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Abstract

Iz this paper we describe an approach to verification of Prolog programs taking ad-
vantages of characteristics of Prolog. The most important feature in our approack is the
use of an extension of executicn, which is a generalization of the conventional Prolog inter-
preter. We use the extended execution to verify that a specification § in a ciass of first
order formulas,called S-formulas, is a logical consequence of the completion of a program
P. This approach is (1) simple because we need only an exteption of the Prolog interpreter,
{2) understandable because we put the execution and the verification into a single logical
framework based on the natural deduction and (3) wasteless because we carry out verification
without unnecessary explicit strengthening of P. We show how the extended execution
works for the same example in the Boyer and Moore Theorem Prover (BMTP).

Keywords : Program Verificalion,Prelog,Natural Deduction, Theorm Proving.
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1. lotroduction

Logic programming is getting attracted because of its clear semantics. It is expected
that this virtue makes verification (and other meta-processing and manipulation) ef programs
simpler and easier. But so far it has not yet been fully investigated what is really good in
verification except a few works [5],[9],[22].

In thiz paper we show the verification and the execution of Prolog programs can be on
a same axis by introducing an extension of execution and it actually makes the verification
simple,understandable and wasteless,

After summarizing preliminary materials in section 2, we present a framework of verification

of Prolog programs in section 3. ln section 4,we deseribe a class of deductions, which iz a
generalization of the behavior of Prolog interpreter. In section 5, we show the extended
execution can play a role of first order inference and be integrated inte provers with indue-
tion like Boyer-Moore Theorem Prover (BMTP) by very simple exmaples. Then we present
an example for comparison, which is intensionally the same as is used in Boyer and Moore
i4]. Lastly in section 6 we discuss the relations to other works and our actual verification
system.

2. Preliminares

Io the followings, we asswre familiarity with the basic terminclogies of first order logic
such a3 term,atom(atomic formula),positive and negative literals, formula, substitution, most
general unifier (mgu) and s0 on. We also assume knowledge about semantics of Prolog such
as completion, minimum Herbrand model and transformation T of Herbrand interpretations
{see [1],|6],i7].[8),]11]). We follow the syntax of DEC-10 Prolag [17i. Variables appearing in
the head of a definite clause are called hesd variables. Other variables are called jinternal
varighles. As syntactical variables, we use X, Y 2 for variables, s,¢ for terms, 4, B for
atoms and F, &, ¥ for formulas possib'y with primes aod subscripts. In addition we use o, 1
for substitutions, Fg(X) for a replacement of all occurences of a formula § in a formula 7
with ¥ and 7g5|¥] for a repiacement of an occurence of a formula § in a formula 7 with X.

2.1. Polarity of Subformulas

We generalize the distinctions of positive and negative goals. The positive and negative

subformuias of a formula 7 are defined as follows (see [18],[16],[15]).

{a) 7 is a positive subformula of 7.

(b} When -5 is & positive (negative) subformula of 7, then & is a pegative {positive)
subformula of 7,

{e) When GAN or GV K is a positive (negative) subformula of 7, then § and ¥ are positive
[negative) subformuias of 7.

(d} When G W is a positive (pegative) subformula of 7, then § is a8 pegative (positive)
subformula of 7 and ¥ is a positive (negative) subformula of 7.

{e) When YX § 32X G are positive (negative) subformulas of 7, then Gx(t) iz a positive
[negative) subformula of 7.

Example 2.1: Let 7 he
¥AW (label(W) Aordered(X) 23Y insert(X WY,
Then Y ensert(X,W,Y) is a positive subformula of 7,
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2.2. S-formulas and Goal Formulas

Let 7 be a closed first order formula, When VX § is 3 positive subformula or 3X G
is a negative subformula of 7, X 138 called a free variable of ¥. When vY ¥ is a negative
subformulacr Y N is e positive subformula of ¥, Y is called an undecided variableof 7. In -
other words, free variables are variables quantified universally and undecided variables are
those quantified existentially when 7 is converted to prenex normal form.

Example 2.2.1: Let 7 be
v A (list{A)DVB 3C append(A,B,C)).
Then A and B are both free variables, while C is an undecided variable.

A closed first order formula S is called an S-formula when

(a}) no free variable in § is quantified in the scope of quantification of an undecided variable
in § and

(b) no undecided variable appears in pegative atoms of 5.

In other words, S-formulas are formulas convertible to prenex pormal form ¥X,, X2, .. Xn
3Y,, Yz, .o Y7 and no Y3, Yz, ..., Ym RPpEArs in negative atoms of 7. Mote that S-formulas
include beth universal formulas ¥X, Xz, - X F and usual execution goals ay,, Yz, u¥m
(ArhdAz A - AAR)

Example 2.2.2: Let § be
v A (list{A)DVB 3C append(A,B,C))-
Then § is an S-formula, because free variables A and B are quantified outside 3C and C ap-

pears only in the peositive atom append(A, B, C). A universal formula ¥4, Blreverse(A, B)D reverse(B, A))

and an execution goal JCappend((1,2], 3], C) are algo S-formulas.

A formula G obtained from an §.formula S by replacing free variable X with X,
undecided variable ¥ with 7Y and deleting all quantifications is called a goal formula of 5.
Nate that S can be uniquely restorable from ;. In the followings, we use goal formulas in
stead of original S-fermulas with explicit quantifiers. Goal formulas are denoted by F.G,H.

Example 2.2.3. An 8-formula
v A (list(A)DVB 3C append{h,B,Cj}
is represented by 3 goal f[ormula
list[h}jappeudl[h,ﬁ,?ﬂ}.

A universal formula VA, Breverse(A, B)Dreverae(H, A)) and an execution goal 3C append((L, 2], 13],€)

are represented by r:ucru:{.ri,B}:}r:u:rul{H,A} and uppmd{[l,E]J[E], 1C) respectively.
Remark: This represcotation corresponds o backward appheation of ¥-iptroduction and
Iintroduction to positive ¥X G and 3X§ and forward application of y-elimination and
S-elimination to negative ¥X G and 3X G in the partural deduction.

+ 3, Manipulation of Goal Formulas

Lastly we introduce two manipulations of goal formulas.

Ope is an application of a class of substitutions. A substitution @ for G is called a
deciding substitution when o instanciates no free variable in .

Example 2.3.1: Let § be



v A BU ((list{A) 23C append(A,B,C)) >{list(A) =3C append([U|A],B,CY))
Then the goal formula of § is

{list{A) Dappend(A,B,C)} D(list(A) Dappend(|UA]B,1C))
The most general common instance of append{{U]A], B,'C) and the head of the second
definite clause for append is obtained by a deciding substitution e=<'C=[U|1C'] =. ¢(C)
represents an S-formula

Vv AB,U ((list{A) D3C append(A,B,C)) 2(list{A) 22C" append{[U[A],B,[U|C'}}])

Anpother manipulation is & reduction of goal formulas with logical constants true and
false, The reduced form of a peal formula & dencted by & |, is the normal form in the
reduction system defined as follows.

—true— falze, = false—true,
trueAG—=G, folseAG— false,
GAtrue—i(s, Ghfalse— false,
trueVG—irue, JalsewG—G,
Gvirue—true, GV false—G,
true 2 G =G, folse 3G ~+true,
G Dtrue—true, GO falae——G,

Example 2.3.2: Let &; and G3 be
(true Dreverse(C,A)) D{true Aappend{C,[U],B) Dreverse(B,[U|A]))
(faise Dreverse(C,A)) = {false Aappend(C,|U],B) Dreverse(B,[U|A])).
Then Gy | is reverse(C, A) D (append(C, [U], B) Dreverse(B, [UIA])) and Gz | is true.

3, Framework of Verifleation of Prolog Programs
3.1. Programming Langusge

We introduce type construct inte Prelog to separate definite clauses defining data
structures from others defining procedures,e.g.,

Lype.

list(] ]).

list{X|L]) :- LstL).
end,

The body of type iz a set of definite clauses whose head is with a unary predicate defining
8 data structure. (type in our verification system is being corresponded to shell in BMTP.)
Procedures are defined following the syntax of DEC-10 Prolog [17],e.g.,

append(| | K,K).

append([X[L],M,[X|N]} - append(L. M,N).
reverse{{ || ).

reverze(|X|L| M} - reverse(L N),append(N,[X] M).

Througheut this paper, we study pure Prolog consisting of definite clauses “B - By, Hy, ., B."
(m>0) and consider a finite set of definite clauses P as their conjunction. We assume vari-
ables in each definite clause are renamed at each use so that there occurs no variable names
conflict.

3.2. Specification Language



The main construct of our specification language is theorem to state a theorem to be
proved,e £,

thenum[ha!ting—theurem-fm-append}.
v Alist,B3C append(A,B,C).
end.

The body of theorem must be a closed S-formula. Any variable X ip quantifications may be
followed by a type gualifier 1 p (e.g.,list above). WX : p7 apd IX : pF are abbreviations of
YX (p(X)DF) and IX(FAp(X)) respectively.

1.2, Formulation of Yerifleation

Let § be a specification in an S-formula, Mp be the minimum Herbrand model of P
and P° be the compietion of P. We adept a formulation that verification of 5 with respect
to P is to show MgF—S when model theoretically speaking and to prove S from P" using
first order inference and some induction when proof theoretically speaking. (See section 5
for induction.)

The most important difference between Our verification system and BMTP is that
specifications ip BMTP are gquantifier-free (i.e. universal) formulas while ours are S-fermulas.

Though we prove quantifier-free specifications of the form VX1, Xa, ..o Xalds AdaAe AAm D Ag)

in most cases, the consideration of existential quantifiers is inevitable because of the effects of
.nternal variables in Prolog. For ex ample, SUppose wWe prove VX, Y [condition{X, Y] O plX, Y]

with respect to a program p(X, Y)-qlX,Z) (2, Y). Then we must prove VX, Y[candit:’an{){,?}

S2Z{glX, Z)nr(Z, Y substantially.
4. An Extension of Execution

It we follow the previous formulation of verification, it is nmecessary to peneralize the
Prolog execution somehow 0 {hat we can perform first order inference from P on S
formulas. Our logic sysiem peeds carefull treatment of quantifiers, ie. distinction of
free variables and undecided variables (cf.[2]). Moreover it needs appropriate processings
of logical connectives other than A, because § has a more complicated form than usual
execution goals (cf.[16] and Schiitte [19]). Our logic system copsists of the following seven
iaference rules. (See the following explanation for their notations.) Each rule says that
subgoals in S-formulas above the line are generated from goals in S-Tormulas below the hine.
We assume variables in specification S are tenamed appropriately so that there pccurs no
variable names conflict.

fe-deletion L GrHil Gy |Hal Gy [Ha
G+ lH]ﬁH'z.I""L : 'ﬂH#]

y-deletion GylH\!  GulHa G p[Hail
G [y VHzV- -V Ha
-deletion Gul-Hil GulHa
G._[Hy > Hal



ncl

NF1

simplification

oracle decizion

4.1. Case Splitting

_f_’t{GAEf\:“‘lHn]] Lo GalAT By | eldGala Bi) |

i=1 i=1
G4 4] G4 |A] G4 l4)
ei(GalAT Bl | oa(Galal?, Bul) L -+ ax{GalAl Be) |
G_|A]
ol Glaltrue) | o(G)alfalse) |
S (s
o(G)
o

A may appear in more complicated ways in goal formulas,

S=Deletion

Let G be a poal formula. When H i3 ap outermost positive subformula of the form
HinHan-AHy (k > 1) and each undecided variable X appearing in H; appaers only in
H; (1<i<k), we generate new k AND-goals Gy[H,] .Gy Hzl,...,.Gu[H.

Example 4.1.0: Let S be

V¥ A B,C (append(A B,CjAlist{C) 23D reverse(A D)AJE reverse(B,E)).
Then the goal formula of 5 is

append(A,B,C)Alist{C) Sreverse(A'D)areverse(BYE).
By applying A-deletion, we have 2 AND-goals

append{ A, B, CIalist{C) Dreverse{ A TD).

append(A B Clalist{C) Drever=e{B TE).

Rewark: f-deletion correspends to backward application of A-introduction in the natural

deduction.

One of the new logical connectives in goal formulas not appearing in usual execution

goals 15 V.

SW=Deletion

Let G be a posl formula. When H is an cutermost pegative subformula of the form
HywHaw- - wHy {k > 1) and each undecided wariable X appearing in I appaers only in
M o1 <{e<l k], we generate new k AND-goals GH[H,],G’HIsz,._ LG H

Example 4.1.2: Let § be af the form
FST5=Tv5<T vT<5) (-]}
Then the goal formula of 5 is
(S—T ws<T vT<5] (-}
By applying V-deletion, we have 3 AND-goals

S=T =)
S<T 2 )
T8 2{--).

Remark. 'v-deletion corresponds to forward application of W-elimination in the natural

)



deduction.
Another important logical connective is 2.

2-Deletion

Let G be a goal formula, When H is ap outermost negative subformula of the form
H,JH; and each undecided variable 1X appearing in H; appaers only in H; (1 <i<2), we
generate new AND-goals Gx [~H,) and Gu|Ha]-

Example 4.1.3: Let 5 be

P B.C.DyDs ((append(B,C,Dz) DDy=Da) D(append(B,C,Dz) D{UID:}={UID2h)
Then the goa! formula of 5 is

(append(B,C,Dz) DD1=Da) “{append(B,C D2} 3[UIDy)={UIDz))-
By applying D-deletion, we have AND-goals

-, append(B,C,Da) O(append(B,C,Dz) SUID, |=[UIDa]).

D,=D; D(append(B,C,D3) O [U|D4)=[U|Dz})-

Reamrk: O-deletion corresponds to forward application of —-elimination with | ¢ in the
patural deduction.

4.2. Deflnite Clause Inference
We generalize the execution of positive goals using the polarity.

Definite Clause Inference(DCI)

Let A be a positive atom in a goal formula G and "B =- By, Ba,...,Bn" beany definite
clause in . When A is unifiable with B by a deciding mgu &, we generate a new OR-goal
o(GalBiAD A -ABm]) L (By ABah: - -ABpm 15 true when m = 0.) All newly introduced
variables are treated as fresh undecided variables.

Example 4.2.1: Let 5 be
v ABU {(reversc[ﬂ,B}:r:rew:rse{ﬂ,A]}'}[mver:.e[h,ﬂj|B]]| Sreverse([UB|,A)})-
Then the goal formula of § is
{reverse{A,B) Dreverse(B,A)) “(reverse(A,[UIB]) yreverse([U|B],A))
We can apply DCI to reverse(|U]B], A) and it is replaced with reverse{A, 1C)A append(1C, [Lry, 8)-
Note the internal variable is treated as an undecided variable 1C.

Fxample 4.2.2: When 5 is an existential formula of the form 3Y; Yoo YA AAzA-- AAxY,
ie. of the form of usual execution goals, the goal formula of S is 1-A;, Az, ..., Ax. (The
juxtaposition delimited by “," denotes copjunction and -G denotes the goal formula ob-
tained by replacing every variable ¥ in G with 7Y} Then uzual execution is applied to
1Ay, Ay, Axe

Femark: DCI cerrespond to using “if” part of formulas in P~ as assumplions in the natural
deduction, Soundness of DCL1s guaranteed most easily by replacing equivalence with equiv-
alence using £ first and then constructing a proof of G from proofs of (G a|lByABaA-- -ABm])
using V-intreduction.

4.3. “Negation as Failure™ Inference

We also generalize the execution of negative goals using the polarity.
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*Negation as Failure™ Inference( NFI)

Let A be a negative atom in a goal formula G and °B - B,, Bg, ..., B,,” be any definite
elavse in P. When A is not unifiable with B for any definite clause in P, we generate a goal
G a|false] ;. When A is unifiable with B for some definite clause in F, we generate new
AND-goals of o{G 4By AH A -ABR]) | for all such definite clauses. (BiABaA- - AB,, is
truc when m = 0.) All newly introduced variables are treated as fresh free variables. (Note
that A always includes only free variables and & may be any mgu without restriction.)

Example 4.2.1: Let § be
W A,B,U ((reverse(A,B) Dreverse(B,A)) D(reverse{|U|A] B) Dreversa{B,[UIA)).
Then the goal formula of § is
{reverse{A,B) Treverse[B,A)) Direverse([U|A],B) Dreverse(B,|UJAl)}
We can apply NFlto reverse(|L|A], B) and it is replaced with reverse{A, C)Aappend(C, U], B).
Note the internal variable is treated as a free vaniable C.

Example 4.3.2: Let § be a specification VX (human{X) 23 Zmether(Z, X]) and the program

P for human consists of k unit clauses human(t(X;))., human(t(X3))., ..., human(t{X;)).

When NF1is applied to the goal formula Auman(X ) D mother[?7, X)), the free variable X is
instanciated in k-ways and k AND-goals mother(12;, 8{X)), mother(? 22, ¢(X3)), ..., mother(1Zx, t( X))
are penerated, Note 17 is not shared among these AND-goals,

Remark: NFI correspond to using “only if* part of formulas in P° as assumptions in
the natural deduction. Soundness of NFI is guaranteed most easily by replacing equiv-
alence with equivalence using P~ first and then constructing a proof of G from proofs of
o(Ga|BiABzA- - ABm]) using v-elimination.

4.4. Simplification

We sometimes simplify goal formulas assuming an atem true or false (cf.[16]).

Simplifleation

Let G be a goal formula. When A;, Az,. . ., Ay, be positive atoms and A 1, A2, - An
be negative atoms unifiable to A by a deciding mgu ¢ (0<m<n), we generate new AND-
goals o{G)altrue) | and o(G)alfalse) .

In the following examples, o are both << > and undecided variables are not instanciated,
For more general simplifications with instanciation of undecided variables, see 5.3.

Example 4.4.1: Let G be a goal formula
(add(X,)Y,Z) Dadd(Y . X,Z2)} D{add{X,Y,Z) Dadd(Y «(X) s(Z)))
of ap S-formula
VLY, 2 ({add{X,Y,Z2) Dadd(Y,X,2)) D(add{X,)Y,2) Zadd(Y s(X]),s5(Z]))).
Because ¢ = < > is a deciding substitution and unifies the positive atom add(X,Y,Z) and
the negative atem add{X ¥V ), we penerate new AND-poals
(true Dadd(Y X Z}} Ditrue Dadd(Y,s(X),s(2)) L,
(false Zadd{Y,X,Z)) D{false Dadd{Y =(2,s(2))) |,
Le, addlY X Z)DaddlY,s(X), &(Z)) and true. [This inference corresponds to generate
(Y+X)+1=Y+{X~+1)
from
XY ="+X D{H4Y)F1="YH({X-+1)
in functional programs, ie. using the equation X + Y =Y + X in premise and throwing
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it away. This is called cross-fertilization in BMTP (4]}

Example 4.4.2: Let G be a goal formula

{reverse(A,B) —reverse(B,A)) D(reverse(A,C) pappend(C,|U],B) Sreverse(B,[U[A]})
of an 5-fermula

¥ A,B,C,U ({reverse(A,C) Treverse(C,A)) :}[[reverae[h,(.‘]happend{c,[TJ],E}}:Jreversa{B,[UlA]}}].
Because ¢ = < > it a deciding substitution and unifies the positive atom reveres(A, C) and
the negative atom reverse(A, C), we generate new AND-goals

(true Dreverse{C,A)) D(true pappend(C,|ULB) =yreverse{B,[UJA])) 1,

(false —reverse(C,A)) D(false Asppend(C,|U},B) =reverse(B,[U|A])) |,
ie., rcuzra:{cjA]:}t_up_::md{r:,1U],B}|jr:u:rsc{3, [U]A])) and true. (This inference cor-
responds to infer

reverse{C)=A ~reverse{append(C,[U])}=[U|A]
from

reverse(reverse{A))=A Dreverse(append(rever se(A),[UIN=[U]A]
in functional programs, i.e. replacement of the special term reverse(A) with a variable €.
This is called generalisation in BMTP [4].)

Remark: Simplification performs the role of inference rules in the patural deduction not
mentioned so far. It correspends to discharging of assumptions at D-introduction. It also
corresponds to application of 1 ¢, because the use of | ¢ is equivalent to additional axioms
of all formulas of the form FV~7 (which is more similar to the Gentzen's original system).

4.5. Oracle Decislion
The last inference rule is never done automatically in our verification system.

Oraele Decislon

When 17X is in a goal formula G and o —<1X¢=t > is a deciding substitution, we
generate a new goal o(G). All newly iptroduced wariables are treated as fresh undecided
variables.

Remark: Oracle decision corresponds to resolving the ambiguity in forward application of
v.elimination and backward application of J.introduction in the natural deduction.

5. Examples

In this section, we show how the extended execution is used in verification of Frolog
Drograms.

5.1. First Order Inference by Extended Exerution

First we show the simplest first order inference performed by the extended execution.
Let us prove the following thl (cf. Kowalski [14],p.223).

theorem{thl}.
¥U - nppend('i LIVLLD
end.

The extended execution proceeds as follows.

- append(] |,[U].{ ]}




¢ NF1 for append(] |,[U],] ]) {there is no unifiable head and - false | 15 true)
Lrue

This concludes *P° —thl1™.
5.4, Induetive Proof with Extended Execution

Secondly we show the use of the exiended execution with induction. Let us prove the
following th2 {cf Kowalski [14] pp.221-222).

theorem(th2).
% Aclist append{A,| ],A).
end.

Before describing the verification process, we explain about the computational induetion
following Clark |7} p.75-76. The list relation is the smallest set of terms that includes || and
that for any term sincludes [s|t] whenever it includes t. Hence suppote @A) is a formula
with free variable A. For any Herbrand interpretation, @(A) will denote some set of terma.
If this set includes |],ie.

Qll ]}
is true,and if it includes [#/t] whenever it includes {, Le,

VAU (QA)DQ([UIAD)
is true then the set @A) includes all terms in the list relation.In other words,

v A (list{A) D QA))
is true of the list relation and such [A). Hence we get the following computational induction
scheme.

QD YAU (QA) DQ(IUIA])
VA (lst{A) DQ(A))

Let Q@A) be append(A,[], A}
Base Case

The subgoal Q(]]) is represented by a goal formula append(|], ], {]).

append{i |.[ |.[ )
L DCI for append(] ],] 1.1 1)
true

Induction Step
The subgoal @A) D Q([U1A]) is represented by a goal formula append(A, [|, A) D append([U|Al, [, [T 1AL

append(A,[ 1,A) Dappend(IUIA] [ ],[UIAT)
| DCI for appecd([UTAL] [,[UA])
append{A,] |,A) Dappend(A] LA}
| simplification w.r.t. append(A,| ),A) and append(A,| |,A)

true

This conciudes “P" —thZ".

Z.d. An Fxample for Comparison



A well-knewn property of “reverse” is described as follows (Boyer and Moore |4]).

theorem reverse-reverse).
v A.B {reverze(A B) —reverse(B,A)).
end.

Let us Drove reverse-reuerse nusing the extended execution and the computational
induction, The same discussion for reverse relation holds as for the list relation in the
previous section. We have a computational induction scheme as follows.

QLD VA BCU [Q{Arclmwendic,fu‘”ﬂ} 2QIIUIALB))
VA B (reverse{A,B) QA BY

Now let @A, B) be reverse(B, A). (We omit the details how @ is found See [12].)
Base Case

The subgoal @([],]]) is represented by a goal formula reverse([],]]). The extended
execution of reverse(] ], []) proceeds as follows.

Eversﬁ{l LI
L TCT for reverse(| [ ])

true
Induction Step

The subgoal VU, A, H,C{Q{A,C}nappmd[ﬂ‘,[brl, B)DQ(|U|A], B)) is represented by a
goal formula rever ae(C, A)noppend(C, U], B)Sreverse(B, |UA]). Now let new-p(L, M, N, X)
be a procedure defined by

new-plL M, NX) - reverscl{N,L}__append[N,[‘,{],M‘].

Then the new-p relation is also computed by the following program. (This is justified by
the Tamaki-Sato’s transformation 121). For lack of space we omit the details.See [12}}.
aew-p(l 1, XL 1,X).
uew-p[L,{T!h{],W’,N’,,){} - nnw-p{L1,MJN,K‘],appzud{L;,',"f],L].
‘I'he theorem to be proved is DOwW

v ABCU {new-p{h.B,U,U‘}jreverae[E,[U|A]]|].

and the computational induction scheme is

wU Q( LIULILU)  YABCUALY (Q(AB,CU) nappend(As,[V],A) DQA,VIBLIVICIU)

VA B.C.U (reverse(C,A) Aappend(C,[U],B) SQIAB,C,UY)

Now let @A, B,C,U) be reverse{B,|U|Al). By applying computaional induction,we
have two poals.

Base Case (Deeper Level)
The subgoal YUQ(| |, UL 111 18 represented by a goal formula reverse([U], [U]).

reverse([U},iU])
LD for reverse([U],[UT)
reverse(l 1.1C) Aappend(7C,|ULIU))
1 DCI Tor reverse(| |,7C)
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append{[ J,IU},[U])
"~} DCI for append([ 1,{U],[U])

true
Induction Step (Deeper Level)

The subpgoal v4, B, C, U, A4, V(Q{A,, B, C, UAcppend(A,, [V], A} D Q(A4, viB, vicy, U]‘]
is represented by a goal formula reverse(B, [U|A,])Aappend(A;, V], A) Dreverse([V|B], [V]A])

reverse(B,[U]A;|)Aappend(A, ,[V],A) Dreverse([VIB],[UJA])
11 DCI for reverse([V|B],[UJA])
reverse(B,[UJAy])nappend(A;,[V],A) Dreverse(B,1Az)Aappend(’A, [V],[UA])
I DCI for append(*Ag,[V],IUA])
reverse(B,[U|A;)Aappend(A,,[V],A) Dreverse(B,[UITA,]) Aappend(TA,,[V],A}
[ simplification w.r.t. reverse(B,/UjA;]) and and reverse(B,[Uj7A,])
append(A,,[V],A) Dappend(A,,[V],A)
[ simplification wr.t. append(A,,[V¥],A) and append(A;,[V],A)
true

This concludes “P" j—reverse-reverse”.
6. Discussions

Our approach is similar to one by Tarplund Haridi et al [9],[10][22] which uses the
patural deduction directly. They accomodate various manipulations of programs into a
menolithic logical framework. It iz humar-oriented and keeps intuitive information each
formula has so that the quality of human interface in interactive systems 1s not degraded. It
also has an advantage of the chance to utilize the result about pormal proof constructions.
Fut it is different {from ours in {ullowing 5 respects.

(1} Our inferences are sound.

Their preof construction is not necessarily sound and need wo check whether the resul-
tant proof tree is a true proof tree after having constructed it (see [10]). For lack of space, we
omitied the formal discustions of soundness of our extended execution. But our inferences
are sound, because we restricted attentions to S-formulas. Moreover we conjecture a com-
pleteness that any S-formula § is provable by extended execution if apd only if § is a logical
consequence of P,

(2] Our approach 15 based on unification much more strongly.

Their approach is closer to the original natural deduction. Cur approach is based on
it, but it has a faveor much more similar to the usual execution iz Froleg, because main
inferences are based on unification. (Especially simplification is not used in their approach.)
This makes equational inferences completely implicit (except cases — 13 used i P aod
performs several steps of equational inference ip one step.

(3] Our proof construction ig 10 linear fermat,

Their proof tree construction is faithfull to the normal proof construction in the natural
deduction Corresponding to ckarging and discharging of assumptlions, their procl construe-
tion changes its mode between “forward” and “backward” {see |10]). In our approach instead
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of explicit charging and discharging of separated assumptions, we keep assumptions and
conclusions in a single formula of the form 774, (In this point our approach is more
cimilar to the sequent caleulus.ef [2]) This makes it possible to construct the corresponding
proof trees {in the natural deduction) bi-directionally and proceed in a linear format.

{4) Our system is verification dedicated and controlled by many heuristics.

Their system is considered as an extension of the execution with respect to general
formula programs. Qurs is an extension with respect to definite clause programs. We take
advantages of the fact Tully that the completion P" of a definite clause program F consisis
of formulas of a special form (though we do not do explicit strengihening to P*) and it
disturbe the guantification relations in the generated subgoals so little that the inferences
for verification can be kept rather simple. Actual applications of the extended execution
are controlled by many BMTP-like heuristics in our verification system [4],113]. This can be
considered as a kind of meta-inference (|20],Bowen and Kowalski [3]).

(5) Qur inferences are integrated into 2 proof system with induction.

For lack of space we omitted the details how induction formulas are generated automati-
cally. When there is no way to resort to in verification, we apply inductions and generate
new induction goals [12] as BMTP resorts to the well-founded induction. But in many
cases we can apply the de Bakker and Scott's computational induction, which skips several
steps of inferences and generates more processed goals than naive structural inductions. For
example,in the proof of reverse-reverse, the subgoal in Induetion Step generated by naive
structural induction is '

¥ AU (VC (reverse(A,C)Dreverse(C,A)) 2VB (reverse{[U|A],B) Dreverse(D3,[UJAT)))
apd we need to apply NFI and simplification before applying the deeper level induction. In
addition,we need not to guarantee termination of predicates in theorems to be proved because
we employ the semantics based on the minimum Herbrand model = the least fixpoint of a
transformation T of Herbrand interpretations (see Clark [7] pp.75-T6).

8. Conclusions
We have shown how the interpreter of Prolog can be extended to execute more general

formulas and how it can be utilized to verify specifications of Frolog programs. This extended
execution is an element of eur verification system for Prolog programs under development.
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