machine Cycles)|
fmm—— ERep. - —-—— - -
| PA0 | Packet Heceive i 2 '
! | belay in queus ' B ]
ettt o +
| Ic0 | Single operand instruction | 2 !
H | Two operznd instruction } |
! i (on arrival eof i1st operand)| 3 !
| | Two operznd instruction | H
H ! {on arrival of 2nd operand)| 5 |
o i ———— — =+ e
I Am? | feopy® instructien | 3 H
| | Packet crestion i 2 |
e e + ——— ———————
I M | Packet receive | 2 ]
| | Packet sond ] i) i
- + 2 - e -
! 8M | SM-read operation } 2 |
! | SM-write cperztion i 2 i
——— et —— B

The semple programs include:

- DC3 (Defipite Clzuse Gremmar) and BUP (Bottom Up Parser) programs
that gemerate par=sing trees by amalvzing natwrzl lansuzge sentences
(written in QR-parsllel Prolog).

- & cocmpact program to eliminate duplication of Llist elesents
(written in Concurrent Prologl.

- an editer, which interprets the seguence (atream) of database
pommands and updates the internal databaze (written in Conecurrent
Frolog).

- gulick-saort programs that sorts the l1ist elements in ascending
order (written in Concurrent Prologl.

- M-queens programs, which places the N gueens on the N X N chess
board =0 thzt no gueen capture any other gqueen (writteno in both
languagesn).

Figure 5.1 and 5.2 shows performance curves for OR-parallel Praleg and
Concurrent Proleg Programs, respectively, when the number of modules (PEs and
SMs) are increased., Performance is represented by HUPS (Head Unifications FPer
Second) assuming that one machine cycle 1s 250 ranosecond.
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In the Fig., 5.1, the =z=me dictionary and

sample Ja
apalysle are used in both the BCG El panese sentence for

b ard EUF programs. The sentence and the
dicticpary are very mmall, so the perforzance of these programs is optimal using

about =ixteen maodules The performance of BOP

- Frogram is proportional to, and
2bout twice that of the DCG program. The elght-queens program does not :"ﬂaf-'ﬁ
optimum 1n the simulated range and its performance was about ope million HUPS at

18
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the madmum point.

In the Fig, 5.2, the performancesz of the compacl or edifor programs are not
so high, because they do not have 50 much parallelisp.  Severzl quick-sort
prograzs are tested. guick-sortl sortsz a list constructed frem atomic constants,
guick-sort? =sortz a list whoze elements are constructed from lists with two
constant elesents and reguires 1ist cocmpariszon predicates to decide the sorting
order, In crder to expleoit parallelime in the praoblen, guick-sortZ is updated so
that list ceomparison ic performed in the boedy rather than in the guard
{quick-sort-ezger2). quick-sort-eager3, in which the length of the llst elezents
i3 extended to three, was also zimuizted.

Comparizon results for the =ix-gqueens progracs written in the o languages
are given in terzs of performance (Fig. 5 1) and execution times (Fig.
§.3{b)}. Two versions of Concurrent Frolog programs are gven: one 1s a verzlon
in which stream merging predicates are used to control the soclutions {CP-merge
versiond: 1in the other version the selutien set i= given &5 a difference-list
(CF=d=1ist verzica). Tne performance of these prograzs= is nearly same, but the
Concurrent Proleog versions need zbout three times as puch computing time 2=
OR-parzillel Prolog versien. The Concurrent Prolcg programs here do pot implement
the stream handling predicates &s buili-in predicates desceribed In Sectiom 3. It
meem=z clezr that the Conecurrent Pralog verzions can be executed faster il

-

built~in strezm handling predicates are used.
£. ComCLUSION

Execution models eon the cdatafloe-bzsed parallel Inferenceé macnine fer
Of-parallel and AND-parsllel Proleg, besic languegss in EL1, were presented and
primitive operztors for supporting these two languages were cdesordbed. It waa
snown that two types of logle programning langueges with different zims can be
supperted on this machine,

Tere are two fasic functiops eabedded din these languagpes: one 13
unificstion and the other 13 nondeterminate contral., Several primitives for
performing these funetiorns are Iintreoduced and programs written In these languages
are compiled into data flod grapns  corresponding to machine language cocdes,
Thus, parellelism in the progrezs c2n be expleoited naturally.

The machine architesture constructed from processing elements and strueture
memeories was presented, Tie procassing elenment interprets the procedures
represented by the data flo grephs in parallel, Structwed cdata 1z distributed
to astructuwe memaries and zhared soong thess procedures, Tous, lazy copying of
the structured data can be eazily achieved.

The =loulaticn results of OH-parzllel and Concurrent Proleg programs
indicate that performance czn be =significantly improved by exploiting
parzilelism, Detaiiled dezigns for the experimental machine have been developed
and the machipe is currently being debugged. Fature effeorts will Involve the
evaluition of the machine to serve 22 the basis for & highly-persllel inference
machine,
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