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AUTOMATED SYNTHETIC DIFFERENTIAL GEOMETRY !

INTRODUCTION

This is the first report on SDG project, which consists a part of CADP project of
ICOT Wha, The aim of CAP project is 1o create prool checkers for seme specilic Tields of
mathematics i1 order to investigate artificial intelligence for solving mathematics and the
ideal man-machine interface in such acuvities [Furukaws & Yokoi 84] 5D0 project aims
to create a proof checker for a new field of mathematics, Synthetic differential geometry
(5L ) initiated by FW. Lawvere and A. Kock. 506 15 o kind of non-standard geometry, in
which there are sufficiently maeny nilpotent elements on the real line. Hence the universe of
disvoursa af STH canno! be the category of sets SET, but a2 kind of topos called a well
adapted model [hock 8], A remarkable feature of 5DG is that large parts ol proots o 50K
are alpebraic or categorical computations. Henoe it is probable that many theorems in S
are eastly proved by proof checkers furnished with powerful rewriters like EKL by
[hetonen & Weening &4). {See Appendix A for a small experiment of SDU with EKL. in
wineh o fairy short proofs of rules about differentiation are given. |

In these notes, we present a simple categorical construction, on which our language
Fier 5000 will be based.  As noted above, the universe of SDG is other vategories than SET,
and &xioms and concepls of SD0G are stated in diagrammatic terms, But, diagraminatic terms
like, pullback, commutative diagram ete., seem not to be o appropriste 2s a language for a
prool cliscker. Diagrams are eminently useful to crystallize some ideas in 5DG,  but in
deneral they are less intuitive at least for people do not care caiegory theory. Besides,
they are Space consuming and we have not yet had enough experiences in using such
graphic ckjects as a language for proof checkers. (No one would like to draw a square
with labeled sides on a display than simply typing i as fo g=go 7). Fortunately, there is
gnother way stating and proving facts in SDG by logical languages. The way, categorical
logic, s a standard device of 5DG, and we have decided to adopt it as the language for our
sDG prool checker. Some statements in SDG are naturally expressed by infinitary languages.
For example, the Axiom™ of [Kock 81] in a 1opos E s steted as {ollows:

E r—'- .I"Lr'x‘ﬁi'l"d'll".'ﬂ',,{ 1t b= Rﬂ.'lrJE Pk n ﬂf i3 giren b:,' p],

where £oand 0 are variables run through actuw! natural numbers, Dyn ) is a subobject of O°
and Riknvis the object of the polvnomials (with coeificients from R) in n variables and
of total degree Jess than b The sequenve of objects {Ihin ' acn should be consiructed
viitside Eo Henee the variables & and n live in SET. On the contrary, the variable f lives in
E. Henee the above formula involves kinds of wvariables. fe.. variables living in SET and
variahbles hving in E. The standard viewpoint to this problem i8 to think E as 3 farmal
systens Aumely fo1s considered as a variable of the formal system E and b, n are
cutisidiera! as o melorariobivs, However, this viewpoint amplies twa levels of logic, which we
gt Bk Do Pare Lol [Kock 8l), those two kinds of variables seem 1o be treated without
any distinctions. We hope 1o do things in our proof checker as Kock did. For this end. we
will mhie up G wo universes of discorce SET and E into a topus called the envelupe of E
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the lugic of which our proof checker will be based on. The readers are assumed to be
familiar with fundamentals of topos theory {cf. [Fourman 771, LJohnstone 77), [Makkai &
Heves T7] L
1. THE ENVELOPE OF A TOPOS

el E be an arbitrary category. Then its envelope E is defined as [ollows:
DEFINITION 1. i wbject of B is o puir

{Jr-u{-'ll}ltl}l-

where 1 is u set and A, is an object of E for euch iel. We will often write { A} or { A} for
{.F., {-'1'1}1E--:.'

A morphism b from {4 he to {8 Ve is a pair

o= efd=J, {é et

when @, is « morphism in E from A to By for each i<l
The composition of fwo morphism <f {é,).>. <gl¥.}> @5 defined by

cge . (a0 @, 1o
The function f is called the base part of h and 15 denoted by ik}, and the family of
morphisms |, e 15 called the fiber purt of h and is denoted by % Hence, for cach ie Tk,
it =e, We will show this category E is a topos, provided so is E. The details of the proof
will be lelt for readers, for they are completely routine.
PROPOSITION 1. If E has all (finite) left limits, then € hus all (finite) left limits.
Iroond The 1erminal object of E 15
<Ll
The product of {4} and {8, }es 18 given by
{I\IJ- {-1|‘\B]}|tl.|l-}>'
Vhe propeclions are given by

PR T A E I I 2 D B

we=rai =0, {w;:.'l,,.'kﬂ'J—l'El}.;.d;,}.
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I'ne constructions of set-indexed products are the same as the above.
The equalizer of the paraliel morphisms
o e
e
{!ﬁ-l}l ————— {BJ}II
<g. t by

is @iven by

ko AE hand
{ E. I'.Ep; ———— {.'1.}.::,

where
K={iel | flil=gli)}.
b i5 the embedding of A into [,

atid

L &,
E —— A, TRy,
¥,

is an equalizer diagram for each e H. O

PROPOSITION 2. Jf E is u carlesinn closed category leewed with all sef-indexed products, then
s is E.

Proof, Les 4 be {_1,},t| and H be { &, },c.- Then B* and s evaluation map e Y =0 s

given by
N {TLeBra™ hiero.
Cer » JNI=dL et Jiede.
wliere
ey = [Le Byt A, -

m i 0 f,,__.r-ﬂ"‘f
-
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for each fed ' and iel. Let € be {Ches and let <fi¢.,}> be a morphism from Ch 1o H.
Then the transpose of the morphism is given by

{f‘1{{¢h_.‘>nu|}hzn> s 0 B

where 1= and @,," are the transposes of [ and ¢, respectively. Note that we wrote (and
will write ) €¥.0e for the morphism from A 1o PeB, such that pe<de=d,, for the family
of morphisms (¢ A= Ble. O

PROPOSITION 3. For any cutegory E, E has all set-indexed coproducts. Furthermore, they are
disjoint and universal {cf. |Johnstone 77]).

Frrowf, Let {4 dhen be a family of objecis of E indexed by the ser K. Let 3, be { A%
for eacht ke A, Then the coproduct is given by

I.I..,;p,."lp, o {Ll,“.!'k. {-1".}.}.
The inclusiwon map from % to Leesdc 8 given by
8, {-"L-_'-ll"n}:'l }q

where ¢, 1% the inclusion map form I to lexls. Disjointness and universality of the
coproducts are trivial. O

By the above proposition, {4 }ie is the coproduet of (<, { A0 he in E. It looks as
if el 4144 were the coproduct of {<1, {.,}5}. but this is not generally true. But there
is a canomical epimorphism from {4 be 1o <bLiUA}> given by <J=1 {4 Je> where ¢, 15 the
inclusion map from .3, to W.i. I € has the initial object and [ has two elements al least,
then this epimorphism is never a monomorphism. We will give a logical characterization of
eh AL Y in the next secticn.

The vondition a morphism 15 monwmorphic (epimorphic) i E is as Tollows.
LEMMA 1. ({7 [+ & has an initial object, then a morphism <f, (¢} in E i3 monumorphic iff { is
i dective and ench &, is monemorphic, (i} For any category E, o morphism <f, {&,}> in E is
cpimurphic iff £ is surivctive und each ¢, is epimaorphic.

Hy the above preparations, we can prove the main result.

THEOREM 1. If E is u fopos, then so is E

Proof. Qbviously E is locally small, if so is E. Let {}c be a set of generators of E. Then
f<tf 2 he 8 a set of generators of E. By the above propositions, E has finite left limits,
exponentials and sei-indexed ecoproducts which are universal and disjoint, Henee it is
anough tp prove B has a subobject classifier. The subobject classifier is given by
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ﬂ:(hﬂ'ﬂl. ‘:ﬂ s ||| }').

ctrwe : l—bool, {trael—=0, 0
frue 5 <0, {1} -1,

where
Dy= the subobject classifier of E,
ly= the terminal object of E.
bool={#, [} (# 0% frwe and [T s false ),

let ¢f {¢, b be a monemaorphism frem {4 )a 10 {8,}e in E. By Lemma 1, we may assume [
s & subset of J and ¢, 15 2 monomoerphisi, Then is classifier s given by

Lot {ﬂ’,}_,g,j) ; {B_;}J_"‘?
where ofy 1s the choracteristic funection of f, Le. the classilier of [ in SET, and if jel then
"’, H BJ —t 1y

15 the vlassilier of @, in E. otherwise ¢, 15 the uniguely detarmined morphism from #, to
Lo, .

Let @=df{¢ }e> be a predicate of type As{ A}l . i a morphism from A to 0

Then @ is uniguely determined by the set S={icl | f{/ =} and morphisms {¢ bes. S0 we
sOTnetines wrile

8 i@ es?

for the predicate &.

In the rest of the paper, E always stands a topos. We will show how to embed SET
and E into E. The topos SET is embeddable intoe any wopos E by the constant sheaf functor
SE—SET. but it 15 notl always true that 4 15 full and preserves exponentials. Hut the
constant sheal Tunctor from SET to E is a full-faithful embedding preserving exponentials.
In our case, the constant sheal [unctor preserves almost all things of SET except the
subob ject olassiflier, The preservation of logical operators and quantiliers will be examined

in e next section, We will here define the embeddings and prove its fundamenial
}.-rn_:rnrlul:;..

DEFINITION 2. The embedding A: SET=E is the constunt sheaf functor, Le. it is given by

AL =<0 (L
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AlFI=f, L= Lua .
The embedding #( - bE—E is given by
# A LAYy,
# A= A

lW'e may identify | with A(T) and A with #(A), respectively. Sv we somelumes write I {A)
instond of ACTF (#LA

PROPOSITION 4. (i) A nnd # arve full-fuithful. (i) A and # preserves exponentials. (i) 4 has o
left adjoint T and u right adjoint . Hence it preserves ail limits and colimits. (iv} # has u lef!
wil joint TL. Henee it preserves wll limits, But # does not preserve 1 UL 1, so if never have right
ad joind, Hence we have the following ad joint pairs

=
< - iI N
SET - >E -

FProof 11} Trivial. (i1) By Proposition Z. .
{iii) For any topos, the global section functor T is the right adjoint of 4. The left adjoint
of & is the base part functor WV, ie.

T, {ALy R

vief, {&.0 =1,

Liv ) We define a funcior I from E 1o E by

l'l[ (f, {:‘l,}.b‘ .]:nuila'tn

<l {AL)

Nief, e}

|
| |

[ictd, {8}, > By

Then I1 is the left adjoint of #. On the contrary, # does not preserve 1 |l 1, since
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#OLWHLY = {{= ==}, {la, laat},

i

H

(w1 L 1Y)

#ILOL

Hence # has ne right adjoeint. Z

DEFINITION 3. 0 object 1 of E is suid discreate Iff AsAUSET) An object A of E iy suid
smocth iff e #1EL

We will consider E and SET as full subcategories of E. These two subcategories are
roflective and SET is also coreflective in the sense of [MacLene T1]. They do not share any
objects except the terminal object. The natural number object (NNO) of E is the set of
actual natural numbers, ie.

ALD) als)
+ ALN L

I —— AlN)
Neither & nor # preserve the subobject classifier. For the clarily, we will write
for #0100 and bool as A{Q., ). The power object I8 not preserved, since the subobject
classifier is not preserved. By Proposition 2 and Theorem 1. PU{A ). ) is
CPUTY {Thee PO Hps,

i

P A ) mebosl, {5 0y, Lo,

PUACT YV =ePUTY, {The® Yoo,

where 0, 1% the subobject classifier of E. Since 4 and # preserves exponentials, we See

D S AY —= #A N

baol " 22 ALP{ 1) = AT )

We will give a logical characterization of 0y* and boel ' in the next section.

2. THE LOGIC OF ENVELOPE

[0 this section, we will examine the logic of E and give a charsclerization of some
phjects of E and SET by the aid of the logic. Since E is a topos. E obeys lleyting logic, We
wiil give a characterization of logical symbols in E by the aid of 1those in SET and E. We
will folluw [Fourman T7] o develop logic in a topos.
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The equivalence +— is a morphism from 240 1o 9 which s the classifier of the
diagonal map
<id,id
4 ;= 220,
By the previous section, it is presented by

it ity Turlty xr
"‘"-—-.___________:_“ it _--_-“_-‘__""‘—_I- 2.
e, 1y T &
\ £
<ff.tt 74}? b 20 -X .
<YL i Ly % 1 "

The left hand side of the sbove figure shows the base part T +— ) and its arrows show the
correspondence of elements, e.g. <ff, > is mapped 1o # by V{+— ). On the other hand, the
right hand side shows the [iber part +—" and its arrows are morphisms in E, e.g. the top
arrow is the logical eguivalence in E.

Similarly, the conjunction » : 2x0—Q which is the classifier of

ofrue, trired

| ————= 00

15 prescnted by

bt Bty Qur Ry — P
T it T 0y,
LCIN S Tan 1y
<, m-.; IRV
=z ff |
S i ¥l ——

The implication is defined by

p—q = lpagle—p,

w0 i1 35 presented by

L4 ¢ & T (LI 31 —

i, ff - Dk 1y

<f. ity b A

ff
':.FT= Fﬁ b % 1y
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The internal poset @ ordered by pig = p—yg, looks as follows:

tt

= EII
7 -
ff
wnere oyl 15 the bottom element, t.e. folse of 9.,
[l imie
sp o= pff
~p = porvaid.
then
= ;=0

it e ti Qn LT ﬁ-u
B
f‘r‘f‘><rf 1 T Lo .

~ o il=0

ft —— i} iy -~ % 1
’f//' W
ff ff 1w "

Aole that = 15 the negation in E, on the contrary, ~ is the negation in E.

The disjunction v 15 deflined by

pvg = ¥l { p= ag—=rl-rh,

Ly presonted by
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E, MY e Oy — M
o [
Lt ffe—"" Dak ly — =%
f. te T L 38y
[t Ly
i TR M

Although we do not give the proof of this fact, it will turn out an easy exercise after the
characterization of ¥ presented below.

Let 121 e and A={ 8}, and
(SR TN

& WV E ————

The morphism ¢ may be thought as a binary predicate @{ab). Then a predicate
YisBetulb) is delined by

= oot rueane” ¢ A— 0%,
where = 1s the eguality of the type PUEL By the previous section,

VinReg = field | WiLL 70, 1 =0 dm . ". II.-ufTUEiju;>}-)-

where = i» the equality of the type I /MEB ) For any two families of morphisms
{JP.:.-t""H;}.iu {""-'--'1"_’ IEIl.}:l:l

=0l e, P - Mol = 0dd, g
holds, where A is the classifier of
CETUE e
] —— %,
We will write Age, for A o< 2a. Then we see

Yo:Ba = i | WAALT . AN VBB, (ab >

A predicate ¢4 —Q s said smooth if T(f) s the constant Tunetion ft. Let V=A0T), Y=4A0T),
f=#{ ") and a morphism

@il —=10

be wimeolfi, Then ¢ can be identilied with the family of predicates
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'@.‘ = {"ﬁu H {:‘_.ﬂll:}lﬂldlll
Then the predicate

Vaorbplays): g —1
van be identified with

{Ae®,, 1 € =04} e

Slnee Mg 15 the mlimaery conjunction of E in the sense of [Makkai & Heyes 77], this
means the guantifier Yax:A(]) of E coneadas with the infinitary conjunction in the usal
categorical logie, provided that the predicate guantified by 1t is smooth. On the contrary,

i A=#i ) V=A(S) and Z=#0C), then the a smooth predicate &:UWIWNZ ——0 can be
ientified with

{@, ARAT A "“'ﬂu}.:u-
Then YoVt xwz) can be identified with
{vﬂ'!.-i.@'. H r"__"ﬂu }.I:-l'

S50 the guantilier ¥Yo#( 1) of E coincides with the gquantifier Wa:A of E, provided that the
predicate quantitied by 1t 18 smooth.

Tie existential quantifier defined by
B = VoliYia(bl—pi-rp)
i= characterized by
il 1 UL, (Ve 3084, (ab)}s

by the previous resuits. Similar to the universal quantifier. 3v:A{J) of E coincides with
the inbinttary disjunction Vg and Jv:#4) of B coincides with 3a:4 of E, provided that
the guantified predicate is smooth,
By the above resulis, we sce the following preservation results.
FROPOSITION &. 1} Apreserces
Wy on, om= =AW i, fralze,

(i 4 # prisvroes

v oA, o = AW e
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Note that # does not preserve fulse : I —Q, as #(fulse =void. So #(=p) s ~#i i The
following definition is useful to axiomatize the logic of E.

DEFINITION 3. Lol p be o vavialle of the fope He define
apenl gl = void—=p, boollpl = pv—p

These predicates are characterized by the following figures:

ool ; D=0
i
T 0, —— 0,
- f_l'__'t.t;"-j
i ff ™ I o
open ¢ =)
(A
il == I Ty =——— HH
ff— = 1T Iy————s i

PROPOSTION 7. [u the envelope E, the following axioms hold

(Axiom 1) faise— p,
{dviom 24 apenl p v,
t Axiom 1) =fopeni pla=pl

From these axioms and the intuitionistic logie, we can derive the followings:
booll true ), bool( false ), ~false, apenl plabooll p)—p,
—=vold, ogen{ cold ), openl pl={void=p ),
‘thi roilowing gives characterizations of some concepts in E by the aid of the above logic.

PROPOSITON B. {il A predicaly Plo =0
is smentl OFF the following holds

Vutlopenl Pla)l
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A predicate Ma kA—-Q Is disereate, Le. P iz the family of morphisms which are constantly true,
I the following holds

YA booll Iall
s pecinlly, the following hold
My = {pell | openl p)},
bool = {pe | bool p i}

tid Lol 4.0 e be o Fumily of smooth objects. Then the smooth object B=LL.A, and with canonical
injection #, 1 A+ 8 in E is chovactevized by the following (eof . [Makkai & Heyes 771

filaw=fla, )a=a,
AANE RAAD b= roid for i), o, g2l
b=V o A 4D,
wheee AALD) stands for a.fl o, J=b.
iy Let 0 be o smooth object and [ be u discreate object. Then we see
Tt = {pe* | Va:dopeni pla )},
bool* = {pe® | Wi:lbool{ p(i )}
Note that
Wol Plabv=Pla) = QuPlal—=RQuPlul),
holds. where @ is ¥ or 3. This 15 not always true in a topos, even if the type of a is a
constant sheal. Similarly, in a topoes, Pia) : 1 U 1= may not be discreate n our sense,
even o Pla) s decidable. Namely, (i) of the above proposition is not always true for a

Topos,

We have not given a logical characterization of discreatenass or smoothness of an
object. It will need 1ype destructors corresponding to V(=) and (=)

We will show how to express Axiom™ in the introduction by the aid of the logic of
E. Set
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I-Flul; N = {a"ﬁl"h‘il-. {Hnti":}itu,ntﬂ}n

T, lll.njl,n}
deg : U N ) ————— N,

(s, {ll_n}l_u)
varn : Dl N ) =———— N,

Then Axiom” iz stated as
YW aW e i N Kdegl £ )=k avarnl flen— 3 pe RIEn {f is given by pll
where & and n are variables of 1ype N, Note that we have to construct a family of types
of E { R}, sunen, from which DW{ N') is constructed. This would be performed in our proof
vhecker by a type formation rule like the Tollowing
[ie I, e SET]

Al e E
”-u;l.'“f] € E

Besides, we need the intreduction and elimination rules as [Martin-Lof 82). This is closely
related to the type destructors corresponding to (-} and (-)}* mentioned above, These
will be discussed in another paper.
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APPENDIX

EKL is not appropriate as a proof checker of SDG. for ns logic is classical butl the
principle of excluded middle leads a contradiction in SDG. However, this ubstacle does not
affest this experiments, for there is no essential use of logical operators in the following
derivations.

ipront real b

tdect plus (tvpe ftgroand.ground. aroundEdigroend )
Lsvnlyvpe constant? +intixname +1
(hindingpower 9300 tassociativisy Lothd)

tdec] times {lspe ‘lground.ground.ground¥®)iground: )
tsynivype constant!) (infixname =}
ibindingpower 93531 {assuciaiivily bothl)

tdecl trero unitd (svniype constantt (type ‘ground! )

fdec!| taa bbb coo Clyvpe tgroundi 1

taxiam .all aa.{ aa + zero
{lacel simpintol}

a3 & Fero + aa = aall)

lawion tall &aa,! aa = unit

aa b unit = aa = aall)
itiabel simpinfo:

Ciles | 044 gg b)) (lype fgroundiaround’ b

CRImplacts

(axiom (Zero != unmit!)
tlabel simpintol

imultiplication

lavigm all aa, aa = Zerg = Zerd & Zero = aa = zero, |}
Ciahel simpinfol

tasxion (ail aa, aa * unil = aa & unit * aa = aa; )
Llabel simpintol
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vaxium sall aa bh, aa x bbh = bb % aa!)

Clabe! productocommute )l label commutel

vAandition

teniom tall aa. aa +* reroc = aal )
Clabiel simnpiniod

fasiom all aa bb, aa + bb = bb + gai)
Clabe!l plus_commutedd label commute)

fawiom lall aw bb ce.aa + bb = aa + cc (ff bh = gl
{label zimpinfolilabel plus_canceal )

tasion fall aa bb ce.bb + ga = coc + aa iif hh = coll
Clabel simpinfoitlabel plus_cancel !

iexlensional i1y

tasaom fath o f g.olall x.fiwd = giwdd itf §f = gl
tlabel ex1)

distributivity
tasium tall aa bb co. @ma ® {bb + occ) T aa £ BB + @a ® ool
Lhabe! simpintoli label distfactis)

Caxiom dall oaa bb ce. faa + Bb) T cc o= aa % oo o+ bbb o®E ocol)
flubed simpinfolilapel distfacts)

tdec! nmilpotent (tvpe larcund:itrutheal t 1)
tdeo! od gl d2 d3) (iype igrgund: ) (sorl inilpotent! )
videc | derivation

Prvpe dtgroundiaroundtiigroondiground?l } (posttixnane ')

tirindinapdwer 9900

Casiom fall §f oaa d. tiaa = d) = fiaa) + d = (§Y)iqar'
Clahel tayvior)

ikl fune_plus
ttvpe Tilgroundlground) . igroundiground Y Cground: gsround }
Cintixname ++) (bindingpower Y3033
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idefine func_plus ~all f1 12, 1t ++ 2 = |ambda aa. fliasl + {2aal™)
flabel func_ plusdedd

Lger] tenc_product
(1yvpe (ligroundigroondl.(ground:ground?iiground: ground b}
Canfixname **) (hindingpower 3501

tdetine func_product
“all f1 §2, 1 ** {2 = tambda aa. fllaa) = f2(aa)")
(labvei func_productdef!)

tasiom “all d. 4 = d = zerg"?}
tlghel simpinto?l

tasiom ‘all aa bb.lall d.d = aa = d = bbt iff aa = bhi)
{label simpinfol label lavior_uniguel
(gxiom :ail aa bh,lail doaa * ¢ = bh = oy iff aa = bbi)

Clabe!l simpinfoidlabel t1eyior_unigue)

tproot dift_product

PO ok gyt o= g o#E [0 o++ f o=x gl

Cirw dall dotd ¥ grix+d) = fix=di®gix+dy, (0pen tunc_productl?
tall d.tf =2 glixed) = fixsdizgin~d)}

(rw = dluse tavlor mode exact) tuse distfactis mode alwavs’
tuse product_commetbe i

vall d,1d %E g liwiedki(f ®Tx g) N} o=

; fiwlxoly i+degieiel{ " i i+dx=fixixig’ Mix

trw 2 ipart 1 ipart 1 {part 1 (open func_produclihyy))
valb dodeinvf Tx g)  iix) = dEgiaix(f  M{x)+dEfixixig” )ix)

itrw dall dodbgix ikl Mg dbdEf iR dEa" Jix)
= pEify % " 44+ [ ®¥ o’ Jiwxw))l
tugen tuncoproduect? wupen fung_plus) (uze distfacts))

bl o dfdTrgiawi it a ek finiwig  lixl = gEig ®x §7 o+ oxE g ain)
fiw =07 duse = mode exact !
CLLE o®EE gl rix) = (g % 7 w4 | FE G OIN )

tierive JAll w.U0f ®® g) 3wl = (g xF f1 o4+ f oxE giiivil ¥
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traw ¥ (use exlld
il oxx gt o= g oxx 7 ++ f 3 g’

iprontd diftf_plus?
Tiiis Uf o+ gl o= 47 +¥ g

Clrm Lall o dotd o+ gilwedy = {ixtdisgix+d)ll (open func_plus)d
call oo, ++ gitw+dd = fiw+dlraix+d?

irw ®* luse tayvior mode exacil) iluse plus_commutel)
Call d i tr giindvdECOf ++ g1 lix) = fixlegiad+de({ Jixirdalig’ Mix)

Irw = tpart | (part 1 fpart 1 {open func_plusiidhi
tai) d.odE(OE v+ Qi aix] o= aE(fdixitdEiat (K]
Clabrel Lol )

Prw tall s dod=(f*pixiedeia® tint = d6if' ++ 3" Mix)

i{ppen func.pius) luse distfacts mode exaclll)
tabl s dod¥ifoixdedEigt ixd = dEiT e+ gl iix)
tlapel 1mp2)

trw tmpl luse tmp2i?
Sii o+ gt hiay s ({7 e gt dx?

iderive 'all k. 00§ ++ gl"d{w) = (f" ++ g " dixhl *)

lrw = duse exii}

el ey gt o= b +e g?



