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ABETRACT

The language rules of Concurrent Prolog in Shapire's original
paper is re-examined. The main point iz that some sequentiality
must be assumed for unification in order to reasconably define the
semantics of unification and commitment. This= means that some
'"logical' transformetion of & program cleuse mey change its
semantica. Another point iz that there are semantical preblems
in the semantics of multiple emviromments and & commitment
operation.

1+ INTRODUCTION

ICOT (Institute for new generatiop COmputer Technology) is now
designing Kernel Language Versien 1 (EL1) [Furukawa et al. 84] for a
parallel inference machine (PIM)} which is to be developed in the
intermediate stage of its Fifth Geperation Computer Systems (FGCS) project.

s the =tarting point towards L1, Shapiro's Concurrent Prolog
[Shapiro 83] was chosen for investigation. Concurrent Preleg wes chosen
because its language rules were so concise and it looked expressive enough.
Our experience then showed that Concurrent Prolog was fairly expressive.
However, we have not examined whether it i1z really concise; it still has
conly very informal semantics except for the operaticnal semantics in
[Hirata B4]. & simple language rule expressed in a natural language may be
formalized into & set of quite complex rules. Therefore, we must examine
every subtle peint of Concurrent Frolog and make necessary clarificaticnr
or modificationa.

Our design goals for EL1 should include the fellewing general
requirements to be satisfied as the specification of & parallel programoing
language.

(a) The semantics should be well-defined and clear in a fully parallel
executicn model.

(b) The specification should not azsume unnece=sary sequentiality, because
it is againat (a) asbove and it discourages beth programmers and
implementors from expleiting parallelism.

KL1 is not & language only for communicating sequential inference
machines but alse for parallel inference machines. Therefore, the best way
te develop ¥L1 is not te exploit parallelism from sequential Freleg but te
find appropriate restrictions on the full parallelism inherent ip a set of
Hern elauses, assuming that EL1 should be 2 logle programming language.

However, we are not 8o accustomed to parallel programming or languages
for parallel programeing. Our short experience with programming in
Conecurrent Prolog programming has showr that parallel programming is not =c



easy even for those experienced with sequential programoing. It is hard to
expect what is implied Dby the interacticn of complex language rules.
Therefuore,

{e) The language rules must be kept simple.

Moreover, the language specification should satisfy the following
general principles.

{d) There should be no language features that are not implementable or are
very hard to implement. If such rules were to exist, the blame should
be laid on the language specificaticmo.

(e) There should be as few rules as possible whose viclation cannct be
easily detected at compile time or at run time. Theze would promote
erronecus programs to circulate.

In the following, the language Concurrent Frolog will be re-examined
in the light of the above principles. We will regard [Shapirc B3] as the
defining document of Cencurrent FProlog, since it ies the original and the
most detailed text. The fundamental method of examipning = language defined
informally is to examine every defining sentence thoroughly. However, here
we will not make comments sentence by sentence: fgur purpose is not to
criticize the sentences defining Concurrent Proleg, but to try to obtain a
correct interpretation of thiz lenguage. Fer this purpose, we have
examined other documents on Concurrent Prelcg by Shapira (e.g., [Shapire
84] and [Shapirc and Takeuchi E3]) also, but no significant difference from
the eriginal document or new informaticn which pight help us to reach the
correct interpretation waz found as for the materisls iscussed in  this
paper.

2. THE DEFINITION OF CONCURRENT FROLOG

This chapter intreduces the syntax and the semantics of Concurrent
Prolog as described in the original paper [Shapiroc 83]. We will quote
important paragraphs from that paper and number them for later references.
Note that although the langusge defined in [Shapire B3] was first called ™a
subset of Concurrent Prolog", it has simply been called ntConcurrent Frolog"
among the community ever since.

2.1 Syntax

[1] (Section 3.1) A Concurrent Prolog program is & finite seb of guarded
clauses. A gusrded clause is a uplversally gquantified axicm of the
form

b ot=G1, G2, <u.y Om | BT, BZ, ..., Em. m, n>=0

where the G's and the B's are atomic goals, The G's are called the
guard of the clause and B's are called its body. When the guard 1is
empty the commit operator is omitted. The clause may contain wvariable
marked "read-gnly®.

(2] (3.1) The commit operator generalizes and cleans seguential Preolog's
cut. Declaratively, it reads like & conjuncticn: L i= implied by the
G's and the B's. ...

2.2 Semantics

[2] (Section 3.1) ... Operaticnally, a guarded clause functions similarly



[3]

[5]

[6)

(7]

[8]

(9]

to an alternative in & guarded-command. It can be u=ed to reduce
process A1 to a system B if A is unifiable with A1 and, following the
unification, the system G is inveked and terminates successfully.

{3.1) The unification of a read-only term X7 with a term ¥ is defined
as fellews. If ¥ is non-variable the the unification succeeds eonly if
¥ is non-variable, and ¥ and Y are recursively unifiable. If ¥ is a
variable then the unification of X7 and Y succeeds, and the result is a
read-coly variable. The sywmmelrlic algorithm applies to X and Y%.

{3.1) This definition of unification implies that being "read- cnly" is
not an inherited property, i.e. variables that cccur in a read-only
term are not necessarily read-only. Stating it differently, the scope
of a read-cnly annotetion is only the principal functor of a term, but
not its arguments. ...
(3.1} The definition of unification elsc implies that the success of a
unificaticon may be time-dependent: &  wunification that fails pow, due
to viclation of &8 read-only constraint, may =succeed later, after the
principal functer of a shared read-cnly varisble is determined by
another process, in which this variable does not cccur as read-only.
{3.2) The execution of a Concurrent Prolog system S, running a program
P, can be described informally as fellows. Each process 8 in 8 triea
asynchronouszly to reduce itself to other processes, uaing the eclauses
in P. A process & can reduce itself by finding a clasusze 41 = G | B
whose head A1 unifies with 4 and whese guard aystem G terminates
following that unificaticn. The system S terminates when it is empty.
It may become empty only if =some of the clasuses in F have empty bodies.
{3.2) The computaticn of a Concurrent Proleg program gives rise to a
hierarchy of systems. Each process may iovoke several guard systems,
in an attempt to find a reducing c¢lause, and the copputaticn of these
guard systems in turn may invoke cother systems. The communication
between these systemz 1=z governed by the commitment mechaniz=m.
Subsystems spawned by = process A have access only to variables that
gccur in A. ks long as a process 4 does not commit to 2 reducing
elause, these subsystems can access only read-only veriasbles in &, and
all binding they compute to varisbles in & which are not resd-cnly are
recorded on privately stored copies of these variables, which is= nat
accessible outside of that subsystem. Upon commitment to & clausze A1
:= G | B, the private copies of variables associated with this clause
aré upified against their publiec eocunterparts, and if the unification
succeedes the body system B of the cheosen clsuse replaces 4.
{3:2) A more detailed description of & distributed Concurrent Prolcop
interpreter uses three kinds of processes: an and-dispatcher, an
cr-dispatcher, and & unifier; these processes should not be confused
with the Concurrent Prolog processes themselves, which are unit goals.
(3.2) The computation begins with a system S of Concurrent Prolog
Frocesses, and progresses via indeterminate process reduction. After
en and-dispatcher iz invcked with 8, the computation proceeds as
foellows:
¢ Ap and-dispatcher, inveoked with a system 2, spawns an or-dispatcher
for every Concurrent Prolog processes A in 5, and weits for all  its
child or=dispatchers to report =uccess. When they do, it reports
sugcess and terminates.
¢ &n or-dispatcher, invoked with a Concurrent Prclog process A4,
cperates as follows. For every clauvse 81 := G | B, whose head is
potentially unifiable with &, it invokes & unifier with 4 and the
clauze A1 :1= G | B. Following that the or-dispatcher waits for any
of the unifiers to repert success. When cne such report arrives, the
gr=dispatcher reports success %o itz parent and-dispatcher and
terminates.
o A unifier, iovoked with a Concurrent Prolog process & and a guarded-



clause A1 :- G | B, operates as follows. It attempts to unify & with
41, storing bindings made to non read-cnly variables in 4 on private
storage. If and when successful, it invokes an and-dispatcher with
G, and waits for it toc report success. When this report arrives, the
unifier attempts to commit, as explained below. If the commitment
completed successfully 4t reports success, but 1n elther casze it
terminates.

[10] (3.2) At most one unifier spawned by an or-dispatcher may commit.

[11] (2.2) To commit, a unifier first has to gein a permission to do se.
The mutual exelusien algorithm must guarantee that if at least one
unifier wants to commit, then exactly cpe unifier will be given
permissicn to de so. After gainipg such a permissien, the unifier
attempts tc unify the loeal copies of its variables against theilr
corresponding global ecopies. If successful, then the commltment
compl etes successfully.

[12]1 (3.2) ... Another useful cptimizstion i= the deletion of brother
unifiers, cnce the first such process is ready to commit.

[13] (3.2) When committing, the unifier is npot required to perform the
unifiecation of the public and private copies of variable as an "atomic
action™. The only reguirement is that the unification be T"ecrrect”,
in the sense that it should not modify already instantiated variables,
whieh ecan be achieved ip a shared memory model with a test-and-zet
primitive.

[14] (3.2) Since & unification that eurrently fails may succeed later, the
phrase "attempts to unify" in the description of & unifier should be
interpreted as 2 continuous activity, which terminatesz only wupon
success. This can be implemented using a busy-waiting strategy, but
several optimizations ean be incoerporated. ...

We correct & swall error in  Paragraph [9] here. An cor-dispatcher
should report & set of processes B to its parent and-dispatcher instead aof
the simple message "sucoesal. The and=dispatcher must recognize these
processes as newly created processes which replace the criginel one, and
must spawn cor-dispatchers for them. The and-dispatcher reporis success and
terminates when S is reduced to an empty set of goals. Alternatively, an
or-dispatcher may invoke a new and-dispatcher for the body ef a clause
whose corresponding unifier has reported success, and iet the report of
this and-dispatcher be the report of the or-dispatcher in gquestien.

2.3 Parallel Programming in Concurrent Prolog

[15] (3.1) A syster of processes corresponds to & conjunctive goal,

and a unit goal to a process., The state of a system iz the union of
the states of its processes, where the state of a prucess is the value
of its arguments. And-parallelism--soclving several goals simulte-
necusly--provides the system wilh copourrency. Or-parsllelism--
sttempting to seolve a goal in several ways simul taneously--provides
ea~h process with the ability to perform indeterminate acticns.
Variables shared between goals serve as the process conmunication
mechaniam; and the synchronization of processes in a systenm is dene Yy
denoting whieh processes can "write®™ op a shared variable, i.e. wunify
it with a nop-verisble term, and which processes can only "read" the
content of a shared veriable ¥, i.e. can unify X with a non-variable
term T only after X's prineipal functor is determined, poasibly by
another process. ...
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3. MILTIFLE ENVIRONMENTS AND A COMMITMERT OFERATION

4 commitment operaticn as described in Paragraphs [11] and [13] 15 a
procesg rather than an event. It is preceded by the permissicn, and 1t
completes when the unificaticn of lcecal and global coples cof variables has
terminated successfully. It is not explicitly specified when  the
commitment starts, but it should be some time after the permission and not
later than the start of the unification.

The most copntroversial issue is the nature of the permission. The
second sentence of Paragraph [11] says that the mutual exclusion algorithm
must guarantee that if at lesst ope unifier wants to commit, then exactly
cne unifier will be given permission to do sc. However, it iz not clear
whethar

{1) thi= permission i= revoked when the unification of local and global
coples of variables does not oucceed, thus providing the other clauses
with the cppertunity of commitment, or

{(2) this permission is eternsl, i.e., the other e¢lauses can no longer
attempt & coomlitment operation once  some ¢lause has gained a
permission.

The failure of the unification can happen when & global variable is
further ipstantisted by =some other goals &fter its local copy is created,
but Paragraphs [7], [9], and [11] defines only the successful case. If the
permizsion is never revoked, failure of the unification means the failure
of its grandparent and-dispstcher, 4i.e., the parent of its parent
or-dispatcher. If the permission can be revoked, the unification must be
performed in a way in which the intermediste result of the unification is
invisible frem other processes. This 1g because this unification may
eventuwally fail, in which case the other clauses must retalno the
possibility of commitment.

Paragrapha [5] and [14] say that unification is a continual activity
which terminstes only upon success. BSo one interpretation could be that
the commitment operaticn is alsc & continual activity which terminates only
upon success of the unification involved in it. This suggests that the
permission need not be revcked. However, thi=z interpretaticn is
unfortunately inconsistent with the deseriptien in Paragraph [9] that the
unifier terminates whether or not the commitment completed suocessfully,
though Faragraph [9] is problematic in that it does not say at all hoWw the
unifier cen terminate when the commitment has not completed successfully.

The complete lack of the descripticn of a locking operaticn, which is
shown below to be npecessary when the permissicn can be revoked, sSuggests
that the permissicon is of an eternal nature. However, the interpreter
shown in [Shapire B3] adepts the opposite interpretation. It =eesms
impossible to derive a correct answWwer from the original descripticn; the
better way should be to make & thorough examipation of the merits and
demerits of the both alternatives.

3.1. The First fAlternative: FPermissicn Is Revocable

We first assume that the permission of commitment is revcked when the
unification of local and global coples of varlebles does not succeed. When
the permission is revcked, the result of unificatien must be kept invisible
from other goals. Since 1t i1s only upon success of the unifieaticn that
the revocation of the permisszicon i= known to be unnecessary, we must always
perform the uwpificaticn of loecal and global information in & way in which
its partial result is 1invisible from other goalsz. The problem 1s how  to
implement a commitment cperation which meets the above reguirement.

The only possible sclution would be to perform the following
cperaticna in the given crder:

o



{a) Lock {(at least) all the relevant global data, that is, all variables=
appearing in goal arguments for which leccal copies have been made.

{b) Try to export leoeal bindings by unifying local copies with its global
counterpert. This could start before Step (a) is finished, as lopg as
no bindings are made to unlecked global veriables.

{e) (e=1) If the unification is successful, then simply unlock the glocbal

data locked in Step (a).
{e-2) If the unification is unsuccessful, then unde all the bindings
made in Step (b), and then unlecek the glebal data locked in Step (a).
The unleoocking can start before undeing is finished, as long as no
global variable i= unlocked witheut being unbound. Independently of
the=ze operations, return the permissicn of commitment.

The problem lies in the locking cperation in Step (a). The eimplest
locking scheme would be to lock the whole memory whenever commitment is
attempted, but this is definitely unacceptable because it seriaslizes all
commitment operations. If we do not want to lose parallelism, we must
pinimize the locked area.

The s=mallest unit of locking is & eingle variable. However,
varisble-by-varisble locking is not easy when we have to lock twe or mere
variables in one ccomitment operation, a= studled in the sarea of
distributed databases and operating systems. Assume there are two clauses
{say & and B) attempting to be selected and that both of them have tc lock
the variables ¥ and Y. If Clause & tries to lock ¥ first end Clsuge B
tries to lock Y first, they may deadlock.

Thie deadlock problem can be es=ily resclved if we can order the
veriables, If we can give an invariart ordering te & set of variables to
be locked, each clause has only to lock them in that order. However, it is
bard to consider such an invaeriant ordering, because two varlables may be
unified at any time and after that unificatien they must have the same
order. All the above considerations lead us to the conclusion that the
first alternative is unacceptable.

One may think we could deteet ununifiability of local =and global
infermation earlier tharn coomitment. Thi= is enabled by checking
unifiability of the leccal &nd the globel values of a variable whenever new
global or local binding for that variable is created. However, this
'gager' checking never eliminates the unification upon ccmmitment, and thie
upification must =2till satisfy all the regquirements we stated above.

3.2. The Second Rlternative: Permissien I= Eternal

Let us then consider the cother alternative that the permiszsion cof
commitment is of an eternsl nature. ¥e no longer need locking cperations
because it is now dimpessible for the cther clauses tc export bindings
later. Unification may be dene just in a usual manner. Thisz elternative
inereasce the chance of failure of a program in which 1two or more
conjunctive goals try to instantiate the same veriable upon commitment.
However, it does not ceuse so much inconvenience. In actuzl programs we
cave written, most predicates are effectively (possibly nondetermiristie)
functions each of which returns cnly one result. Such & result is usually
prepared in a guard and exported upon ccommitment, but we usuzlly receive it
by & varieble, in which caese no feilure can happen.

However, there still remains some semantical problems. Although it is
unnecessery to return a permission of conmitment once it is obtained, we
have to define when a 'unifier' (in terms of Paragraph [9]) can attempt to
gain such a permission. In other werds, we have to define what kind of
gElobal information supplied by goal arguments must be respected when we
regard the head unification and the executien of a guard as successful.
Some information which may come later than the attempt of commitment could

&



be ignored, but cther informaticon which i= evident to arrive 'early' must
be considered for clause selecticn. Consider the following goal:

1= pla). (3.1}

This goal =says two things: ecall the unary predicate 'p' and set its
argument to 'a'. The guestion is whether cor not the argument setting must
be completed before the call. This 4= not &an absurd question; we are
exapining Concurrent Prolog as a truly parallel language. If the argument
setting must precede the eall, the above goal never fails when the
predicate 'p' is defined as fcllows:

plal. {
pib). {

Cnly Clause (3.2) succeeds in head unification.

However, if the argument wvalue iz allewed to come arbitrarily late,
the above goal may fail. Clauae (3.3) may be tested earlier, and the valus
'b' in the head may be recorded locally for later unifiecation if its
counterpart en the =ide of the goal has not arrived. In this case
ununifiability of 'a' and 'b' will be detected after Clause (3.3} has
gained & permission of commitment, and the criginal goal finally fails. To
geperalize, any clause can be selected for & given goal regardless of the
geal and the head arguments as long as the guard succeeds, apnd hence can
make the whole system fail. This should be extremely inconvenient: We
cannet write a predicete intended to check argument values like "p' above.

Therefore, at least any informaticn specified textually in a goal must
be cconsidered for clause selection, i.e., any inconsistency with lecal
information must be detected before attempting a commitment cperation.
This mweans that Clause (3.3} in the above example must detect inconsistency
between "&" and 'b' &t head unification and must never create a locsl copy
of its argument as lopg as the permissicp of commitment is not revocable.

Note that the above conclusion applies alse to our first alternative
on the semantics of commitment that the permissien of commitment is
revocable. For if we allow an immediete argument value to come arbitrarily
late, it may come too late--after commitment has completed.

The gquestion of allowed deley of information rether belopgs to the
semantics of the unificaticn of Concurrent Frolog, and it will be discussed
further in Chapter 4.

3.3. hocess to Loeal/Glebel Informastion

fnother problem which arises by allowing local and global copies of =
variable is te which copy we wmust have access in each of the following
cases:

(1) & veriable in a goal is textually marked read-only.

{2) A variable in a gocal is not textually marked read-cnly and its loecal
copy has been made.

(3) & variable in a goal ie not textually marked resd-cnly and its local
copy hag not been made.

The first possibility for a goal vwvariable is thet it is marked
read-only textually. Then candidate clauses must wateh ite global value.
The global value must be watched because this is necessary for making
suspended unification succeed and putting computation forward. For such a
variable, local copies are not created (with the excepticnal casze shown
below), =ince no bindings can be given directly to read-only variables in &
goal from & clause head or a guard.

However, there alsoc exists & rather pathological case where a loesl

=



copy must be created fer a read-only variable. Consider the following
example:

Call: - pl¥?, X}, X=a, (3.4)

Frogram; pla, A4} := A=a | true. (3.5

The predicate '=' unifies its two arguments. The first argument may be
instantiated in twe ways:

(a) global instantiation by the goal 'X=a' running in parallel, and
{b) local instantistion by the goal 'hA=a'.

In the second case, a local copy of X, which appears with (and without)
read-only annctation, must be created. Nete that the goal 'A=a' must
locally instantiate the first argument: The goal textually specifles tLhat
its two argupents be identical (except for the annctation), 8o this
identity omuszt be respected for clause selection as We concluded in Sectico
3.2. This example illustrate=z alsc that suspension of unification due to a
gcal variable marked read-only may be resclved in two ways, globally and
ipcally. Hemee it 4is generally inadequate to wait only for global
instantiation of & read-only variable; we have to implement multiple waits.

The second pessibility fer a variable conteined in a goal is that it
is not marked read-enly textually and that some clause has created its
local copy. In this case, that clause should see the locel copy. Ignoring
it and seeing only its global counterpart might suspend scme unificaticn
which would otherwise succeed. However, it is not clear whether the clause
should be allowed to see also the global value which may get instantiated
after the loeal copy is created. Feregraph [7] seems to disallew it, Dut
it is possible that the clause can =clve its guard cnly by using the global
value of aome variable for whieh a lecal copy has been made.

The third possibility is that = variable contained in a goal is not
textually marked read-cnly and that its local copy has not been created
either. This i=s further divided into two subcases:

{a) The varizble is uninstantiated when head upification starts.
{b) The varizble has become non-varisble or read-cnly when head unificaticn
starts.

For each case, there are three possible interpretations:

{1) The elause sheuld wateh its plebal instantiatioen.
{2) The clevse can ignore it.
{3) The clause SHOULD ignore it.

Paragraph [7] seems to suppert Alternative (3) for Cese (&) and Alternative
{1) for Case (k).

Let us consider Ca=ze (a) first, tlternative (3) impiies that the
value of & variable in a goal which has become resd-cnly cor beconme
non-variable AFTER the geal is called should be ignored. For instance, the
fellewing program

.- P{H}’ I;a- {3!5)
plX) ;= %7z | true. (3.7)

should never succeed as long a=s p(X) is called before X=a is executed.
However, we cannot sdopt the same alternstive for Caze (b). In this
case, the value of the variable in the goal should not be ignored.
Otherwise, the 'protected data' technique [Hellerstein and Shapiro 64]
[Takeuchi and Furukawa 85] weculd not werk correctly.
Typical use of read=-only annotation is to attach it to the argument



variables of goals whieh consume (er decompose) the value of those
variables. However, the protecticn sgesinst instantiation by the consumer
can be achieved also by making the generater of a data structure protect
its uninstantiated part, and ‘*protected data' means such uninstantiated but
protected variables created by the generator. When we use this technique,
read-cnly annotations do not appear textually in the consumer goal (except
for the top level) but it 1s sent from the gemerator geal. If such dynamic
protection should be ignored as Alternative (3) says, this technique could
not be u=sed.

Cases {a) and (b) ocan occour depending on the relative timing of the
unificaticn of a goal and & clause head, and the lnatantiation of a
variable in the goal (by some other goal). Moreover, bead unificatiocn is
not an instantaneocus operation, 8o it it is wundesirable to assign the
mutually exclusive behaviers (1) and (3) to these twe cases.  Alternative
{1) or (2} should be a better choice for Case (a).

Our eclaim that flternative (3) iz undesirable could be understoed and
justified also from the follewing observatien. If Clause (3.6) were given
as

:- I:-[E}- EBIE':I

it should succeed because the textually specified argument value must mnot
be ignored. This means that partial evaluatien of 'X=a' in Clause (3.6) to

get Clause (3.7) undesirably change the semantics of the program from
suspension to success.

4. ATOMIC OPERATIONS IN UNIFICATION

The semantics eof unificstion must clearly etate what are ateomic
cperations. Consider the fellowing unification:

HE *“nx=f{3]| R E'u-i}

How this unifiestion can be performed, assuming that X are unipstantiated?
Foasible soluticns may be:

(1) Create a term f{a) (in any manner). Then set X to this term.

(2) Create a term f(A4%) where 4 iz & new variable., Then set X to this
term, apd in parallel with this set & to 'a'.

(3) Create a most gereral unary term with the principal functer '['. Call
its argument A (this is not part of the operation). Then set X to this
term, and in parallel with this set A to 'a'.

Mlternative (1) regards the wunification of & verisble and &
non-variasble term as an indivisible operation. Alternative (2) tries to
allow the prineipal functor and its arguments to be Jdetermined in parallel,
but it protects non-variasble arguments by read-cnly  annotation.
Mternative (3) states that the above unificaticr can be done 2= if it were
specified as fellows:

e wuay X = F(A), A = 8, +un (h.2)

where A is a variable not appearing elsewhere.

Let us explain the differences among these alternatives in other
words., Alternative ({1} says that when & pripeipel functor has been
determined as the value of =gme variable, its textually specified arguments
have alsc been determined. Alternstive (2) says that the argument values
may comé later, but that the uninstantiated variables which appear in the
transient state are protected, Alternative (3) says that the arguments may

7



come leter and that the variables are not protected.

Note that for unification between two nop-variable terms also, we can
conceive three alternatives corresponding to the above ones.

The granularity of atomic operatiocns is smellest in Altermative (3)
and largest in Alternative (1). So, wunder the 'high-parallelism'
eriterion, Alternative (3) is the best. We will see, however, that
Concurrent Prolog cannct adopt Alternative (3) in Section L.1.

One remark on the parallelism in unification must be made here. It is
known that the unifieation problem has & segquentisl npature in geperal, that
is, parallelism cannct significantly help [Dwork et al. B4] [Yasuura 84].
However, this result should not discourage finding a good formpulation ef
unificaticon in parallel loglc programming languages.

4.1 The Smallest Granularity Altermative

We have seen in Section 3.2 that any information textuelly specified
in a goal must be available when head unificatiop commences. To put it
differently, @ goal can be celled conly after all its arguments have been
loaded. Thus the clause

= plal. (L4.3)
and the clause

i= p(X), X=a. {4.4)
shouldé be defined as different. The word 'different' may be toco strong,
but at least we can say that Clause (4.3) mere restrictive than Clause
{4.4). The above difference is related to the semantics cof the unification

of & goal and @ clause head, &0 the conclusion of Section 3.2 should be
regarded 2= cleiming alsoc that the following two geals be different:

;= head
i= Head

plal.
plX), X=a.

Ty

Hon

hnd this claim clearly rejects Alternative {(3).
The fellowing example would better show the importance of whether
information is textually specified in a geal cr not:

tm viey p(A7), eenn (4.7)

We have attached a read-enly annctetion to A not simply because we do  not
want A to be instantiated by 'p' but because we want the predicate *p" to
wait and respect the velue of & for clause selection unless the clause
selection can be dome without eny reference %o the argument value.
Therefore, we can never rewrite Clause (4.7) to

t= waey pIX), X=27, ... (4.8

even though the !'read-cnly' property is inherited by unification.

tmeng importent concepts in  programming languages ig refereptial
transparency, which means that if the expression E1 and EZ2 denote the same
value in the same context, we can textually replace E1 in a pregram by EZ2.
Referential transparency in logic programming languages, if any, would
require the followirg property: Whenever a term E appearz 1in some goal
{atomic formula), we can replace E by a new varisble X and in  conjunction
with that geal put a2 new goal which unifies {equates) X and E. The above
example, however, shows this property dees neot held in Cencurrent Frolog.

Logie programming languages have long Dbeen claimed to provide a good
framewerk for mechanical handling of programs, e.g.; program synthesis and

S
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program trapsformaticn. Seo, Fproperties such as referential transparency
should be respected as much &= possible. Leosing it would make the language
rules complex and mechanical handling of programs difficult.

4.2 Other Alternatives

What Alternative (2) means 1s as feollows. Determination of a
principal functor and the setting of its argumentz can be dope in parallel,
but when the principal funeteor 1s determined and its arguments beccoe
accessible, they must be 'protected' if necessary, that is, if they are to
be instantiated further. This sclution looks consistent with the
requirement that any informastion textually specified in a goal must be
respected for clause selecticn, while retaiping parsllelism inherent in
unification.

However, we have to examine in more detail. The preblem is that 1ihis
solution i= rather ad hoc and that it expleits only a limited part of
parallelism lost in Alternative (1). Arguments to be filled with
non-varisble terme o¢an be protected by read-only annotaticns. However,
there seem to be no means to protect the twoe erguments of 'g' in the
fellowing example.

i- q(Y, ¥J). (4.9)
This should not be defined as identical to
t= qlt, B), A = E. {4.10)

because Clause (4.9) textually specifies that the twe arguments of 'q' be
identical, while Cisuse (4.10) has moved this information out of the goal.
Clause (4.9} cannoct =elect the clause

glz, bl. (4.11)

to reduce itself while Clause (L4.10) can.
Clausge (L,3) ia pot identiecal to the following one either:

1= q(47, B7), A = E. (4.12)
This i= too protective. Clause (4.9) can select Lhe clause
qla, a). (4.13)

while Clause (L.12) cannot.

Conziderirg all the above problems, Alternative (1} s=eems to be the
beset sclution in  Conecurrent Frolog. When the valuve of the principal
functor 1s sveilsble, any textually specified informeticn on its argument s
should be available also. This meens that some sequentiality must be
assumed for unificaticn.

The above result urges us to examine the semantice of so-called
tmetacall!, i.e., a facility of 'call'ing some term (say T) as 2 goal. The
goal T will be poasibly incrementally generated by =cme other geal. So we
omust have some means to guarantee that sll the argument information which
should be assumed to be textually specified in the geoal has been set up te
T. Serisligation by the commit operstor will have to be wused for this
purpose, The fellewing examples illustrate this.

Goal_1: i= P (4.14)
Program_1: p :- G=p{¥X), %=5 | call(G). {4.15)
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Goal 2: 1= plG), eall(G?). {4.16)
Program 2: p(G2) t1- G2=p(X), ¥X=5 | true. (4.17)

In both of the above examples, it is possible to regard G as having the
value p(5) right after commitment. &Sc the goals cell(G) and call(G?) can
be defined to work as if they were specified textually as p(5).

To generalize, the velue of a variable which 1= guaranteed to exist
right after commitment can and should be treasted like a textually specified
value after that. The value of a variable which is guaranteed to exist is
the value formed by the bindings made by unifications which is guaranteed
to be fipished by the language rules. The readers may think that the above
discussion is too obvicus, but it is never obvious. In Clause (4.16)
above, the value of G is determined upon commitment by unifiecaticmp.
However, &8 wWe have seen so far, it iz neot at all clear whether the
principal functor 'p' and the argument value '5' arrives at the goal
'eall(CG?)' at the same time or not. This depends on the semantics of
sommitment and the semantics of unification, both of which are most
delicate.

So far we bhave defined the semantics of unificatien invelving
non-variable terms. We wmust further define the property of logical
variables.

We may well be tempted to define the semantics of the goal

1= p(X), a(X7). {b.18)
53 equivalent to
i= pl(X), X=Y, g(¥1). (L.19)

because they are ‘'leglieally'! identical. Defining these two geals as
identical means that communication by shared logical variables may have
potential delay. This delsy 4= allowed in ancther parallel lcgic
programming language Guarded Hern Clauvses [Ueda 65], but in Concurrent
Proleg this= cannot be allowed.

Firstly, [Shapirc B3] seems to assume no delay for shared varlables,
since it contains the specification of binary merger as fellows {only
recursive clauses are shown):

merge([X!¥s], ¥s, [(Z!Zs]) :~ merge(¥s, Xs?, Is). (4,20)
merge (Xs, [Y!¥s], [2]2=]) :- merge(¥s?, Xs, Is). (4.21)
Goal: :- merge (A=?, Bs?, Caj. (y,22}

If we allew delay, the first argument Ys in the body goal of Cleuse (4.20)
will be instantiated by the head argument '[X[Xs]' of the same clause upon
recursive call. If there is no delay, it cannct be instantiated because Y=
has been unified with Bs? in the head wupificaticn. Zecondly, the
'protected data' technique also assumes there is no delay between two or
more cceurrences of a shared variasble. For otherwise the information of
protecticn would be delayed and hence might be viclated.

Therefcre, we must not assume any delay [or shared variables: ALY
peourrences of the same varisble wust denote the same value at the same
time. We consider that allowing delay for shared veriables, ever though
possible, would considerably change the rules of Concurrent Frolog, which
would amount to dezigning ancother language.

5. PROCESSING HEADS AND GUARDS

It pust be clearly specified what kind of parallelism should be
2llowed for processing heads and guards. In this regard, the semantice of
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Cencurrent Prolog shown in [Shapire 83] and [Shapiro and Takeuchi E3] has
the following problems.

5.1. Head Unifiecation

The rules of Concurrent Prolog do not meptien the order of unificaticn
of head arguments at all. At least four sclutions seem to be candidates:

{1) Head urifieation is performed in parallel. A peeudo-parallel implemen-
tation ie allowed, but po sequentiality is assumed conceptually.

{2} Head unification is performed sequentially in scme crder not definad by
the lasngusge. The implementaticn cen erbitrarily chocse one of the
possible orders. A program that depends cn a particuler order is
erronecus.

{3) The mixture of (1) and (2) ebove. That is, the head unificaticn is
performed sequentially in some order, cor in parallel. A program that
depends on & particular strategy is erronecus.

(4) The head unificaticop is performed sequentially, from left to right.

Sciuticn (1) is preferred because sequentiality in the language rule
should be minimized according to the prineciples stated in Chapter 1. The
set of possible results of the execution of a program should remaln
unchanged when we sSystematically change the order of arguments of some
predicate throughout the program and a goal clause. The "result' mentioned
above may include at least the followlng:

{a) Whether the computation terminates or not,

(b) If it terminates, whether it succeeds cr not, and

{e) If it succeeds, what bindings are made to the variables in the goal
clause.

The ckoice of the sclution (1) has an influence on allowable
ipplementations: sequential unification from left to right Decomes
inadequate. Consider the following program:

Call: 1= pla, =al. (5.1)
Program: pLla7, &), (5.2)

The left-to-right bead unification suspends while the rule states it must
succeed.

In fact, any implementatien of head unificatico which assumes &
specific order ie inadequate. For example, there is no specific order din
which both of the following two goals succeed:

Call_1: := plA, A%). {5.3)
Call 2: :- piA?, & ). (5.4)
Frogram: pla, a ). (5.5)

Note that the abeve arguments apply te any unification performed in
computaticn, for exemple unification upon commitment (see Chapter 2).

B.2. Head Unificaticn and Guard Execution

The rules of Concurrent Prolog specify that the execution of a guerd
start after head unificaticn has succeeded (Section 2.2, Paragraphs [2],
[6] and [9)). We propose a different sclution: Head unification and the
executicn of a gusrd are dene in parallel. The reasons follow.

Consider the following examples



Call: := pla, a2 ). (5.6)
Frogram: (a) plk, B ) := A=X7, B=X | true. {5.7)
{b) pl(X?, B ) := B=X | true. (5.8)
(el pLx?, X ). (5.9)

tecording to [Shapiro B3], Pregram (2) succeeds and Program (b) suspends.
Frogram (b) suspends because the unificaticon B=X is performed only after
the unification a=X7? has succeeded. The result of (o) is not specified.
If the unifieaticn of arguments is allowed to be performed sequentially,
Frogram (c) wmay suspend; if the wunification must be performed in parallel
(as we recommended in Section 5.1), it succeeds. However, why should these
three programs be not identical?

We propose to define (&) seg & standard form of (b)) and (c), and to
make all the above programs succeed. The standard form of 3 clause must
have a head whose arguments are distipet simple variables. Clauses (b} and
{c) are considered as shorthand of {a). One justification of this proposal
iz that =all these clauses are '"logically' ideptical. Defining the
semantics of & clause in terms of its =tandard form may simplify the
description of the semantics. The =imilar approach has been adepted in
PARLOG [Clark and Gregery BL4].

Our proposal could be justified also frem a practical point of view.
Each clause performs head unificaticn and executes itz guard to determine
whether 1t can be selected. Looking back ocur programming style, we usually
write in the head what we can write either in the head or the gpuard, and we
write 1n the guerd onlvy what we capoot write in the hesd. An example of
the former is the syntsctie check of an input argument, and an example of
the latter is the arithmetic compariszen of twe input values.

fa far as we =ee, this choiee has been made by the content ef cheek,
not by the its order. There seems to be no program that cannot be writteo
without using the fact that heed unification precedes the execution of a
guard. The only reason why we use head unification for more than argument
paasing 1= that the use of head unification 1= good for conclse
descripticon.

6. UNIFICATION OF TWO READ-ONLY VARIZBLES
Faragraph [3] does not explicitly stete the semantics of unificaticn
of two resd-only variables. Kusalik tock up this subject in [Kusalik 84]
and argued that if a claus=e such as
p{X7) :- guard(X) | body(X). {6.1)
is to be allowed, the head unification invcked by the call
1= plav). (6.2)
should aucceed. Then he proposed two poassible revislons:
{a) Let the unificetien of twe read=-coly wvarisbles X7 and Y7 =ucceed, and
make ¥ and ¥ (identical) non-read-only variables.
(b) Disallow read=-cnly variables appearing in a head.
However, neither of these scluticps is desirable:;
{a) Assume that

1= X7=Y7, X=a. (6.3)

is executed. If X7=Y% ies executed firet, X and Y become an didentical
nen read-only varlsble. This means that the annotated wvarisble X7
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becomes instentiated by the partner of the upification by the executicn
of X=a, which is ineonsistent with the geperal property of annctated
variables.

(b) 45 Eusalik himself says, a read-cnly variable ip a head has wuseful
applications [Hellerstein and Shapirc 84][Takeuchi and Furukawa B5] and
should not be prohibited. Morecver, disallewing read-cnly varlables in
a head destroys the symmetric pature of unificatiom.

An alternative sclutien te (a) might be to let the unification of two
read-only variables succeed and then to make them identical read-cnly
variables. This preserves the propagative pature of read-only annctations.
However, consider the following goal:

;- X7=Y7, X=a, Y=a. (6.4)

Thi= goal suspends if X7=¥7 iz executed first, and succeeds otherwise.
This looks like a new, undesirable kind of nondeterminacy which arises from
the order of unifiecation: Besides this, the only scurce of nondeterminacy
iz the commitment cperaticn.

Shapire's criginal interpreter makes the upnificaticn of two read-cnly
variables suspend. This sclutiocn looks better than all the  above
alternatives, but Aide [uppublished] and Tanaka [unpublished] claimed that
the unification of two Aldentical read-enly wvariables should succeed.
Tanaka implemented Concurrent Proleg [Tapeka et &l. 84] and found that it
is inconvenient that the gozl

1= X=¥7; X=YT. {£.5)
Suzpends while the goal
t- X=¥7. (6.6)

succeeds., So the best sclutien will be te let the wunification of twe
read-cnly variables suspend unless these read-cnly variables are identical,
in which case it =should succeed.

One consequence of this slight revision i= that the implementaticn
might become complicated a little bit. Without this revision, suspensico
of @ goel is released only when the read-cnly varilable which caused the
suspension gets instantiated to scme non-variable term. Now suspensicn cof
a goal can be released also when the read-only wvarisble that caused the
suspension i= unified with seme cther variable, =2 long as the suspension
iz caused by the unification between twe read-cnly veriables.

Let us consider the goal "X7=Y¥7' for example. This goal suspends if X
and ¥ are both uninataptiasted and not identical. One way to release this
suspension is to instantiate both X and Y to nopn-verieble terms. Our claio
is that pow there i1s ancther way to release the suspension, that is, to
unify X and ¥. This means that the suspended goal '"X7=Y7' should watch the
instantiation of X and ¥ to uninstantiated wveriables as well &= to
nen=variable terms.

7. THE FREDICATE 'otherwisze'

The predicate 'otherwise' was first introduced in [Shapire and
Takeuchi B3}. An "otherwizse' goal that occurs ip a guard succeeds If and
when all other parallel-Or guards fail. The ccmmenest use of this
construct will be to use only cne 'otherwise' zs the scle guard geal of the
last cleuse which handles the 'default' or 'excepticpel' case. However,
the above simple rule itself is nmot so restrictive; it implies the
foellowing.
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(1) "Otherwise' cap appear in a clause other than the last clause; There
is ng crder amcng clauses constituting a predicate.

(2) '"Otherwis=e' pneed not appear as the =ole geal in a guard. If the guard
of a2 clause containing ‘'otherwise' also centains other goale, that
clause may not be selected even 1f all the other clauses have failed.
However, the c¢lause with ‘'otherwlse' cannot anyhow cover all
exceptional cases without restricting the clause head to the most
general one, and there seer to be no reasons to restrict the form of a
clause with *"otherwisze'. The only possible restriction might be to
irhibit twe or more ‘'otherwis=e' goals in one guard, since this 1s
harmless but useless.

(3) '"Otherwise' can appear in mere than one guard. Assume that the
fellowing cleuses sre coptained in the definiticn of 'p!

P‘:ﬂil, !l-ll:l HE ﬁt-hﬂr"hfi:‘ﬁ | - {Ti1j
plconz(A,B), ...} i- otherwise | ... {7.2)

and that sll other clzuses are proved to be unselectable. Then, if the
first argument of 'p' is 'nil', Clause (7.1) will be selected since
Clausze (7.2) iz unselectakble. If the first argument of 'p' has the
form 'cop=(X,Y)', Clause (7.2) will be selected. Of course, 1f two
clauses which are noct mputually exclusive have '"ctherwi=e' goala in
their guards, deadlock may result:

pl¥, Y) :- ctherwil=e | ... {(7.3)
pl¥, ¥) := ctherwize | ... (7.4)
It is, however, the responaibility of a programmer to aveid such
deadlock.

Although the originsl definition may look too general; it is
recommended for 1its simplicity. It ig fairly easy tc implement:
‘otherwise' peeds cnly to monitor the pumber of falling cleuses and
succeeds when it reaches the number of the other clauses. We know that
thi=z construct is useful feor writing non-trivial programs, but we have to
examine further where the generality of 'eotherwisze' stated sbove iz really
useful,

CONCLUDING REMARES

We have discussed some subtle points on Concurrent Prolog. In Chapter
3y we examined the semantics of multiple environments and a coomitment
cperation. We showed that we have to further define at least the follewing
thinga:

(1) Timing of unification of lgesl and global informaticon,

(2) Availebility of the velues eof goal srguments for clause heada and
guards, and

(3) Accezs rule teo local and global coplies of variables

In Chapter 4, we examined the sementics of unification and the allcowed
compunication delay between two or more cocurrences of a shared wvariable.
¥We smaw that @ non-variable term {say T) specified in &a source text must
have an 'indivisible' nature: The unificaticn of T with some veriable muat
be done &5 ap stomic action. To put it differently, we must assume some
sequentiality for unifiecatien. Another conclusion is that all the
cecurrences of the same varlable must dencote the same value at the same
time. We must not azsume delay for a shared variable which is instantiated
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by some goal and whose value is referenced by another goal. These
conclusions mesns that some transformetion of 2 progran clause allowed 1in
the first-order logic may change its semantics.

In Chapter 5, we conaidered how to execute head unificaticn and the
carresponding guard. In Chapter 6, we examined the semantics of
unificatien of two read-only variables. In Chapter T, we examined the
semantics of the predicate 'otherwise'.

It must be noted that the arguments in this paper applies alsc to Flat
Concurrent Prolog [Mierowsky et al. B85]. Flat Concurrent Prolog is
different from Concurrent Frolog in that only predefined test predicates
are allowed in guards. Management of nested enviromments is no longer
necesgary, and implementation on a sequential machipe is greatly =simplified
by deing clause selection as &n indivieible cperation. However, Flat
Concurrent Frolog never remdves the need of wmultiple envirooments
conceptually, since head wunification may inatantiate global veriables.
Therefore, if Flat Concurrent Prolog is intended to be a lapguage for &
parallel machine, it must resclve the problems discussed in this peper.

The results of this paper should be helpful for defining the precise
semantics of Concurrent Prolog. However, the resulting semantics would be
more complex than we thought even if defined informelly, and it would
require considerable efforts to have a formal sepantics. An alternative
research direction will be to revise the language. The language Guarded
Born Cleuses [Ueda 85)] was found by the author in this direction. He
abolished the multiple environment mechanism a2nd read-cnly arnctations at
the same time, and get @ much simpler language with slight loss of the
expressive power of Ceoncurrent Frolog.
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