ICOT Technical Report: TR-098

TR-(KS

Logic Design:
lasues in Building Knowledoe-Based

Desion Svstems

Fumihiro Maruyama. Tamio Mano.
Karushr Havashi, Taeko Kakuda,
Nobuaki Kewaio and Takao Uchara
(Fujitsu Lid.)

Drecember. 1984

Ahita Kokusai Blde 21F (131 456-3191= 5

ICO [4-7% Mita 1-Chome Telex HOOT J32964
Minato-ku Tokwvo 108 Japan

mlnstitute for New Generatiun Computer Technology

Logic Design: Issues in Building Xnowledge-Zesed Design Systems

Fuminirg Maruyamz, Tamic Mano, Kazzushi Haysshi,

Nobueki Hewsto, &nd Terkeso Ugher

FUJITEZU LIMITED

This paper presents a FProleog-based expert system f{or hardware
logic design and discusses some of the issues 1nvu1ved-in building
knowledge-based design systems. Issues of the design task have been
pointed out in many places {e,g. Hayes—Roth et el. 1983). YWe raise some
preblems that we found signifiecant while building the system, and
explain how We solved them or what is needed to so0lve them in %he logic
programming environmént.

The system manages the entire design progess {rom specification to
completed CMOE eirzuits, Tne specification is 2 concurrent alporithn
deseribed in ocesm, a programming language characterized by its tresis
ment of concurrency. It enables the user to specify econcurrent a2lgo-
rithms with great ease, The result of functional design, the first hali
of the logic design process, is & finite-state machine descriptien AN
DRL, a hardware descripticn langusge. This is the first level at whichk
the correspondence with hardware concepbts emerges, Clrouit design, fol-
lawed by CMOS design, the second half of the leogie design process.
transforms the linlite-state mechine description into & CMOS oivcnit,

This work is being done &3 part of the activities of ths Fifs

Generation Computer Systems (FGCS) Projeet of Japan.

1. INTRODUCTION

The Fifth Generation Computer Systems (FGCS) Project of Japan 15
researching applications of knowledge-based systems a5 well as more
fundamental research in areas sueh a3 knowledge acguisition. One of
the many applications 1s hardware logic design. Our target Wes & design
system, rather than a disgnosis system. There are @ pumber of Successs
ful knowledge=-hased diagnesis systems, including medical systems, but
few knnuledge-bEEEd design systems are in practical use. We believe
that building good design systems would provide a key +tn @ wide varlely
of future applications.

We are not saying that current computers da nothing for the task
of design. Introducing cemputer-aided design methodology into digital
system deslgn has grestly improved design relisbility. I is =zlmest
impossible to design a large-scale computer without using etheyr computi-
ers. However, design guality is another story. 1t would De gifficult
for a fully-automated design system to achieve a deslgn as gefficient as
that of a human designer; the designer's expertise plays @ erucial
pete. Thet iz why We Bre tzking the knowledpe-Sesed spprosci.

Previgus work im this srea includes the Palladio system, developed
a2t Stanford Universitly (Brown et al. 1983). Palladlio was an attempt to
croate an integrated design environment. Ils main concern wWas to pre-
vide vompatible design tools, ranging from simulators to layout genera=-
Lars, to permit speeification of digital sysiems [rom architecture Lo
layout, in compatible languages. it was =also Lo enable Englicit
regpresentation, censtruction, and testing of =such design Tools and
languages.

We investipgated the logic design process and oroke it dewn into
subprocesses sccording RO the flow of designers' task. After studying
each subprocess carefully, We determined how closely ynowledge 1s

related to each task, ror eyample, Lhe functional design process

entirely depends on the designer's experience, We wanted the system to
cover the entire desipgn process, even the functional design process,
Another objeclive is to evaluate the logic programming paradigm.
L5 DBabrow (Bobrow 1984) stated, no single paradigm is appropriate to
all problems. What We would like to do is to see whether we ecan build
effective knowledge-based design systems based on the logle programming
paradigm, by looking intensively at the application aresa of legie

desien.

2. SYSTEM OVERVIEW

The system covers the entire design process, from specifications
described in occam to completed CMOS circuits. Oeccam is a programming
language characterized by its treatment of concurrency {(Tavler asnd Wil-
son 1582). It enables the user to ea2sily speaify cancurrent algorithms.,
However, specifications do not have to be hardware-griented., In other
words, the wuser is net required to describe specificaticns based on
hardware concepts,

Between the initisl stagze of cosam design specificetions and the
final stage, in which CMO3 eircuits are generated, a finite-sizte
machine descripticn is generated in DDL, & hardware description
language (Dietmeyer 1971). In this intermediste design stage the
correspondence with hardware concepts first emerges. The system's final
cutput is CMOS basie cells, functional eells, and the connections
between them.

The system consists of ten subsvystems. Figure 1 shows how the sub-
systems are related. All the subsystems appesr In the figure with the
exception of the editor subsystem. The top two subsystsms are respon-
sible for functional design. The funetiocnal design subsystiem deter~
mines the application of hardware concepts inm implementing the coh=

eurrent algorithms, and produces the finite—stzte machine description

in DDL. The state machine gptimizaticn subsystem inspects Lhe finite-
state machine description and makes modifications to refine ii.

The finite-state machine deseription in DL is funetional, not
ctructural. HoWEVET, to design ecircults, we need information aboub
hardware struchure; functional descriptions must be transformed into
structural deseriptions. Here, the translator subsystem comes into
play. It generates deslgn jnformaticn on data palhs and on control eir-
cuits.

The aubomaton design sSubsysiem implements automata having the
appropriate stabes using flip-flops. It designs a control circull
around these flip-fiops esccording tn informetion on state transition
supplied bBY tne translator subsySLEM. The data path design subsystem
allocates data paths around functional components, such as registers,
mecories, adders, and decoders.

Both the data path design subsystiem and the zutomaton design sub-
system generate logical expressions, which are then implemented =23 com-—
binstienal circuils using CMC3 functional eells. It in pot always pos-

sinte to implement & given asmbinational circuit using & single Tunc-
ticnal eell, because large cells fail Lo meet perlormance reguiremsnts.
The circuit decomposition subsysiem rakes a logical expressicn and
breaks it down into subexpressions 59 that esch Ssubexpressien ¢an be
implemented by & single cell satisfying the performance requirements,
These subexpressions are passed to the functional cell design subsys-
vem, which ereates a fupctional cell for each subexpression.

Functisnal componenis, such as reglsters, memories, adders,
decoders, and I/0 pins, are designed by the baslc cell assignment sub-
system. The subsystiem seprches the basic cell liorary for an appropri=
gte eell. I1f one is found, it is assigned %o the hardware component,
possibly with slight modifications. Ctherwise, the subsystem either

prsembles a cell from the bazic cells in the liprary, or it attempis to

design one [rom seratceh.

The system provides a facility that eptimizes the entire CMOS oir-
cuit after the basic and functlicnal cells have been completed. It alse
provides a user interface facility, which is used throughout the design
process under contrel of the editor subsystem.

In the following sections, We describe key points of each of the

shree design phases and discuss several design issues.
3. FUNCTIOHAL DESIGN

Funetional design is the phase of design in which it is deternined
which hardwWare concepls 1o spply in implementing the concurrent algo-
rithms a&nd how the hardware components should behave. There are thres
primary things the functionel design subsystem, one of the most
knowledge-intensive paris, is supposed to do.

1) Implementing varizbles deseribed in occam using hardware elementis
{e.g. registers).

2} Designing hardware control mechanisms for "eonstructs"™ of cccam
{(e.g. "SEQ" for ssguentizl DEOCESSes, MEARM for paregllel
prooesses),

3) Implementing communication betwesn processes described in occanm
("7 for inputting a value from a channel, ™I" for outputting a
value to a channel).

The end result of the funetionzl design subsvsiem is a finite-state
machine deseriptipn, which is further refined by the sizte machine
cptimizatiion subsystem.

A5 an exapple, the concurrent algorithm of the pettern-matohing
chip proposed by M. J. Foster and H. T. Hung (Foster and Xung 187%) is

shown in Figure 2.

cHaN pattern(f1:
CHLY string [61s
cHAN data [3]:
CHAN end [6]:
CHAN wild [B1:
CHaN result (B1:
FROC compt CHAR pin,sin,pnut,squt,dgutj =
VAR p,s:
SEQ
PAR
p::u
5:=0
WHILE TRUE
SEQ
PAR
pout
sout 1
FAR
pin 7 p
zin 7 5
dout ! p=35:
FROC acc(CHAN xin,lin.rin,din.xaut,lout.routj =
VAR d,%sl,r.L:
SEQ
PAR
x:=FLLEE

[P

o
o
[y |

=[1 FO
cump{patternfi—1],s:ring[E-i].pattern[i].
string[ﬁ—i].data[i-T]J
acc(uild[i-1]?cnd[i-1].result[i-i].daza[i-1].
uildli],endLi],result[ﬁ-i]J
Figure 2 Occam specification

Fi=zure 3 shows the ponversation between ke user and Lhe

this example.

system

for

Parsing your speciflicetlons in occam ...
Implementing occam variables ...

should variakle 1 have enly one bBit? y/n
HES]

How many bits should variable s have?
ir B

Should variabkle p have 23 many bits as varizsble 57 ¥/n
T

Should variable r have enly one BIt? y/in
iy

Should variable x have only one bit? ¥/n

ity

Compressing a segquence of operations ...

Implementing inter-process communiestieon ...

Can the eatire system be controlled by a single clogk? yin
Py

Would you preler faster overall communication? y/n

Y

Generating partizl DDL deseriptions ...

Canstructing the fingl DDL code from partial DDL descripbions ...

Figure 3 Interaction in funetionzl design
First, the system analyzes the structure of the occam specliiicsiion,
locking &t occsm's coostructs. Then, it determines how to implement
occam variables. At this point, it esks guestlons about the npupber of
bits each wvarizhble should have. 3Since there 13 an assignment operstlon
that sets variable 1 to "false", the system tries to allet one bit for
the wariable and gets the wuser's conlirmation. The system cannot
deternmine how many bits varizble s sheould have, 50 it asks the user.

The user wants the variable to have § bits, so he enters A. The =systen

does not have any direct evidence about variable p, but infers that
yarisble p should have as many bits as s. Ln fact, there is an opera-
£ipn in the occam specification that compares S and p. The number of
bits for a variable 1s determined to be just one if all its sources
turn out to be teuth values.

Hext, operation sSequences are compressed in order Lo fully utilize
the inherent parallelism of hardware. Some sequential processes can De
cransformed inte hardware operations executed in parellel, which
ipereases the performance level of the generated hardware. Figure L
shows a sampie rule, compatible.

compatibleEﬂperationl,ﬂperatiunz}:-
store_uperation{Uperatiqni,Var1.5aurce1,...),
sture_pperatiqn{Gperationz,ﬂare.SuurceE,...}.
followedﬁby{Cperatinn1,0peratiun2}.
Yarl N== Var2,
1mplcmentati¢n(var1,reglster,...}.
implementatinn{VarE,register....J,
not{referred_to(Var1,Source2i}.

Figure 4 FRule "compztible" (in Prolog)

Thisz rule reads that two operations ln a sequence are compatible, or

- e =
[a=pe g w= =

sly, if: both are storestips sperations,
such @ assignment processes, the varlables into which the sources are
ts be stered are different, both variables are to be implemented as
registers, and the varizble in the first operatbien is not referred Lo
in the source of &the second operstlon. Using this rule, an occam
sequential process such as
3EQ
ro:
£
is compressed into the following Lwo DOL register transfer operallons,
which sre executed in parallel:
roé=t, t <=1,
The system then implements occam's 1inter-process communication.

I+ =sks whether it csn take advantage of overall synchronism by using a

sinple claek. If the vser deeides to use a single cleck, he confirms
the system reguest, The system also asks if the user wantis high-spesd
communicatlon rather than steady communicatlon such as hand shaking. if
+he user does, the system tries to implemeni communication with coordi-
nated transmission and reception timing.

With inter=process communicsiion implemented, the hardware control
mechanisms, including automata and their states, are complistely deter-
mined. After implementing ccecam primitive operations as DDL hardware
operations and generatipg partial DDL deseriptions, the system puts
these partizl descripiions together to complete the fipal DDL descrip=-
tion. For example, the DDL desecription of the pattern-matching chip is

penerated as shown in Figure 5,

¢3YSTEH> pm.
{TIME> clk.
{ENTRANCE> pin(B), =in(8), xin, lin, rin.
TERMINALY pout(8), sout(B), dout, xout, lout,
rout, sendil.
CAUTOMATORY> comp: clk:
<RESISTZE> p(8), =(&).
<STATES>
inits pd-0, s5¢-0, -»idle.
idie: pout=p, sout=s,
pi=pif, E4=5in, =3statsl,
statel; sendi=1, dout=(p:=3}, =-»idle,
SEWD>,
CEWD>comp.
CAUTOMATOR? moo: eclk:
<REGISTEZR> d, %, 1, 7, L.
<STATES?
init: x<-0, 1<-0, r<-0, t<-1, =->idle,
icdle: sendl: xout=x, loutsl, routsr,
id=%in, l<=lin, rdi-rin,
d{=dout, =>stzital,

statel: ¥ 1 ¥ pd=t, tLd=1
Pora={thkixid))., =ridle.
CZNRD>.
ZHD> aco.

(..:.-I'\ D} E""""

Figure 5 DDL description

4. CIRCUIT DESIoN AWD CHMOS DESIGH

Cirouit design stands bstween functicnal design and CMO3S o

1]

[

(=
(4]

s 3

and provides 211 the information negessary for designing ©MCS fume-
rional cells and ascignang basle ceils. In the CMOS design phase the
ipformation, which 13 technology-independent, is used to generate CHCS

eells @nd thelr connections.

4.1 Translator and Data Path Design

Tne translator subsystem translorms the DDL finite=3tate machine
descriptions into circuit design informatlon. It gathers and edits con-
ditimns for rarminal connection, register transfer, and state transi-
tion operatbions; it then organizes the date in a frame-11ike structure,
s illustrated in Figure 6.

register: T
pit=s: [0,0]
automaton: azc
source: [0, rin, tl
condition: [acc_init, aece_idleAsendl, acc stateinll)

Figure B Traenslated result in a fegme-like structure

. k i - = 1 b - Mie e i e
Wa szes thet regplIior ¥ hzz only cme BLT, ELl%

4 ; oun fles
pelengs bto o subomaton Wape" snd has three transier eperations; for Lhe
first operation, the sQurce is 0 and the condition upder whieh it Is
executed is ace_imil, and so on.

111 legieal expressions are given unigue names to prevent them
from arbitrarily duplicated by combinational elrcuits. The number of
oceurrences of each logical expressicn is taken into ascount Lo deter-
qine which logical expression to implement as a CMO3 functiional e2ll.

Onee the translabor generates the imiormation Jjust described, the
data path design subsystem is ready Lo design circulls around func-—
timmal components such as regisiers. The legic disgram arsund register

r in Figure 6 is generated as shown in Figure T.

4.2 putomaton Design

3
-

Ain sutomaton is a finite-state machine feor controlling dasta facil-
jties. Each automaton assumes one of its states in each cycle, which
iz defined a3 the period between Lwo adjacent clock pulses. The automa=-
ton design subsystem designs a control eircuit around flip-fleps, which
implement states, according to informalicn about state transition sup-
plied by the translater. If possible, it reduces the number of states,
a5 shown below.

Figure B shows the state diagram of a simple computer, in which
the address is set in state ADS, the instruction is fetched in state
IFT, the operation code OF iz decoded in state DEC, and the next stale
iz determined by the setting of OF, Coding those eight stzles inte
three flip-Tlops would give us a control eircuit shown in Figure 8,
whnere the high-order six bits of pegister IR, the instruction register,
constitute the operation code. However, we can build a 4Y-state 2-flip-
fiop machine with states AD3, IFT, DIC, and = new state, EXC, instesd
of the 8-stete 3-Flip-flop mechine. Whnen this 2-Tlip=flop machine is in
AT svate, whE actual state is debtermined by the secting of the
high-gprder six bits of the instroction register. The state dizgram is
greatly improved, &5 is the corresponding control eircult shown in Fig-
ure 10,

Tne following four conditions must be satisfied to enable state
redustion:

1% & state must have two or more branches (branehing state), and the
transition betwesn the state and each of its subsegquent states must be
indiecated by a single register.

2) Tsch subseguent state must have no other predecessor,

3) Wnen the transitiocn oteurs, Ghe register wvalue must noet be
affected.

4} In ezch subsequent stats, there must be ne recursive Sransitien

that would change the contents of the register.

Our knowledge base coniains this rule in Prolog.

4.3 Design of Functional Components

Thepre are tWo exlreme automati allocators ey [fupctional com-
ponentst 2 distributed allocator and a central allocator (Thomas et al.
19833, The distributed zllocator adds a new funetisnal component for
each unique reference in the functiocnsl deseription. However, this
design is inefficient. The central alloeztor tries to map all refler—
ences onte a structure with a single functicnal component. While such
an approach might be adequate for 3 simple computer, it is not optimal

for & large system.

Our system is capsble of determining whether to add a new funz=-
tional component or to map the reference onto & structure with & single
functicnasl ecmponent oo an individual basis, by checking whether & com-

ponent ¢an be requested for more than one operation at the same time.
Y b Tumpstiopgl Cell Design

The functional eell design subsystem implements a random logic
funetion on an areay of CMOS transisiors. Figure 11 shows the basiz
layout of a CMUS functional cell. AKD/OR gates in the logie diasgram
correspond to series/parallel connections in the pireuit diagram, in
wWhish the F-MOS =ide and N-MC5 side complement each obher. Fhysically
sd jscent gates cen be connecled by a diffusion area. Separstion is
required when physically adjacent transistors are not suppossd to be
connected. Since the cell heignt and the basie grid size depend on the
technology used, an opiimal layoul is nbtained by minimizing the number

{ separchions.

The best results are obtained by using the =zliernative cirouit

chawn 4in the Figure 12. The circuit is logically egquivalent to the one
in Figure 11. As may be noticed, separation is relsted to whether there
{s an Euler path on the graph model. We adopted 2 heuristic algoritnm
(Uehara and vanCleemput 1981) based on the fact that if every gate has
an odd number of inputs, there is a pair of Euler paths, one for the
F-szide and one for the N-side, haviﬁg the same sequence -on the dusal
graph model. The algorithm specifies to =zdd one "pseudo" input to every
gate that has an even number of inputs, and then to change the verticsal
order of inputs on the logic diagram so that the interlaczing of
wpseude” and real inputs is reduced to a2 minimum, because "pseudo"
inputs, except for those at the tep eor botiom, indicate szeparation
areas, The resulting vertieal order of inputs gives an optimzl gzte
sequence layout. We found that complicated zs it is, the heuriztic

glgarithm can be succinctly =xpressed using Prclog.
5. IBZUES IN BUILDING ENOWLZIDSE-BASCD DESIGN SYSTIMS

The purpose of this =zection iz to discuzsz szome of Lhe issues

P 2 hesdMddmm F—
- e s BES H

the task of design.

It is extremely important in design to always have a good pieture
of the relatiens ameng design objects. The knowledge reprasentation
framework should reflect this fact. In other words, & good method must
be provided for referring to the relations ameng design objests, The
rule, "oempatible®, in Figure U is a good example; it expressss the
relation betwesn two cperstions end Frolog provides a natural means ta
express this relstion., It would be a good idea Lo represent essantisl
relations, or coneepts, more generally, with predicates of the leogie
programming languzge and huild a design system based an them. The leogic

rogremming paredigm constitutes & Yrelaztion-oriented" or "concept-

oriented” paradigm.

As Brown (Brown et al. 1983 =tated, circuit design i1s &8 process
of incremental refinement. Incremental refinement comes {rom successive
design decisions; every time a decision is made, the current desizm
development 15 changed. Sinece forward chaining seems to be able 1o
simulate this process, it is the prineipal mechaniem for the task of
design. Forward chaining operstes in cycles, from the initizl specifi-
esstion until the design is completeds; in esch cycle, changes are made
toa the working memory when a rule is fired, Yet some backward chaining
15 alsoe necessary for checking econditions liks "compstible”. In back=
ward chaining, proveocatiecn of rules does not affect the working memory.
Backward chaining is already implemented as the eiecution mechanism of
Prolog. The preblem here is that how to implement the working memory
for forward chaining. Tne working memory must be able to record data
thet may vary with time. Also there must be a good way to structure the
working memory. Prolog's assert and retract functiens are not suffi-
cient. ESP (Chikayama 1384) 1is 2 colution to this problem. ESP, not
only 25 & lagie pregramming languapes, but alse a2s an object-oriented
janguage, provides us Witk time-dependen snates &na a frame-like
shructure, retalning pssential leogic programming languuge festures.

Centrol is 2lso an impertant ifzsue eopneerning design decisions.
Among other things, which decision to make first 1s signiflicant,
beczuse one decision may make another decision unnecessary or 2t least
maxe it easier. Figure 13 shows a rule for implementing varisbles in
the functional design phase.

implement varisble(Var,Task _list)i=

looks similar(Var, Hnovher var),

not (member (Another_var, Task 1ist),

implement VE“l:blELAHDthE“ var,[VeriTask_list]),
1mP1EW=ﬂudvlﬂﬂLnnO+Hﬂr var,Bit _width,...l,

L

assert (implementation(Var,Bit_width,...)J.

Figurae 13 HRule for implementing variables (in Prolog)

Tnig is a rule for implementing variables using hardware slements. It
deals with a particular case, in which the bit number of a variable is
determined based on the result of implementing another wvariable. The
rough idea 1is that if there are few clues to the number of bits for a
yariable and there Is gnother “similar™ variable, try to determine the
number of bits for the similar one first and wse the result, There iz a
twist; in order not to fall inte & loop, predicate "implement_variable"
takes the second argument, which is the list of all the variables that
have been put ofl. In this case, the regular flew of sontral is altered
by changing the order of tasks locally. Giebal control should be cone
sidered at a higher level,

& useful espeet of & logic programming language is its declarstive
reading. An example iz shown in Figure 14, where seitof iz 2 predicate
that gives the 1ist of all splutions to a problem, the second argument,
With respect Lo the variable of the first argument.

idle_state_candidate(3tate,Auvtomston):-

setof (X, (state_candidate(X, Automaton),
in_loop(X),passive state(X)),[Statel).
Figure 14 FRule for finding the idle state (in Fralog)

This implies that if there is only one psssive state in an automaten
(Automaton}, that is visited repeatedly, the state can be thought of as
the idle state of the automaton (Automaton). The ides behind this is
that an automaton executes a series of operatisns according to what it
has besn told, returns Lo what is called the ddle state, and waits
Lhzre for a signal from the outside indicsting the nexi operatien to be
executed, We say the idle sieste Is a passive stste, because it takes
acticn &fter receiving an externzl signel. The above yvule can resd
declaratively as follows: If the set

{:Istate_c&ndidate(x.AutnmatonJnin_loup{x}npassive_sta,e{x]I iz =&

singleton, the only element (State) <an be thought of as the idle

state. Predicates ngtate candidate", "in_loop", and "passive_state" are
defined somewhere else.

Another issue 15 how Lo €Xpress spatial or topological charac-
teristies. There are & lot of spatial and topological characteristics
involved in circuit design. Human designers can recognize and use them
with no difficulty, but computers cannot. Here lies a distinction in
periormance wetween human designers and computers. We believe it 1=
essential that those characteristics be represented in explicit terms.
In the circuit design phase, for example, Lhe automaton design subsys-—
tem must recognize that an sutomaton has a ring-like state diagram.
The follewing rule is used lo reduce the number of states in the auto-
meton design subsystem.

branching_state(State):i-

single predecesscr(State),

not(single_successor{State)).
Figure 15 Rule for recognizing a branch (in Prolog)
This rule recognizes a branch as in Figure g, It is an example of the
way how spatizl and topalogicsal characteristics are represented with
other concephs. A network of concepts Wwill be built up in this way.

4s we have just seen, the logie programming paradigm provides &
"goneept-oriented” or nralation-oriented" paradigm. The important thing
in building knowledge=based design systems i{s to prepare zll the neces-
sary econcepts snd to bulld & system based on thase concepts. For this
reason, we think it is necessary vs research knowledge acguisition, in

order Lo scguire concepts and construct a rnetwork of these concepls.

§. CONCLUSION

We have implemented a prototype of a Prolog-based expert 3ystem
for logie design. It even covers funetionsl design, which has usually
pesn done only by human designers. This experience has revealsd 0 US

useful aspects of the loglc programming paradigm and also suggestied

directions for further research and imprevement,

ACKNCWLEDGEMENTS

This wWark is based on the results of the F & D activities of the
Fifth Generation Computer Systems Project of Japan. The suthors would
like to thank De. K. Furukawa of ICOT (Institute for Hew Ceneration

Computer Technoleogy) for his encouragement and support.

REFEREMNCES

Hayes-Hoih, F., Waterman, D., and Lenat, D. Building Experi 3ysiems,

Addisan-Wezley, 1983.

Brown, H., Tong, C., and Foyster, G, Palladip: An Expioratory Epvircon-

ment for Circuit Design, COMPUTER, Vel.16, Ho.12, 18983,

Bobrow, D, If Prolog Is the Apswer, Wnat Is the Quesiion?, pp.13B-14%,

FGIOES'E4, 10R4,

Taylor, H. and Wilsan, FP. OCUCAM: Process-—opriented lanpuags mestis

demands of distributed processing, Electronies, Nov, 30, 1883,

Distmeyer, D. L. Loglc Design of Digital Systems, Allyn and Bacon,

Foster, M. J. and Fung, H. T. Design of Special=Purpose WLSI Chips:

Cxample and Opinions, CMU-C5-79-147, 1974,

Thomas, D. E. &t al. Autcmatic Patas Path Synthesis, COMPUTER, Vol.l6,

Mo, 12, 1983,

Ushara, 7. end venCleemput, W, M, Optimsl Levout of CMO2 Functisonal

Brrevs, IEEE Tranms. Vol .C-30, No.5, 1981,

Chikayema, T. Unique Features of ESP, pp.2U2-298, FGCST'EL, 1GB4,

Concurrent Algorithm (OCCAM)

Functional Design Subsystem

.
State Machine Optimization. Subsystem

Finite- state Machine Description (DDL)
!

Translator Subsystem

/\

Data Path Design Automaton Design
Subsystem Subsystem
\-:_\ l

Circuit Decomposition
Subeyetem

k|

1
Bcsic Cell Assignment
Subsystem

Functional Cell Design
Subsystem

— =

CMOS Optimization
Subsystem

|

Circuit (CMOS)

Figure |. System configuration

10

13
]
i

]
lr.l

/

| SHEET

f mea.ﬁ%aa ,__m:_xa.hﬁ_ Eﬁ-...hm.ﬁ.__.ww x_.__,,;%mm. n..” .waw“__%._nu.._

—

O
N

- e - PR RN

v

0

172

i Ilﬂ\a Llilli-&ﬂﬁ#%luuﬁ
- -

i
[

;s m———— _ﬁ:&w

T .;‘ﬁ.u_l..,._um_

. A3-D

LT

KEERS

15

10

&ww.fq_.a__ac, w___:__nt_:_ L4 u?_ g r\a._ﬂ_. xa._vﬁmrm, % _wLx%., -

wpJbpip 8Ipig

202417 \ag..wie_r.\.\u 6‘ wa_.:_u:._xux‘

448 vH880avv.isvad 030 L4 Sav —— 3 -
AA0000000 AY A
N T-osr
i e b 4 4O Sla—H-
" (2)LS
i P, S — & |] _,MWH_I.
L 4l {0 Sl
(LS
i — —l) | _ I@[ﬁﬂ
—H—H = H A 0S
WW /A (0)1S
| G
i -,
I 5
i e
(G.0)]

iN0AID |0AJU0D

I
.w___z,l‘.;__ .ﬁ.c..__.w:_ﬂu P Ez.....mvﬁu.\.u. m.._q.ﬁ___.w. ._uuhuihrq.hn 0/t QL_.ZW._HH

qua—C—+ EEEEE
d&ml@“._wgalf . i
aav —CI—F _ -
V1S —(—1 BN
v —C 1 |)
[
| (G:0) Yl
Svec !l O

OX3| 030 L1 mh_._d

o)

gl_-;m clHln @
{

—
e

SRl

S

HNOAID [0JjU0D pPuUD WDJDDIP 34DIS POAOACUIT

__M_Hm___:, ___ﬁt@.:_w::&m 2iff k‘a w:a.\ﬁ‘. SRR // an:\\ﬁl.m.

1noAD7 () "HN241D(q) woJboip 21b07(D)

(9)
az|s p1ab o1spg llﬂw

N - — Tm._- _IN _I_
e iR i g
e e o
min — dig - (0) =3
|_‘|ma o I.MH no QHW
Y - d- di-2 _
I A T
B - dlf- 1
S v c ¢ | ﬂ
uoy04ndas adp

1|90 |puoloLny ayl 4o INOAD| OISDE]

mxn\.\ux _‘GE._._Z-: pue F a4 ﬂx_,_m.uiaﬁ____:w z.rm =/ mh.:m_ql._\

inoApT(2) |opow ydoug (4) wipaboip 21bo7] (D)

(9) —FHHEEE RS SSA
S
B - .
R et Il e —
e |
S| (G BT le
o o o T B
] i
Gt | & &

1noAD| [pudiido pun {INJA1D BALDUJBLD uy/

