ICOT Technical Report: TH—DQQ

TR-094%

Data-flow Bused Execution Mechamisms
of Purallel und Concurrent Prolog

Noriyoshi Iro, Hajime Shimizu
(1COT)
Masasuke Kishi,
Eizi Kuno and Kazuaki Rokusawa
{0k Electric Industry Col. Lid.)

December, 1984

Aita Kekusm Bldg, 21F LAY doe=210T =~ 5

“ :D | 4-28 Mita 1-Chome Teles IO Jois

Altnate-ku Tokve 18 Japan

Institute for New Generation Computer Technology

Data-low Based Execution Mechanimms

of Parallel and Concurrent Praolog

Neriyoshi ITO, Hajime SHIMIZO,

Institute for Hew Generation Computer Technol ogy,
1=4-28 Mita, Mimato-ku, Tokyo 108.

Mzsasuke RISHI, Eiji KUNC, and Fazuaki ROKUSEJA

Okd Electric Industry Co., Ltd.,
4-10-12 Shibaura, Mimato-ku, Tokyo 108.

ABETR ACT

Study attempts to show that our machine architecture based on the data flow
model is suitable for two types of logie programming languages with different
aims: one iz Parallel Prolog and the other is Conourrent Prolog, The data flow
model can maturally implement parallel computation, and it has close similarity
to these languages, Unification and nondeterministic contrel, two Dasic
functions of these languapes, are represented by data flow graphs and
interpreted by the machine. Several representations of variables, that
facilitate the develoment of parallel unification and nondeterministic control
mechanisms for these languages, the unificatien and contrel primitives needed to

exscute these languapges on this architecture are presented,

1. INTRODUCTION

Hecently, a number of parailel inf'erence machines have been propesed by
various institutes and researchers to be used in the execution of Prolog, a
logic programming language based on [irst-order predicate logic. Proelog is a
simple languapge possessing strong descriptive capabilities and dintrinsic
potential for parallel processing [15]. Most of these parallel Prolog
interpreters focus on 08 parallelism or independent AND parallelism, even if
AND-parallel execution is implemented., Their target is to solve all-solution
problems in a bighly-parallel execution enviremment. Such Prolog language 1s

called Parallel Prolog.

Page 2

Coneurrent Prolog [18] [19] has been proposed as one of languages enabling
interactive control of AND processes. Copcurrent Prolog is a successor RO the
Relational Language by K. (Clark and 3. Gregory [6], who have furtaer extended
the Relational Languzge to PARLOG {7]. & common feature of thesze languages is
that they facilitate interactive communication of partizl bindings, or DessSages,
among AND processes. Of these, Concurrent Proleg ha=s been chosen for the
parallel inference machine because it provides more flexible input/output

annotatian than other languages.

Botk Pareilel and Concurrent Frolog consist of Hern clauses based on
fipst_gpder predicate logic] nosever their aims are somewhat different. The
former's aim is to find: all solutions, while the latter's prime aim 1is

obiect-criented programning.

me zuthors have been engaged in research on a parallel inference machine
apnd have evaluzted it Ffor Parallel Prolog programs using a detailed scftware
eigulator [13]1 [14]. Simuwlation results indicate that machine perfermance can
be significantly improved by exploiting pargllelism. The machine ia bazed on
sne data flow model, which is closely related to functional languages and 1is
naturally well suited to parallel processing [2] (4] {11]. Programs in the data
fleow model is represented by data flow graphs, where nodes correspand to
sperators and directed arcs porrespond to data paths along which operands are
=ent. An operator in the graphs iz driven by arrivals of the gperands from 1its
input ares and outputs the result operands to its output arcs without affecting
the other operaters executing in parallel. This functionality of the operators

has close similarity to the functional languages.

The data {low model has also =imilarily to the logic programming languages
described above. Execution of logic progracs 15 performed in a goal driven
zanner: a clause in the programs is jpitiated when a goal is glven, and returns
tha results f(solutions) to the goal. If multiple clauses are glven, their

ynifisation with the goal can be initiated in parallel, by representing these

clavses by data flow graphs.

These logie programming languages both make use of the unification
pperation, which is one of their basic funections. HNondeterminism 1s ancther
basic feature of these languages; the control of 'don't-know nondefercini=m' I3
required for Parallel Proleg, while the control of '"don't-care nondeterminism’
is required for Concurrent Proleg [7] [17]. Details of the execution mechanisus

for both languages are desceribed in tnis paper.

Parallel Prolcg and Concurrent Prolog are outlined in Section 2. Section 3
deseribes an abstract machine architecture, Section 4 discusses variables in
both languages and their reoresentation on our machine. Section 5 and 6

describe the primitive cperators reguired to implement unifieation and

nondetersinistic contrel for both languages.
2. DPARALLE. PROLOG AND COMNCURRENT FROLOCG

The Parallel Prolog programs can be interpreted in 2 segquentizl manner by
using backtracking. If p:'nbie:u.s to be solved are very complex, however, it iz
necessary to solve the problems by expleiting these parallelism instead of using
the seguential interpreters, because they may need much more Lime than We can

stand.

L Parallel Prolog program consists of 2 set of clauses as shown below:

H1 <4- B1.
H2 <~ B2.

Hn <- Bn.

Here, Hi and 81 dencte a head literal and a body, respectively (where 1 <= 1 <=
n). The symbol '<{-' represents an impliecation: 1if its right szide (the body) is
satisfied, the left szide (the head) is alsc satisfied. The body can consist of

i

an arbitrary number of body literals connected by ANDs. A literal has the [form,

plt1,t2,...,tn), where p is a predicate, and ti (1 <= i <= m) iz a term. A terc

way be a moo-structured data item such as a variable, symbol, or numeric number,

Papge 4

or a structured data ltem such as a list or compound term. 4 cglause without

body literals i3 called a unit clause.

Unification is initiated when a =at of clauses and & pgoal statement {a
clause oconsisting of an arbitrary number of body literals with no head) are
given. One literal is selected from the goal statement; this i3 called a _guai
literal. 4 elause in which the predicate of the head literal 1s identical with
that of selected goal literal is a candidate for pnificatiaon. The subset of
olauses that share the =ape head predicate is salled the definition of the

predicate.

When a goal literal, G, iz given, the defimition of G is imvokad, A clause
iz then selected from ti;a dafinition, and upification of G and the head literal
of the clause, Hi, Is attempred, Generally, when mul tiple clauses exdist in the
defimition, wunification of o and each Hi can be avecuted in parallel., This
parallelisn among clauses is called DR parallelism, and each process executing a
elause is ecalled an OR proee=ss. L unit clause that is —uccesafully unified with

o returns the result (solution}. 4 non-unit clause imitiates the pext

ynification treating the pody 42 a new goal statement.

if multiple literals exist 1n the goal statement, they &re connected by
logical ANDs. That is, the goal atatement 13 satisfied (the =solutions are found
sapr the body) only when solutions are found for all the literals and there i3 no
ipconsistency between thesze anlutionz. The literals in a geal statement can be
executad in parallel. The machine can exploit this parallel ism efficiently im0
s2zes where the goal literals have no shared variables, or shared yariables are
hound to the ground instances before imvocation of these 1iterals, bDecause

sonzistency checking 1s easy or unne ceSsary.

In AND parallelism, however, the ssarch space may D€ expanded in scoe
cases, or the overnezd for consistency checking betWween the solutions returned
from the literals may ©De ipcreased, if these goal literals have shared

variables, Therefore, Syntactical operators wWere introduced for gpecifying

Papge 5

whether seguential or parzilel execution is to be used for these AND-connected
literals. In thiz paper, the symbol '&' represents an operator that specifies
sequential execution of the literals on both sides of the operater in
left-to-right order. The symbel '//' reprezents an operstor that specifies
parzllel executicn of the literals on both sides of the operator. Processes

dedicated to sclving goal literals are called AND processes,

A Concurrent Prolog program iz given as a set of guarded clauszes, as in the

following:
H1 <- G1 | B1.
H2 <= G2 | BZ.

"n <= Gn | Br.
Here, Hi, Bi, and the symbol '<-' are the =ame a= in Parallel Prelog, and Gi
denotes a guard (where 1 <= 1 <= nj. The guard can consist of an arbitrary
mmber of literals as in the body. The symbol '|' is called & guard bar or
commit operator, and is regarded as one of the sequential control cperators that

perform exclusive contreol, as in Dijkstra's guarded command [10].

In the above program, the head literal and the guard are executed as 1n
Parallel Prolag. That is, OR=-parzllel and AND=parallel execeiicn can be
implemented, In the OB-parallel execution epvironment of Concurrent Prolog
programs, only one clause for which head unification and guard invocation have
been successfully completed 1s able to proceed to the ewxecution of the bady.
The results derived from other clauses are dizearded at that time. This

exclusive control is implemented by the guard control mechaniam, as described Ln

Saection &.

Another role of the comomit operator is to make available (i.e, export) the
bindings of the variables of the goal literazl, G, to other precesses. That is,
if processes share variables, the pindings for the voriables are made avallable
to these processes by the guard control primitives. This function enables AND

processes to communicate bindings or wessapes interactively. On the other hand,

Fage 6§

in the all=solution searching program, AND processes Qay be eyxecuted
independently: AND processes sharing unbound varliables may generate the
bindings for these variables, which are then used to check consistency of thelr

bindings.

snother feature of Coneurrent Proleg iz read-only annotation, in which lags
are appended to variables. TIf an attenpt is made to unify a variable having a
regd-oniy tag with & non-variatle term, the unilication is suzpended until this
variable is bound to a nen-variable term bty ancther unificaticn. This pechani Zm
can be implemented by adding tag bits to the megory oells used for these

variables, as deseribed in the following section.
3. MBSTRACT MACHINE ARCHITECTURE

The machine can expleoit OR and AND parsllelise as described above, as well
as parallelisn iIn unification. When a geal litersgl and 1ts defi:ﬁt:i.nn ara
civen, the goal literal is unified with = head literal of each elause in the
defimition. This operation is called head unification. In head unificaticn, il
bath literals consist of multiple arguments, or if both arguments are structured
data, the unificaticn of these arguments or their substructures can be executed
in parallel, The machine 1= sonstructed from multiple processing elements and
pultiple structure memories interconnected by networks as shown Fig.] [12]7 it
is based on the data flow model and can expleit tais type of lem=level

parallel i=m.

Pape 7

processing | processing
! L
glement | * " el ement |
i i
1 !

network |[

structure . [atructure |

memcry L~ ° memory |

Fig.1 The abstract machine archltecture

The parallel inference mechine uses a ftagzing scheze, in which ezch operand
has a value field and a tag field, which specifies the data type of the operand.
If the cperand is a structured data, the value Tield hes a pointer Lo the
structure memory, and the 1.:.33 field is further divided into wwo sublields: a
data type subfield, wh:Lcﬁ specifies the data type of structure, such as a list
or a wector; and an atiribute subfield. The attribute sublfield contains &
non-ground flag, which indicates whether the structure has any zimple variabl es.
The attribute subfield also contains a shared flag, which indicates whether the
structure has any shared-type wvariabies {(i.e., shared variables, gElobal
variables, or read-only variablesl. These vapriable types are described in
detail at Secticn 4. The machine recognizes the tag fleld of the operand and

transfers control to the appropriate firmware routine.

When a goal literal is given, unificanion is initiated by dmvoldng the
compiled clauses of its definition. The clauses @re ~epresented by data flow
graphs, which correspond to the wmechine lzpguage © -2 parallel inference
machine, Each node and eazch directed arc im 2 Latl: _Luw Soaph respecilvely
sarresponds to an cperator and & data path aiong which an gperand iz sent. A
node in the graph can be executed when operands have arrived from all 1ts lnput

aracs., The pachine iz besed on the unfolding interpreter [Y], which provides

Pape B

procedurs imvoeation primitives that =allocate a unigue identifier to ezch
procedure instance and paintain the history of the procsdure imeecations. e
identifier, as well as an pperator address, iz added Lo ezch Loken CRIrYANg
argurents (operands), and 13 used to distinguizh among apcivities (ocperaters).
M1 the oOperalors, therefaore, can be executed i ndependently. The token format

{s snewn in Fig.2 (al.

operand firat word
/ ™ -~ D
process operator| data|value reference | R|P | data|value
idantifier|address |t¥De count type
second word
o~ nd word ~.
f
R|F| datajvalue
Lyoe
{a) Token Format (b} Structure Mezory Cell Format

Fig.2 The boken and structurse memery cell format

Struptured data is stored 1M and disztributed to the structure pemories and
is =hared among processing glements instead of being locelly copied to each
processing element; the contents of the structured data can be refepred Lo on
demand. Ope z2dvantage of this method is that it minimizes rhe overnead caused
by copying of the structured data. The other is that 1t pliminates redundant
storage [for locally copied structured data., There may prove o be signifiecant
advantages in the manipul atien of complexly seructured data such as 1= reguired

in natural language processing applicaticns.

4 protlem in sharing structured data among processes L1s latency in
apeeasing the structured data. Latency may be ipereased a5 the number of
processing elements lnoreases. In order to exploit parallellism, the processing
element must issue oul tiple memory requesls without waiting for responses. In
such an emvironment, recuests and responses must be managed by thelr identifiers
since responses may not he returned to the processing elemept in the arcer in

which the requests were issued. The data fiow wodel implements this type of

Faga U

control in a2 m=tural way, and exploits low-level parsilellism because 1t is

assured of independence amcng cperations or instructions [2] [5].

tructured data ig stored in structure memory eells. Lach cell consists of
two words and each word has a data type tag [ield, a value Tield, and two flags:
E {(ready) flag and # (pending) flag. These flags are used for providiog
asynechronous compunication between resd a2nd write aperztions to the memory word.
R flag shows whether or not the contents of the cata type tzg and value fields
are valid (i.e., whether or not & write operztion to the memcry cell is
performed). P flag shows whether or not some read operations are linked Lo the
value fieid. 4 read operation to a wmemory werd, whose R tag is OFF, is
suspended and linked to the memory word until a write operation to the memeory
word is issued. In order to implement a garbage cocllection of the structure
memeries, the reference count tags are zppended to every memory ecell [11 [8]
[16], which alsc used for stream control as described in Section 5. Fig.2 (b)

shows a structure memeory cell format.

4, VARIABLES AND THEIR HEE‘HIEEITRTIU:J

4 variable can be unified with, and bound to, any type of term. When a
variabie hes multipie oeourrences in a cdlause, however, the ssme Lero must be
bound to each occcurrence of the wvariable, If & wvariable is shared among
unification processes being executed in parallel, it is ealled a shared
variable, It iz called a simple variable if it appears in 2 clauwse only ones,
or if unificatien affeeting the variable is executed seguentially even if it

appears more than onece. Shared wvariables are distinpuished from simple

variables by their data type.

When a simple variable is uniliec wito any tesn c~e warishle ecan be
directly replaced by the ters and nc bindings are generated. However, when 2
shared variable is unified with a term other than a simple wvariable, the
substitution information for the shared variable is cutput by unification. This

substitution informatien 4is called the binding emvironment of the shared

Page 19

variabl e, The binding envircoment, represented as a list of shared variables
and their instances, is used to check whether the bindings of the zharsd
variables ape consistent among tne parallel unification cperations. It is also

used to substitute terma [or snared variables,

Shared variables are oreated dynamically and represented by unique
identifiers in Parzllel Prolog. 4 shared variable in the unificatieon ef the
head and guard of a guzrded clause (i.e,, a clause 1in Concurrent Frolog) is
treatec in the ssme zmanner as in Parzllel Preleg. However, when a goal literal
is given, orly one clause can commit the tindinz informaticn for the shared
variables. Thus, shared variables can be represented Ty pointers to global

pmemory oells. We call suach shared variables global shared vardiables, or simply

global variables,

The commit oparator can be regarded as a write command to the memory coells
peinted to by the global variables, and the read-only tag can be regarded as a
read command to the memory cell, A variable with z read-only tag 1= ezlled a
read-cnly globtal variable, or simply a read-only variable. It iz al=o
represented as a pointer to the same memory cell 1o which the gleobel wvarlable

points,

If the guard has multiple literals witn global variables and these literals
are exccuted in parallel, child processes invoked from these guard literals oay
comgunicate bindings via the global variables. Eincings are loeplized in this
guard, 4.e., information about these bindings 1is unavailable to the parent
slause that imvoked this guard until the guerd is successfully terminated (i.e.,
the pommit cperation is issued). The guard acts like a mirror in which bindings

are refl ected from one onild to anocther.

On the other hand, the children irvoked from the body must T"ses" the
sindings of their ancestors throum the body. That is, the body acts like a

window through which the bindings can be "viewed" Dy the chil dren.

Tne relationsnip between o parent clawvse and its irmvoked children is

illustrated in Fig.3. The two ovals in the figure correspond to the guard and
body of the clzuse; the left oval represents a guard, the right one represents
a body, and the junction of these ovals corresponds to 2 commit cperalor. The
puard and body are evecuted from left to right., The bottom surface of the guard

reflepctz bindings from itz children, but the body allows the bindings to pass

through.

guard comoilt aperator cody

| i

H b.‘ y rd
| 1 i

\ | parent

| \
/0
;o

citildren

Fiz.3 Relation=zhip between a guarded clause and its ekildren

Fig.4 depicts this reletionzhip when the following clauses are given:

pofd} <= g1 {¥) 7/ c2(Y) § ...
Gi{Z) <= r152) /7 r2{2) | £P30L2) ...
r1{w) <= s1(W) | ...

r2{Uu} <= ...

In the above ewmnple, it iz assuwmed that the clause with head predicate pl

{elause p0) i3 initially ezlled. Becavse twe pareilel guard literals q1(Y) and

oy

=5

g2{¥) of clause pl share Sn= variable ¥, and Y is unbouns oefore these literals
sre galled, & mew glosal vuriaple, ¥g, is zrested. ¥z Z:o c2:8 22 zn argoment of

~lauses ql1 and g2, whi=n sre execcted in perzllel and share the global wvarlable
far . Moauze gl imvokes clogses p1 and r2 from its geard; 1t alzo imvokes clause

e3 o Prog Lt bady 1F the devobed glauses pl and r2 succsed. The binding for Yg

T
o
@
T

is hidden frem the clauses ri and r2, and traansparent to the clause rl.

Fig.4 Relationships zmong guarded clauses

In order to hide the bindings of guard literals, local copies of global
variables included £n a guard must be oreated before the guard is imvoked. He
call this method local copying of snared variatles, A local copy of Yg, which
is represented by Yg', 15 createc when clauses ri and rZ are imvoked from the
puard of clause pl, as =noWwn in Fig.4. The lcocal copy oan e reprezented 23 2
mecory cell having twe words: (1) a slot for 2 loeal ipstance of tae global
variable and (2) & pointer to its parent juard, which is used to send the local
instance to the original glcbe- variaples in the parent wnen the cormit operator
is issued. The latter zay be regardec 28 the binding envircnment for the

locally copied variable,

Page 13

However, if it is guaranteed that all the clauses invoked by a guard
literal does not affeet the arpurents of the guard literal (i.e., il all the
clauses does not bind any instance to the arguwments), it is unnecessary to

create local copies of global variables.
. PRIMITIVES FOR PARALLEL PHOLOG

This section describes the basic unification primitives, nondeterministic
control primitives, and AND sequential/parallel control mechanisms for goal

literals in Parallel Prolog.
§.1 Basio Urifieation Primitive Operators

The operators in the imvoked clauses are initiated by passing goal
arguments wvia the procedure Lipvocation primitives; unification of the goal
arguments is then attempted with the corresponding arguments in the head
literals. Umification bhetween an argument in the goal literal and the
corresponding argument in the head literal is executed by 2 unify opsrater. Ir

th literals have multiple arguments, multiple unifly operators are executed in
parallel, & unify operator has two dinput porta and two output ports: I
{instance) port and E (enviromment] port. The I port is for an instance comnon
to two input arguments and the E port is for the binding erwiromment of shared

variables.

Fig.5 zhows a data flow graph representation of the unify prizitive
eperator, In Fig.5, diarmonds represent test operaters for input operands, which
generate boolean values. These in turn are sent te the right-hand ports of
sditch operators. & =switch operator switches an input operand from 1ts upper
input port to one of its cutput ports by the booclean value: if the boolean
value is "true", the input operands is sent to the T (true) port; if not, it is

sent to the F (fail) port.

e

P s

e

Page 14
1st 2nd

operand operand

a=zhare

switch Y switch

e el

switch | switeh !

i <
=

mwiteh | switeh

Fail) jatructure—

I port E port

Fig.5 A data flow graph representation of a unify operztor

Page 15

The wnify operator execules the following seguence:

{1) If an icput cperand i3 a simple variable, the operator ocutputs
another operand to the I port and the speecial symbel 'nil' to the E

port, which means there are no bindings for shared variables.

{#) Tf one iz & shared variable and the other is & term other than
a sipple vwariazole, +the operator outputs the shared variable to the [
port and outputs a newly constructed 1list consisting of the shared

varizole and its instancee (i.e. the term) to the E port,

{3) If both cpereads are atonic terms (i.e., Symbels or numeric
mmbers) and if their unification succeeds {(di.e., if both terms are
same), the operztor outputs one of the terms to the I port and 'nil' te
the E port; it outputs specizl 'fail' symbels to its two output ports,
if the wification fails.

(4] If both oaperands are structwed data, =& structure—unify
sraocedure, shown by the rectangular bex ir Fig.5, is imvoked. This
procedurs cecomDases two input structures into their substructures and
recursively invokes unify operztors for these substructures. In this
procedurs, all the cutputs from the E ports of the unify opsratars are
used to check econsistency, and all the outputs frox the I ports are
uzed to preconstruct a new instanes, In arder to reduce overhead in
Feconstructing 2 new structured data, if cme of the operands is a
ground term {i.e,, ite non-ground flag and shared flag are OFF), the

rrocedure outputs the ground term itszelfl,

%) In 81l oiner cazes, the operator outputs 'lJail' to both output

Page 16

The machine can interpret this graph directly. FHowever, as the granularity

ol

sperators seems to be too fine, commupication overpead between the operators
is too geat, In order Lo evecute thiz pripitive faster, most of the above
graph is interpreted by harcware or firmware routines. &5 menticned in Section
3, since structured data 13 shared among the processing zlements and distriuted
to the =strusture memories, the structurse access primiilves must wait for the
responses rom the structure megories. The unify primitive, therefore, has
sdditional output ports, represented by broken lines in Fig.6, which are used
for token passing to the etructure-unify procedure, only when both input

operands are structured data.

1at 2nd
operand opearnd

atructure—
unily |

I port E port

Fig.6 The actual implememtation of the unify operater

Fig.7 shows an example of & compiled code for the folloding clzuse:

p{[Y1b1!Ei:} Y= e

where a pair of square brackets denotes 2 iist, and symbol b and ¢ denotes
atemie f{or constant) values. [¥,p] represenis a 1ist whose left component i3 a

variable Y and whose right component 15 a 1ist [Bl: it can be also represented

Page 17

az [Y![b![7}], where '!' zenctes & list construct operater and '[]' denctes a2
nil list.

firat second third

SEUnent zrgumeant

i \\E e .
L
. |
) r
r.-"i_l_-_“'. il
d o |
| [¥alad :::ae:. |
i
\ R | share
4 "l‘ I,
r’" L ‘\\
subatitute: substitute
1\\-_ M ".I"
inatance instance
of ¥ of I

Fig.T Tata flow graph of clause p{[¥,b],Z,e) <- ...

A4 unify operator i1s provided for cach of the three arguments of head
predicate p; tirese =zre executed in perazilel. A variable can be upified with
any term and the unify operator ocutputs the term itselfl for the common instanee.
Therefeore, when the olzuse head argument 1= a variable, as in the second
argument in the example, the urify cperatcr can be omitted, as shown by the

broken lines in the fizure,

Two outputs from the = ports of the unify operztors are =ent to a2
check-conzistency oparaLar. Tne check-aonzi stency cperator checks Tfor
gonsistency asong thie Boselns smrireonments of the zhared veriabl exs. Thisz
operator generatez & new binaing ervironment for the zhared variables if their
bindings are consistent, and ths oymbol 'lailr if they are not. In this
consistency checking, L& suebotitutieon infermation for the shared variable is

included in beth its twe input ernvirenments, the check-consistency operator

Page 18

calls a unify operator; the invoked unify operator tries to unify the two
instances bound to the same shared variatle. & new ccopon instance cobtalined by
this unify operateor is ocutput in the form of a binding emvironment, as deseribed
above. If simple variables are included in the mew inctance, they are changed

te shared veriables, This is dope by a2 =aare cperzator.

Tn the above example, the head literal has two varizbles, ¥ and I: ¥ i=
the Left list component of the {irst argument and T is the second arpument. The
ipgstancs of Y i3 obtained by the lelt output from the deconpose-list operzior,
whose input is the I port output of the first wnify cperator., The instance of I
is directly obtained frez the second goal argjument. If these veriables appear
in the body of the clause, their instances are sepnt'to the body; they are also
ueed for constructing a solutian to be returned to the goal, as deseribed In
Subsection 5.4, t= din the third arsument of the zbove exanple, if the head

arguzment 1s 2 constant value, the I output of the unify operator is discarded,

If these instances have casred variazbles and il the check-consistency
operzter generates bindings for these shared variables, these instances are
cubstituted for the shared variables. This substitution 1s executed oy
substitute operators. A substitute cperazor tests the binding enviromment; 4if
it is 'fail' the gperator outputs 'fail’, and 4f 'pil', the operator outputs the
instance directly; otheryise, &the operator testz the shared flag of the
instance and repleces the instance with binding environment, il the instance 15
a =nared variable or its shared flag 1= oM (i.e., if the instance haz any
shared-type variables). The following subsectlon gives some exanples of usage

of these primitives.
B.2 Some Examples of Head Unification

If the following goal literal is given te the above cala Tlow graph:

<~ p{laiX],bye).

2ll the bindirsg emvirorments from the unify cperators are set to 'nil' or

Papge 19

'£3il', =since there is no shared variatle in the goal and head literals. The
ghepk-ponsi steney operator, thus outputs ‘'nil' or 'fail' to the substitute
operators. The substitute cperztors then simply pass the common instances from
the unify operzators or outputs 'fail', according to the binding ervireorment.

These outputs constitute the result of the head unification of the clause.

The following iz another example in which a goal literal including shared
variable is gZiven:

= pilaiXl, % el & ...

whare variable ¥ cceurs twice in the literzl, Ik this case, the compiled code

of the goal irmvoecation is &2f =~hown in Fig.3.

il

- X
ahare]
‘al T‘Is
cons ot
.
- Lﬂiz<5]
15t 2nd 3rd
arg, arg. arg.
invoke p

Fig.8 Data flow graph of goal <- p(laiX],X,e) & ...

The share operzteor tests the rnon-ground flag of the imstance of X and, if
the nop-ground flag is O, it changes all the =zimple varigbles in the instance
inte the shared variables; if not, it ocutputs the instance dts=ell. I’ X is
unbound before calling p{la!X],¥,2) as in the above eyxzmple, X is changed to 2
shared variable, Xsz. The subseript "8 indipates that the variable 13 shared.

¥s constitutes the f[irst and second arguments of the goal literal. These

Page 20

arguments are sent to the head literals of the clauses in the definpition.
issume that the same clause as shown in Fig.T is glven in the gefimbion. In
head unification, the unify cperater of the firsp arpument generates a binding
enviporment [(Xs = [B]'}, wnich snows the instance of Us is [p], and the unifly
npe;atcr of the last argument pergrates a2 binddng enviromment tnil'. These WO
environments are zent Lo the check-sonsistenay operator, Whion putputs the fimal
emvirorment [(Xs = [bl)]. The substitute opersters replace the instances from

the unify operstors according to this final env Lronient.

Tf another clause, sutd as the following, is @gven for the same goal

literal:
p{(¥,0i2l,Ib,ellyel 4= -..

thpee unify operators are used for ‘three head argusent S, The binding
envirorments froo these unify operators pecome [(#s = [2i2])], [{¥= = [b,eiWlll,
amd 'mil?, The result ef consistency checkdng will output the final envirenment
((xs = [b,clW]}], which I3 sent to the share operator and is then changed to
[(¥s = [b,elis])], a= deccribad above. The Tinzl inztanees gf three arpunents,
tnerefore, become [a,b,clds], [b,e¥s], and o, where the first and second

instances share ine variable, Wo.

When a variable ocecurs two or more times in the head literal, the compiler
pan also gonerate codes deseribed above: the codes ip which share coperalcrs &are
executed bafore head unily pperateors are eyecuted. However, in order ta reducec
the overhead of consistency ehecking, lazy erecubicn of the share operator can
be implemented as shown in tae folloding example. Aasume that a zoal literal
and & clause are glven:

<= pilaixl,[W],e) & ...
pil¥,21,2,0) €= «us

4 compiled graph of she plause and toksns on toe aras gre snown 10 Fig.9.
In this case, instead of upcating the variable 7 appearing in the clause head to

= shared variable Is before executing the unify operalors, 2 unify operator 15

Page 21

gexecuted Lo assure that the nultiple occcurrences of I are bound to the same
instance. That is, both instznces of 2 (the first one 1s obtained from the
unify operator of the first head argument and the zecond one is directly

obtained [roc the second goal arcupent} are unified again by another unifly

operator.
15t 2nd 3rd
argument argument argument
.| | I
(aiXla [W] @ c®
i 1
I {1,z gl

(unify]

' nil

I‘:_I’>
\ |

[a,Z]® nile
&

I decompose]

ag e [Z]
fjf decompose j chegk-
- - consiatecy
A ﬂinil

|

i unify

[W] ' nil 'Hxh_

/W-Iﬁ

knﬂs‘stencm

'['i-F]

nil
Iaub3t1 ute suhatitute
I
a
|I

I
I body invocation]
I

share
| 1
T a T [W=]
|
in=stane inatance
of ¥ of 2

Flg.9 Data flow graph of clause p([¥,Z],Z,e) <= ... and 1t= tokens

Pape 22

This final unify operator produces the list [W] as an instance of Z; the Llist
[W] is then =ent to tne share operator and changed to [Ws], before it is
returned to the goal. The goal literal will recelive thias shared structure as

the instances of its variables ¥ and W.

Tf there is a body in the cLause and the instance of I is used in the body
literal, the wvariaple W may be bound Lo another Lera by calling the body
literzl. If this share operztor is executed after the body literal s invoked
instead of just after head unificatien, the bedy unification treats the variable
2s a simple variable. Therefcre, the unify aperateors in this uwnification do not
produce the bpinding emviromment of Wa. Tnis lazy exesuticn of the snare

operator reduces the overhead of consistency checking.

5.3 Nondetermiristic llerge Primitives

If unification succeeds and one of the selutions Is cbtzined, it dis
returned to the gozl statement. b soluticn is 2 list constructed from finzl
ipstances of the head arguments followed by & binding environzeni, or "fajilt; a
construet operator of the solution tests a1l of its operands, and if all of them
are not 'fail' it generz=tes a new list; otherwlse, t returns "fail'. In the
CR-parallel enviromnment, multiple solutians may be ohtzined in a
nondeterministie manner. That is, solutions may be returned to the goal in the
order in which they are obtairned. 4z nondeterminimn is called 'don't-Know
nondetermini=ss'. We introduced a non-strict data structure called a streao to
ipplezent this nondeterminizstic control. Solutions are merged inte a stream by

streem merge primitives, as snown in Fig.10 (4] [12].

When a gosl literal ealls its definition, an empty stream is crested by 2
oreate-stream operator, which gensrates & stream deseriptor as shown in Fig.11.
A stream descriptor eell consists of two pointers: cream Head Pointer (SHP)
and a Stream Tail Pointer (STE). R (ready) and P (pending) flags af the cell
words to be stored these pointers are initialized to OFF fexptyl. The pointer

te the =stream descriptor is returned immediately to the geal, the consumer off

Page 23

the stream, which in turn reads the conients of SHF by this pointer LI the R

flag of SHP is ON, The goal waits for a solution {i.e., sets itz P flag ON and

chains the read request te SHEP) if the stream is still empty (i.e., 1if its R

flag is OFF).

goal literal

|

- - = 7

|

|
! .
\ 1 , ‘ B & .. \ Hn head unification
: |
| |

greate=
sLream
[
spointer
lta stream
deseriptor [| 1
E B1 ‘ | B2 | . 2w Bn I bady inveocation
i | | '
; 7 appand- Y/ appexde- :)_ . append=
_ stream atre:z stream
W

Lo conEumer3

Fig.10 Stream mergins primitives

atream deseriptor
stream pody

SHP, | sTF..,

i) {at solution

o L

\ T K
Ln=-ch =salution
h! e - — =
l“ l-,d-.-
LN -j |
S]

T
— {n+1)-th solution

Fig.11 Reppesentation of a ztream

Page 24

The pointer to the descriptor is al=g shared among OR processes, the
sroducers of the streap. Fach OR process appends a §EW splution by an
append-stresm operator. The append-stresn gperator alloc2ies a2 new =trezn body
pell, which iz a new tail eell of the stream body, and writes the soluticn to
the first word of the cell. The operator then upcates the contents of STP to
soint to the new cell by testing its 0 flag: when 1T 13 GFF (i.e., when the
solution to be appended Lo the stream 15 2 first cne!, the operator writes Lhe
new cell address into STP and 3HP, and seis their R flags ON (if° the P flag of
SHP iz ON, tae consumers' read reguests linked to SHP are activated before this
Write operation): when the R flag o 3TF iz alre=sdy 0N, the append-strean
pperator reads the cnntenFs of STP, which points to ‘the current tzil of the
streazm body, and updates it to polint to the newly zllocated stream body cell.
In order to look the stream deseriptor frez other append-stream opsrators whils
sTE is being updated, the processing el ement erecuting append-stream operstor
sends an uninterruptable comnand, whioh contains the stream deseriptor addrezas
and new tail e=ll address, o the structurs nescory pointed by the strean
deseriptor, The structure memory then performs this read-and-write cyeles
without interruption from other memary gperaticns. Fimally, the operator writes
the new cell address iasto the second ward of the current tail ooll, previously
pointed to by the 3TF, also by testing itz P flag: if it is OM, the suspended
read requests are astivated. Thus, every second word of the siream body eells
peints to the rest of toe stream. This update iz indicated by the broken line

in Pig.11.

L failed OR process does not affect tne stream:; the append-streanm cpharator

checks wnether the solution is 'fail', belore appending the solutlon.

In order to signal the goal statement that ali the O processes have
termipated, the stresm descriptor haz a reference count of active DR processes.
The reference count is imitialized to the number of OF clauses Lnvoked. It dis
depremented by one each time &N append-strean operaicr 1= executed; 1t is

ipnerezented v the number of the rewly created O procosces each time an AND

Page 28
process calls its body literal.

If the peference count reaches zero by decrementing, the append-stream
operator writes 'fail', which signals the end-of-stream, into the second word of
the cell pointed to by STP, and the descriptor becomes 2 garbege cell. If all
the OR processes [fail (i.e, if the stream is still empty when the reference
count is zera), the SHP is set te '"fail'; otherwise, it iz set to the pointer
to the first word in the stream body. & waiting goal literal reads SHP,
accesses the stream body cell, and decompeses it into & solution and the rest of
the strean bDody. Thisz stream reading operaticn ecan be executed recursively,

until the rest of the strear becomes '"fail'.
5.4 Execution of AND Literals

45 a solution consists of instances for goal literal arguments and a
binding emvircnment, AND-sequentizl and AMD-parzllel execution can be achlieved,

In this subsection, both execution mechanisms will be snoWi.

(1) AND-sequential execution

fasume the following clause is given in the definition of predicate p:

plilaiXi,?) <= ql¥,2) & r{Z,7).

Tn this example, two body literals q(¥,2) and r{Z,Y) are executed seguentially.

Connection paths between the instances of the variables are shown as in Fig.12.

In this figure, Bh is the created binding envircnment by head unifiecation,
Ez is the emwiromment returned from the definition of g, Er i3 the envirormment
resurned from the definmition of r, and Ep i3 the fimal envirconment of the clause
p Lo b returned to the fgoal statement. The additional literal,
apply-append([a|X],Y,Ep), represents a creation of the sclutiaon and executlon of
the append-strean operation deseribed above. The solution to be returned 13 a
list of final instances for the arguments in the head literal followed by Ep.

The imput/output modes for the literal arguments can be specified in the

Page 26

compiler. When these modes are specilied, the arpuments to e returned can be a

subset of those contained in the el ause head to improve performance.

o(lalX], ¥, &)

v
apply-zppend([alX], ¥, Ep).

Fig.12 Connectlon pathz of clause
o(lalx],¥,m) < q(%,I,E) & r(Z,%,Er).

The compiler generates complete dzta flow graph procedures, which iz shown
as Fig.13 (a), (&), and (eJ, according to the copnection paths shown in Fig.12.
Whnen a goal literal, whose predicaze 1s b, iz given, its arguments are passed to
nead unificaticon of the clause =nwdn by Pig.13 (a)., The instances of wvariables
¥ and Y are obtained if head unification succeeds, Succeeded head unification
Svokas the definitian of the first body literad g{%,7}, whoze first argument 12
the obtained instance X and second instance 13 2n unbound variable Z. If head
urifieation fails, the 4imvocation of g(¥X,2) 1s suppressed: the procedure
imwocation primitives do not irvoke the procedure and decrement the ref erence
count of the stream descriptor if its loput arpument is 'fail'. The instanes af
¥, whigh is not used in q{¥,2), is sent to the next stage by bypassing this

literal.

The invoesation of the !iteral g(X,Z) may return ihe Sireams of sclutions
{0¥i,74,Bqi)}, where Xi and I sre i-th Instances of ¥ and Z, respectively, and
Egi i= a i-th emvironzment obtzired. The recursive procedure apply-r shown 25
Tig.13 (b) 1s then imvcked, rpads the stream, and divides it imto the irst

splution (¥1,21,Eq1) and the rest of the strean {(¥i,7i,B3i)}, which is used &3

Page 27

the argument of the recursive call of the apply-r {where, i = 2,3,...). If the
ctrean is still empty, the read request i3 suspended as deseribed in Subsection
5.3, When no successful solutions are gbtained, or when the rest of stream is
tfail?! (i.e., no more solutions are exist), the imvocation of the procecure is

suppressed.

The body of apply-r further deconposes the solution into the instances of X
and 2, and the environment Eg, which is used to check consistency with the
envipernment of head upification Eh te produce 2 new ervirenment Eg'. The
bypassed instance of Y is replaced by thiz new envircnment {the result of

check-consistency primitive).

1

Tn this procedure, when a goal literal has shared variabhles in its first
and =econd arguments, the 1nstances of ¥ and ¥, obtazined by the substitute
operators in Fig.13 {a), will share these variables. For example, if the given
goal literal iz p(Ws,Ws), the instances of X and ¥ are Is and [alis],
respectively, and share the variable s [where Ws = [21¥=2]). I the execution
af the firat literal qglX,Z) -squ:ceecls and binds any term to the instance of X
(the shared variable Xs), the same substitution for Xs must be applled to that
of Y. The substitution information for X5 i2 given by Eg and will be uzed to
produce the new emvircmment Eg'. The shared variahle Xz in the bypassed
instance of Y 1is then replaced according to EQ' by the substitute operalor in

Fig.13 (b).

The copsistent solutien set, then, invokes the npext Dbody literal riz, 1},
which again generates anclber stream {(Zi,¥j,Erj)}. The new stream is used as
an argument of the next recursive procedure apply-append shown in Fig. 13 {el.
4= the inpstance of ¥ obtained from q{¥,Z) is alsoc transferred to
apply-append(la!¥],¥, Ep) by bypa-sing r(Z,Y), the same contistency checking aad
substitution operations az in the case of the Dypassed lnstance of ¥ must be

executed,

= : —— A

. —_— :
{ decompeze . £ anare }
| e
-]
Vs]

T
{ subar:tu:e?(i e |

subastiture s
-

o\ | e
invoke I \
definetion of g | ;

i R
II'\
reac=-SEE Y

=
L

{(¥L1,2i,Eq1}}

| invoke apply-r

(2] Head unification

inatance

of ¥ Eh

)}

fapgE £o

invoke

definition of r

"-\ |
¥

{ read-EHF |
~ 7

invoke spply-append

{b} Procediure apply-r

instance
of I (25,13, Er)]} %q'
i. A
;-L_ . deccmpoze) l
j — Y

deccmpose

decompoge)

.': I-' ChECH— “1

~ invoke
apply-gppend

woonslatenays

. 7 !
pona conRs
\“—_'-'__'\ L_f-—_—h-.._'__.-"/
\ oCnE
————————
{[alXx], Yk, Epk)
'l
{" append-
straam

{e) Progedure apply-append

Fie.17 The comnlete data flew grapha of elause p(l21X],Y) < al

%,2) & r(L,%).

Papge 29

{2} aAND-parallel Execution

In the following example, AMD-parallel execution iz specified:

p(lalX], ¥} <= q{X, 2} // r{Z,¥).

Here, both bady literals g(X,Z) and r(Z,Y) are executed in parallel., Cennecticn

paths between instances of the variables are shown in Fig.1i.,

p{lalx],¥, B}

apply-append({a|X],¥,Ep).

Fig.14 Connection paths of clause
p({alX],Y,En) <= qlX,Z,8) // r(Z,%, B0,

2inee the variable 2 iz shared by twe literals and is uninstantiated, it is
changed to the shared variable ZI= by the share aparator before these literals
are called., The two AND processes of the body obtzin streams haviag a2s their
i-th and j-th soluticnz (¥i,Zi,Eqi) and (2j,Yj,Erj), respectively. This clause
should abtain 2ll combirnations of these two sSolutions and check consistency
between the two binding emvircrments Eqf and Erj, the results of which are the
final binding environments and are used for substitution of the instances of Xi
and Yj. In this ecase, the procedure apply-append ic del_ned az & duplicated

recursive procedure, in order to divide two streams into thelr solutions.

Page 20
sncurrent 2ol df

Processing of the olzuze hDeac and the guard in Congurrent Pralog iz almost
the mame a5 in Paraliel Prologs. as desoribed ip Cection 5. The major difference
15 that ereate-glooel=varsablo Gneraiirs are uzed instead of snare operators,
and copy-zlobel-varianle ocparaiors ars jezued for svery argument pzssed from the

tead to the guerc belore the cuard consisting of ol tiple literals are called.

When the input coperands of the create-global-variasle operators are sinple
variatles op structured dezta inetuddng simple varizbles, the cpereteors allacate
pemory cells to all cimple wvarlatles and change them into global variables, The
copy-global-varizile operalors oroaie a local copy for each global variable in
their input operands. ".".::.ase putputs are passed to the plapses imvoked by guard

literals as thelr argunents.

inother cifference freom Parallel Proleg 1= the existence of a commit

opperator and read-only annctaticon.
£.1 Read-only Anooletion

When a rezc-ornly tag iz pesifixed to & veprisble appearing as an argucent imn
the goel literal, =he eat-razd-only-tag operator is executed. Thls operator
changes an instance of 2 variaple to 2 rezd-only variatle only when 1L is a
glopal wvariable, == demeribed in Section 4. When the input operand i= other

than & glebal varianle, Lne operstor out puts the input gperand itszell.

Th the head wnification of & clause, if the irpub argument frem the goal
literal is a read-only variable and {# the corresponding head arpument 1s a
nop=variable term, the onily ooeraior t=ies to read the sontents of the memory
pell, whien 1z pe.ziss Lo v Loe read-cnly variaole, belore unification is=
performed. I7 the inatunce of e variable {contained in the memory cell} 1s
ot 2 non=varisbie term, e resd reguest 1= suspended until the varlable is
hound to a nen-variasle term. The memory osll will be written by & guard

operztion mechani:m, dezcribed bolow, Tq 2ll giher cases, the action af the

Fage 31
unify operater is the same a5 in Parallel Prolog.
.2 Guard operation mechanlam

As described in Section 4, a commit operator has twe functions: one fer
exclusive control ang another for commitment of the binding emvircrment for the

global wvariables cbrained by unification of the head and guard of the clause,

Exclusive control is nondeterministie, in that conly one process which has
exeputed the commit operator first can contipue to @ subsequent process. This
ropdetermimnism is called 'don't-care nondeterminiam’. To perform exclusive
contrcl, =semaphore operators are provided. When a definition consisting of
multiple guarded clauses is invoked, a create-guard 'operater 1is executed, as
shown 4in Fig.15. This operator generates a semaphore flag to be shared between

08 processes, initializes the flag to OFF, and sends its pointer to these OR

proce sses.

goal literal

- v .

create-
semaphore
‘ H1 ‘ HE - ‘ Hn | head unification
| |
| |
]]_ G1] (GE ‘ . s o= L Gn guard invocation

fr'_
—'1\‘ tezt&setj testiaet |- °" | testiset]

{ bind |} (bind . e m

| B1 \ | B2 . . . BEn body invocation

Flg.15 The guard control primitives

Pape 32

An OR process executing a guarded ol ause activates a test & set operator of
the =emapnore flag when unification of the clause head and the guard succeeds.
The test & set operater reads and returns the contents of the semaphore [lag,
which =hows whether or not it is the first OR process that passed the commit

operator, and sets the semaphore flag Lo N,

If the result of this test operation is OFF, the bind operator tests the
binding environment feor glebal variaples: 1if it is not 'nil’® or 'fail', the
operator tries to unify an el¢ instance previously written into the memory cell
with a new instance of each global variable in the environment. Thzt is, the
tind operztor obtains a pair censisting of a global wvariable and &an lnstance
from the binding environment, and executes the following sequence for a2ll the
pairs in the binding environment: it reads the contents of the mexmory cell
pointed to by the global variable, attempis to unify the instance frem the
binding erviromment with the contents of the memory cell (i.e., the old instance
for the global variabtle), then writes their common instance ints the memory cell
if the unification succeeds, While the memory cell i3 being written, it dis
locked to any other accesses. Finally, the written lnstances are made available
sz other processes and a btrigger token is returned to the parent literal, that

mey initiate the next literal or the commit operator in the parent clause.

T. CONCLUSION

Fxecution mechani=s= on & data flow machime for Parallel and Concurrent
prelog have been presented and primitive operators for supporting these two
languages desoribed. It has becn shoWwi that two types of legic programming

languages with differcnt aims can be supported on this machine.

There are two basie functions embedded in these languafges: one is
unification, and the other 15 nondeterminism. Several primitives for performing
these functions are introduced and programs written by these languages are
pompiled into data flow gEraphs, which corresponds tc the machine languege.

Thus, parsllelism in the programs can be expleited natwrally.

Page 32

In order %o expleoit AL parailelism efficiently, unifiecation primitives
beirng executad in parallel generatle bindingz onty for undefined shared
variables. Check-consistency primitives of these bindings, therefore, are

rather simplified and performance by exploiting this parsllelism =signifiecantly

increases.

Cantrol of nondeterminiam is related to OR parallelism: ‘den't know
nondetermini =2 iz necesIary in Parallel Prolog, while ‘'don't ocare
nondetermimam' is necessary in Concurrent Prolog. Stream mnerging primitives

realize ‘'don't know nondeterminism', where OR processes executing independent
clauses snare 2 stream tail peinter and append new solutions to the tail of the
stream, whi_e oStresm consumer processes obtzin the' solutions By traversing the
stream frow its head pointer. Semaphore primitives and exporting mechani=a of
bindings for shared variables realice ‘'den't care notdeterminiamt, as in
Dijkstra's guarded command., The guard, which succesds first, makes 1ts local

bindings available to other processes sharing the variables.

Detailed designs for the machine are presently being devel oped; its
simulatien to Farsilel Prolog programs indicates that perforpance can be
significantly improved by exploiting parallelism [1a]. ture efforts will
imrolve the development of 2 Concurrent Prolog simulater and prototype hardware

tc sarve a3 the basisz for & nighly-parzllel inference machine.
Acknowledgement

The authors extend their thanks to Director Kazuhiro Fuehi in ICOT, who
afforded them the epportunity to pursue this research. #lso much apprecisved
are the vzlunble adviece and comments of Dr. Hunio Muraksoi, Chief of the First
Research Lascratory in ICCT, M. Fildo Onai, Senicr Resesrcher, and other IcoT
research memibers.

References

[1] Ackerman,W.B., " A Structured Processing Facility for Data Flow
Computers”, Proceeding of International Conference on Parallel Processing, 1878,

Page 24

(2] Amamiya, M. and BR.Hasegawa, "Data Flow [lachine and Funetional
Language™, AL81-84, PALE1-63, IECE of Japan, Dec., 1081 (in Japanece),

£33 Amamiva, M. BR. Hazserawa, 0. Nakamura, and H. Mikami, "
List-processing-oriented oztia flow architecture™, Natiral Conputer Conference
1982, pp 143-151, June, 1982.

{4] &rvind, K.P.Gostelew, and W.E.Ploufie, "An Asynchronous Programming
Lapngusge and Copputing Machine", TR-114a, Dept. of IS, Uriversity of
California, Irvine, Dec., 1978.

[5] Arvindé and R.A.Innucci, "A Critigue of Multiprocessing von Heuwann
Style", Proceedings of 10th Iptermatinal Syaoposiur on Computar Architecture,
June, 71983.

[6] Clark,K. and S.Gregory, "4 HRelaticnal lLanpguage for Parallel
Programming®, HResearch FReport [OC 81/10, Imperial College of Seience and
Technelogy, July, 1981.

[7] Clark,% and S.Gregory, "PARLOG: Parallel FProgramoing in Proleg",
fesearch HReport ©DOC Bh/sL, Imperizl College of Seience znd Technology, April,
1984,

[8] Cohen,J. ™arbage Collection of Linked Data Structures", Computing
Surveys, Veol.13, Ne.?, Sept., 1981.

[9] Conery,dJ.S. and D.HEibler, "Parall sl Interpratatien of Logie
Frogramming®, Proesedings of Conference on Functicral Programming and Computer
frehitecture, ACHM, Cet. 1881,

[10] Dijkstra,E.M., "4 Discipline of Programning", Prentece-lall, 1576,

[11] Gurd,J.®. and I.Watszon, "Data Driven System for High 3Speed Parailel
Computing"”, Computer Deaign, July, 1980 .

[121 Ito,N., K.Masuca, and H.Shimizu, " Parallel Prolog Machine Based on
the Data Flow Model™, TR-035, Institute for MNew Geperation Computer TechnolOgy,
Tokyo, Japan.

{13] Ito,N. ané E.¥uro, " Simwation of a Parzllel Prolog HMachine®,
Proceedings of 28th Naticnal Conference of Information Processing Society of
Japan, Tokyo, Japan, March, 1984 (in Japanese).

[14] Fte,d. and K.Mazuda, "Parallel Inference llachine Based on the [=ta
Flow Model®, Internzticnal Workshop on High Level Computer Architecture 84,
Hyatt Internationzl Hotel, Les Angeles, Califerniz, My, 1684,

{15] Kowalski,H,, "Predicate Logic =z Programming Language”, IFIP T4,
Neor th-Holland, 1974,

[16] Nakamura,O, F.Hasegawa, and M. Amariya, "The Design and Evaluatien of
the Structure Memeries for 2 List Processing Oriented Data Flow Machine", EC
81-32, IECE, Japan, 1981 (in Japanese}.

[17] Onai,R. and M. Asou, "Control Mechanisms of the Guard and Read-Only
Annotaticn in Parallel Inference Machine™, Procesdings of 27Tth National
Canference of Informaticn Processing Society of Japan, Nagoya, Japan, Oct., 1983
{in Japanese).

o

Fa
il
m
Lad
L

[16] Shapiro,Z.Y., ™A Subset ol Concurrent Frolog and itz Interpreter®,
TR-G33, Institute for Hew Generztien Copputer Tecnnolcgy, Tokye, Jepan, Jan.,

[19] shasire,S.Y., “System Programming in Concurrent Prolog", TR=-024,
Tperitute Tor Hew Generztion Computer Techaclegy, Tokyre, Japan, Hov., 1583,

