ICOT Technical Report: TR-095

TR-#5

Tvpe Inference in Prolog and lts Applications

Tadashi Kanamori and Kenji Horiuchi
(Mitsubish Electric Corp.)

December, 1984

Wita kKokusai Bldg. 211 (030 4a6-3191—-3

IG DT 4-7% Mita 1-Chome Telex W2OT J32964

Minate-ku Tokvo 108 Japan

Institute- for New Generation {.'fomputer Technology



Type Inference in Prolog and Its Applications

Tadashi KANAMORI Kenji HORIUCHI

Mitsubishi Electric Corporation
Central Research Laboratery
Tsukaguchi-Honmachi B-1-1

Amagasaki Hyogo JAPAN 661

Abstract

In this paper we present a type inference methed for Frolog programs. The new idea is
to describe a superset of the success set hy associating a type substitution {an assignment of
gots of ground terms to variables) with each bead of definite clause. This approach not only
conforms to the siyle of definition inberent to Prolog but also provides some accuracy to the
types infered. The computation of the superset is done by sequential approximation, which
is substantially equivalent to solving inequalities. We also develop an incremental method to
utilize already obtained results. 'We show several interesting applications of t¥ype inference
to debugging and verification of Frolog programs.

Keywords : Type Inference Prolog, Program Analysis.
Contents

1. Intreduction
2. Preliminaries
2.1. Deficition of Data Types
2.2, A Fundamental Theorem for Type Inference in Prolog
2.3. Computation of Minimum Herbrand Model
3, Type Inference in Prolog
3.1. Interpretation by Type
3.2, Restriction by Type
3.3, A Trapsformation for Type lnference
3.4, Computation of Type Inference
3.5. Incremental Type Inference
4. Applications of Type Inference
4.1. Debugging of Prolog Programs by Type Inference
4.2, Verification of Prelog Programs Using Type Information
5. Inscussions
6. Conclusions
Acknowledgements
References
Appendix. Closure of Atom



1. Intreduction

It provides usefull mmfermation not only to programmers but also Lo meta-processing
systems to infer characteristics of executuion-time behaviors fram program texts. Such a
task is called program analysis and whether the task is rather easy and effective or not is
strongly depends oo the target programming language. Logic pregramming languages are
expected to be suitable for such analysis because of their clear semantics (cf.[17]).

In this paper we present a type inferepce metbod for Prolog programs, which is one
of the impeortant area of program anpalysis. The new idea is to describe a superset of the
success et by associating a type substitution (an assignment of sets of ground terms to
wariables] with each head of definite clanse. This approach not only conforms te the style
of definition inberent to Prolog but also provides some accuracy to the types infered. The
computation of the superset is done by seguential approximation, which is substanlially
equivalept to solving imegualities. We alzo develop an incremental method to utilize already
obtained results. We show several interesting applications of type inference o debugging
and verification of Prolog programs.

After summarizing prelimioary materials in section 2, we describe a type inference
algorithm for Prelog programs in section 3. Several interesting applications are exemplifiad
in section 4. Lastly in section 5 we discuss the relations to other works ever done.

2. Preliminaries

In the followings, we assume familiarity with the basic terminolegies of first arder logic
such as term,atom(atomic formula) formula substitution and most general unifier{mgu). We
also assume knewledge about semantics of Prolog sueh as Herbrand universe H Herbrand
interpretation [ minimum lHerbrand Mode! Ma and transformation T of Herbrand inter-
pretation associated with Prolog programs (see {1],[4),[5],[7].110]). We follow the syntax of
DEC-10 Prolog {15, As syotactical vanables, we use XY, Z for vaniables, s, ¢ for terms and
A, B for atoms possibly with primes and subscripts. In addition we vee o, 7, u, v for sub-
stitutions and I for sets of substitutions. An atom p{X,, Xz,..., A,) is said to be in general
form when X, X5,.. ., Xy are distinct vanables. A substiiuuien o is called a substitution
away [rom A when ¢ instanciates each variable X in A to f such that every variable in ¢ is
a fresh variable not in A,

2.1. Defuition of Data Types

We introduce type construct into Prolog to separate definite clauses defining data
structures from others defining procedures.e.g.,

type.

List{[ 1}

Iist{ 2LT) = List{L).
enid

tvpe defines & unary relation by definite clavses The head of definite clause takee a
term defiming a datz structure as the arpument, either a constant b called a bottom element
or a term of the form e¢{t) ta,.. . t,) where ¢ is called a constructor. The body chows a
condition of t7pes about the proper subterms of the arpument

1



ere note the set of ground 1erms prescribed by type predicates, The set of all ground
terms t such that "-p(t) succeeds is called & £¥pe of p and denoted by p.

Example 2.1: Let the definition of a type number be
type.
number(Q).
number({s{X}] = mymber(X).
cod.
Then number iz a set {{‘u,s{D]:s[st}‘j, S} et sometimes succeeds without instanciation
of variables in t, but we do not inelude such tin p. For example,-list{[X]) succeeds without
instanciation of the variabie X . But we do pot include (X i bet and include only its
ground instances.
Suppose there are defined k data t¥pes pr.f2.- o Pe and p;, P2, Pi 27E disioint, We

denote the set of all ground terms coutained in oo By OF pthers and consider 1t like one of

types. Then the Herbrand vniverse H s divided inte £+ 1 disjoint seis as follows,

H=—plpzld.. Wrsldothrrs
Procedures are defined rellowing the syntax of DEC-10 Proleg {15}, 8-

appendl] LK.
1ppend[[K!LL,M.{Xi‘.“i]'ﬁ - append(L M, NI

‘Throughout this papsr, weuse P as & finite =ob, 8T copjunction of defipite clauses defining
data types and procedures. We nesume vanables o each defimte clause are renamed at each
use so thal there coours 1o variable names confict.

2.2. A Fundamental Theorem for Type luference i Proleg

Let J and J be Herhrand oterpretations. I js said 10 cover yuccess sel uopder &
restrictiop J when il conlaids the jmersection of the minimui Herbrand model My and
..;r, i.E..MunJ “:_ i.

An Herbrand ipterpretation 7 is said to be ciosed with respert to P when for any ground
imstance of definite clause in P guch that the head s n J, a0¥ ground atom in the body s
also in J. This me=ns that Mo M 15 eompriable within it

Thenrem 1f J iz closed with respect to P, T & Ty and THONT S then I covers
succese set under J.

interpretations suck that Tp{lVis T J for eay 1 T, has a least fixpoint ﬂ,..r:r},:;f by
the Knaster-Tarski fixpoint Loeorem (1! 7,543, Theorem 2 1}. Becausze J 15 clased, MoV J
is a fixpoint of Ty Morcoves i3z the least Lxpoint, since AMeld = U Tuie) [11]
p.843 Theorem 2.2} Therefor MeJ = J for ank [ eatisiving To(N) C 1

Praof. T(O C 1 frem Ty e T Let T he a monotone transformation of Herbrand

Our goal of type Infersnce i3 Lo odesnsibe 4T liervrand interpratation [ covaring SUccess
gt under a rostriction J o terms of 1¥pes This 1z performed b¥ defining an appropriate
rransformation 7 satisfying the theorem above

2.3, Computation of Minimum ferbrand Meodel

"
-



In order to make the following type inferenee algorithm understandable, we show a
method to generate a sequence of Herbrand interpretations approximatiog to the minimum
Herbrand model M.

Computation of Minimum Herbrand Model

1= —01 Tq =0
repeat £ =1+ 1; Ly = T(0) untd) iy T 1
return J;

Here we deline the transiormation T in a slightly complicated manner,

Let By, Ba,..., By be a zequence of (conjunction of} atems and ] be an Herbrand
interpretation. First we define the set ¥ of all substitutions ¢ such that all ground instances
oiB,),e(B;),...,6(Bm) are true in J, where we assume that o substitutes arbitrary ground
terms for variables not contained in the domain of ¢, We denote Lthe sct by m.

Let “By - 8y, H;,..., By be a definite clause in M. Secondly we define the set of all
ground atoms o[y} where o is a substitution defined above for the body of this definite
clauseie. {o(Bg) | o € Z:8:Fn 1 We denote the set by ﬂ‘-ﬂ"r"-'g-'-"- (Bs). Note that the
variables not appearicg in the body of definite clauses are not included in the domain of the
substitutiop: and cap be instanciated to apy ground terms.

Fxample 2.3: Let append be defined by the definite clavtes mentioned before and [ be

a set of pround atoms append{t;, ty, t3) where t; is a list of the length less than 2 and

f3 is the result of seppeoding ¢y sod #3. Then E—”’-—EM is the set of substitution <

Lesty, Me=ta, Ni-ts > where append(t;, tz, t3) € 1. And 22222l MM oppend(i x| L], M, X INT)
ie the sct of ground atoms append{s,, £2, #85) where £, 1s a list of the length lese than 3 and

&y is the result of appending 8, and as.

Then T transforms [ to the union of M (Bg) with respect to all definite clauses
in F,le.
U BBz --Be

T = 1

(Ba)
YRy By Ba,, B ""ER

3. Type Infercoee in Prolog

In thiz section, we show how to deseribe a class of Herbrand interpretations in terms
of types first. Then we define an appropriate transformation satisfying the condition in
the theorem in 2.2 The computation of type inferesce bas a siyle similar to that of the
minimum Herbrand model. Lastly we show how to compute it incrementally viihziog the
results already romputed before if possible.

i.1. Interpreiation by Type
(1} Type Set
A set of ground term: represented by a union of types is called a type set. Type sets

k|



are denoted by &, 13,1z, .- €6

Example 3.1.1: number |) list is a type set. 0 is a type set,too. Py p2lJ.. U paUothers
is a type set.We denote it by any. (any is not a type hut ap abbreviation of a type set.)

{2} Type Substitution

An assigpment of type seis to variables
T = X1, Xat=ta, G XntEta &
iz called a type sub;t_imtjun.-a type assigned to a variable X by L is denoted by (X}
We assume L(X) = any for any +ariable X not appealnp explicitly in the domain of E. A
type substitution T =< Xyt Xesta,- oy Xnt=ty > 18 considered the same as a set of
cubstitutions o
{< X &=, Xa=t, - X. &ty >t €,z €2, L ta Elal-

Example 3.1.2: < Le=list > is a type substitution. This iz considered the same as 3 seb of
substitution {< L&t =|tis any ground term in list }. The empty substitution <> s 8
type substitution assigning any 10 any variable.

The union of two type substituiens £, and T, is @ type substitution L such that
LX) = L, (X)U £,(X) for any X and denoted by Ty |J Tz The iptersection of two type
substituions I, and Tz iz a type cubstitution T such that T(X) = LX) (E2{X) for any
¥ and denoted by Z1( Lz

(3) Interpretation by Type

Let By be a head of 2 definite clause “Bp - By, Bz,....Bx" D F and E be a type
substitution. Then I(Bp) is considered as representing 3 set of ground atoms {e(By) |7 E
T}. An Herbrand interpretation J represented by & upion of all such forms,ie.

E(Bo)
wBy =By, B3, BeET
is called an interpretation by type

Example 3.1.3: Let I be an Herbrand ipterpretation
< Kt=ony > (append((], K, KNIU

£ Xeany, Le=0, Me0, N > (append({X|L], M, XN
Ther [ it an interpretation by type This1s an Herbrand ioterpretation
{ append(] ] ,,t) | t is 8Dy ground term }.
3.2, Nestriction by Type

An Herbrand interpretation J of the form U.-E.{A‘] is calied a restriction by t¥pe,
where cach A; 13 oot necessarily a head of definite clauses iz F.

Example 3.2: J =<> (oppend(N, [A], Myl <= (reverse(L, M])isa restriction by type.
1.1. A Transformation for Type Inferenee
(1) Computation of Type et of Superterm and Subterm

When each variable X inaterm is instanciated to a ground term in (X)), we compute
a type set containing all pround instances of f as follows and denote it by t/E.

4



i (X)) =0 for zome X in{;
Z(X), when { is a variable X,
o, when { 15 & boltom element b of a data type p or
t/E = ] - when t is of the form e(t;,t2,.. ., ta),

¢ iz a constructor of a data Lype p and
t,/T, t3/L, ...t/ satizly the type condilions,
[any, olherwizse.

Example 3.3.1: Let t be (XL} and E be < X t=any, L+=list >. Then t/L is list Let t be
[A|L] and ¥ be < X =any, Leony >, Then ¢/E is any.

When a term ¢ containing an occurrence of a variable X | s instanciated to a ground
term in t, we compute a type sel containing all ground instances of the cccurrence of X as
follows and denote 1t by X/ < 1=t >,

¢ when t is a variable X;
X/ < =ty >, when ¢t is of the form ety t2,. ...t )X s in 2,
t consists of only one type p,
¢ is a constructor of the data type p and
t, is a type sel assigned o Lhe i-Lb argument ¢;;
@, otherwise,

X/ <tet >=

Example 3.3.2: Let t be [X|L] and ¢ be {fst, Then

X[ < | X|Lj«=list >= any, Lj < [X|[J=list >= list.
Let t be [X|L] and t be number. Then

X/ < [X|Ll=number >=0 L/ < [X|Lle=number >=10

(2) Computation of Covering Type Substitution

Let By, Ba, ..., Bm be a sequence of {conjunction of) atoms and I be an interpreta
tion by type A type substitution is called a covering type substitution with respect to
By, 8:,.. ., Be and I when it contaios every substitution ¢ such that all pround instances

a{Bha(B:),. ,o(Bm)aretruein . A transformation T is defined usizg the covering type
substitutions.

Let I be an interpretatien by type |J, Ei(4;) and B, H;,.. ., B be a sequence of
atoms. When 3y, Ps, ..., B, are unifiable with A; A, ..., A b7 an mpgu r, we define
a type suhstitution £ on varables in 8y, B2, ..., By as follows, Mote that we can assume
without loss of generality that ¢ contains no variable in By, 8., ..., B, when a variable X
i 8y, B3,. .., By, is instanciated to t by 1, because the unifiability shows there s no cycle.

When it = 0 then © =— <

Wheo m 2> 0 then

(a) Let t be a term containieg variables o A, and X be a vanable in B, If 7 substitutes
t for X, then we assigns {/L;, to X,
(b} Let ¢ be a term containing an oceurrence of a variable X in B and Y be a variakle in

Ai,. IFrosubstitutes ¢ for YV, then we assigns X/ < ¢+ F (V) > to the occurrence of
A



Then T assigns the intersection M.t to X when ty,tz,... are computed as type sets
at different occurrences of X in By, Bz, ... B When L assigns @ to some variable 1o
B,, Ba, ..., Bm, we neglect E.

By | F_-Eil;'”._ﬂ 1, we denote the union of T for every possible combination of A, Auy, - Aia
and 1is mguw 7.

Exampie 3.3.3: Let I be a type interpretation
< Keany > (append(| |, K, KU
o Xeony, L0, M N0 > (append([X]L], M, (XN
and B, be a seqence of atoms {though it iz only one atom)
append(A, B,C).
Then There are two possibitity of unification. One is 1, =< A=), B=K, C+=K > and
the corresponding type substitution is
< Ae=list, Beany, Ce=any >
Another is 12 = < At=[X|L], BE=M, C+=[X|N] > and
< A=, Be=0,C=0 >
is the corresponding type substitution. Hence by taking their unicn,we have
(orpendABC)| - & At=list, Be=any, C=any >

(3) A Transformation ™

We define 7" as folows. {Note the similanty to the defipition of T in 2.3.)

T = [ —=——1(Bo)

U =3

wEy By By, B "EP

It is obvious that T{J) © T'{I) and T is monotone for interpretations by type.
3.4. Computation of Type Inference

An interpretation by type covering success sot under a restriction J is called a type
inference under J.

Example 3.4.1: Let T be a type interpretation
< Keany > (append(] ], K, KU
< Xe=any, Lelist, Me=any, Ni=agny > {append(( X L], M, IXIND.
Then | covers success set and 1s a Lype inference under any restriction.
<> (append(]], K, KNU <> (eppend([XILLM, X [ N]))
is & type inference as well, but we copsider il lezs acenrate.ln general
U gy ... e < > (Do)
iz always a type inference. The interpretation by type in example 3.1.3 is nol a type inference
upder J = H.

The theorem ip 2.2 holds for interpretstions by type as well. We already have an
appropriate transformation T* so that we can compule 2 ype inference under a closed
restrietion J. The outlook of the algorithm for basic type inference i similar to that of the
computation of the mmmum Herbrand model.

]



Computstion of Type Inference

1= —1; fg =B
repest 1 =1+ 1, Loy =TT until iy, C L
return [,;

In order Lo compute type inference under a closed restriction J, we need 7117 J In
place of T(J) in 2.3. T*(I)(J is obtained by using [ 212 En|(Bo) N 521(B,). [521(By) is
eommen to all repetition of the type inference process and ean be computed onece and for
all before repetition.

Example 3.4.2: Suppose we compute a covering type substitution with respect to a2 unit
elause append(||, K, K'). and I = 0 under a restriction by type J =< > (append(N, [X| M).
Then because [-'M}M] is < K+=list > and %-1 is <>, < Kelist > is the covering

type substitution under J.

First we show an example with no restriction, ie.,J = <> (p(X,, X;,.. . X)) =
H. la groeral types of predicates calling no other predicate are infered in this manner.

Example 3.4.3: Let append be defined by the definition mentioned before and let us com-
pute the basic type inference using ihe previous algorithm. First we set the initial type
interpretation Jg.
Ig =< K0 = (append(] |, K, K))UJ
< X =0, L=t M0, N=0 > (append(| X |L], M, [X|N]}}
Then we compute T (g} as follows.
{a) There is no body for the first definive clause append([ |, K, K'). Hence the sct of atoms
to be true pext by T s included in < K &any > (append(] |, K, K)).
(b) From the body of the second definite clause,we have .M] =< L=, M0,
Ne=0 >. Hence the set of atloms to be true next bj’ T isipeluded in < Xi:uny L0, M &0,
N+=@ > (oppend{ X [L], M,[X|N]]) = 0.
We have
I, =< K&any > (append(| |, K, K))J
< x;ﬂ, Foa=, Mf._ﬁl, NL.I?J = (append([X L], M [X|N)).
A similar comutation procecds and
Iy =< Ke=any > (append(| | K, K]}
< Xe=any, Lehist, Misany, Neany > (append([X|L], M, (X [N]))
I3 is computed as well, but now I3 — I3 and the algorithm stops. The basic type inference
shiained is
< Keany > (append(| | K, K )}
< Xt=any, Lehst, M eany, Neany > (oppend( (X L], M, [X|N])).

Next we show an example under some restriction.

Example 3.4.4: Suppose we infer the types of reverse under a closed restriction by type
J =< (append( N, X, M) < > [reverse(l, M)} where

reverse(] || |]

reverse([X|L],M) - reverse{L N)append(N,[X] M).
The proces: proceeds as follows.



Ip=10,
I — < Ke=list > (eppend(! ), K, K)U
e X0 Le0 Met Nt > (append([X L], MIXINIU
<> {reverse(l 1. (DU
< X0, Le0, Me=0 > {r:wrs:[[}.’]L], M),
I, =< Kelist > (append((}, K, K)U
< X =any, Lelist, Mehst, Ne=list > (append([X|LL M, xiNU
<> (reverse(|},1DU
& Xiany, Le=list, Mehst = (reverse((X|L], M)
and Iz = Iz. Note that in the computation of I, < Ki=any = (append(] ], K, K))is re
placed with < Helist > (append([], K, K))andinthe computation of Iz, < X =any, Le=list,
M +any, Ne+=any > [apprndl{i)ﬁflL], M, IXIN] s replaced with < X +=any, L=hst, M elist,
Nie=list = {aﬁﬁd[{X|L[,M,!,XIN;]] flence the type inference under J is Iz.

Remark: One might think toat colving the inequality TYI) © I directly is more efficient
than the sequential approximation ctated in example 3.4.3. But carefull check of the process
of solving inequalities shows that a substantially same computation is performed there.

1.5, Ineremental Type loference

Ap atom A is said to be closed with respect to P when for any ground instapce of
(ke definite clause in P! such that the head iz a ground instance of A, any recursive call in
the body is also a ground instance of A. [Hence any pon-recursive definite clause is always
inducible, Any definite clause with a bead nonunifiable with A ie alzo indueible.) This means
the set of ground atoms in Mo of the form of instance of A is computable by some instances
of definite clauses. Note that i X, Xz, . X,) i general form 12 always closed.

Example 3.5.1: Let the atom A be sppend( N, (X1, M). Then A is closesd. This means that
{append(ty, |t2]. ts) | 11, t2 and ty are ground terms} M Mo is computable by some instances
of definite clauses le.,

append(] },IYLIY])

append([X[L],[Y]XIN]) = append(L,[Y],N).

The closedness can be checked as Jollows.

(a) Check whether the head Bp is unifiable with A by a substitution for A away from A (see
section 2). 1 1% 15, decompose the mgu Lo @ o Tp Where @ 1% the restriction Lo variables
in Bp and 7o is the restriction to variables in A 1T 1t is not,neglect the definite clause.

(k) Check whether each instance of the recursive call in the body e(B;) is an instance of A
apd if it is,compute tbe instanciation r,. 17 it 15 ool A is pot closed.

"The set of all instances of definite clauses by o is called rostanciated prograim for A.

Example 3.5.2° Let the atom A be appendl A, [tr),€). Then the first head append(] WL, L)
is unifiable with append(A4, (U], C) bF < Le=lY] > = < A¢=]],Ur—-}’,{‘3<=[}’] =, The
cocond head eppend{ X [L], M, XNy is unifiable with append(A, U, C) by < Me«[Y] >
o < A=|XIL], UeY,C=[XIN] and the insisnce append(L, (Y], N} n the body is also an
‘pstance of append(A, (7], C) bF < A=l UeY CeN >

append(| LIYLIY])-

a?p&ud{:}::L;,{Yi,[ﬁ'ﬂ]] - a]upeud[L.';Y],N:I.
\s the instancated program for appendl 4, UL, C).

b



An atom satigfyving the following condition is zaid to be a closure of A with rezpect to
P and denoted by 4.

{a) A is closed with respect to P,
(b) A is an instapce of A and
{¢) A is an instance of any A satisfying (a) and (b).

Example 3.5.3: reverse(A, ') is a closure of reverse(A, [VB]).

The closure is unigue up to renaming and A is closed if A — A medulo renaming. {See
appendix for the proof of uniqueness and algorithm to compute the closure.)

Now suppose we would like to compute type inference about p under a restriction by

Iype < > _E'Tt[.la, ..., tn) and denote it by T{p[t;,tz,...,!,.i]. Let A, Az, ..., 4; be non-
recursive calls in the bodies of instanciated prograw for pity, ta... .. t.). (If some B; =
glay, 82,.-., 8m) and B, = g(}, &, .., &), we distinguish the predicate symbols by ¢, and
g2 and assume both of them have the same definite clanse program as g.) Then we compute
T(plt1.t2, . 1.)) by initializng Jo to T{A;}l T(Az2)l)---l¢) T(AL), where each T(A,) s

computed recursively.

Incremental Type Inferenee

T(plty, t2,.. .. ta))
= —1; Iy = T{AD W T(A2) -l T(A)
repest £ ;= { + 1; [y o= T'(I) until 1,44 C I,
return [; — Ip;

If there is no mutual recursion,this process stops. The base case is the type inference
under H in example 3.4.3, where the predicate calls no other predicate.

Example 3.5.4: Suppose we compute T (reverse(L, M]) where
The computation proceeds by initializing Jp to T (append(N,[X], M)) as foliows.
Iy =< Y =any > (append([], Y], [YI)U
< Xeany, Le-list, Yi=any, Ne=list > (append [ XIL] Y], [XTINTY)
I =ll) <> (reversel[],[ 11
< X=0,L=0, M0 > (reverse([X|L], M)),
In=lIp ) <> (reverse({],[ 1)U
< Xeoany, Lebist, Mo list > (reverse(|X|L], M)
and Iy = J5. Hence the type inference of reverse is fz — Ip,1e,,
<> (reverse([], [}
< Xe=any, Lehst, Melist > (reverse(JX|L], M)

Recursive computation of T (A;) is sometimes unnecessary and useless. For example,when
A, ivan atem g(Xy, Xo, ..., X)) in general Torm and T(g(X;, Xa,..., X)) is already com-
puted before, thep recomputing it all the way slows down the whole computation. As another

exampie, when some A, = (s, 82, ..., 8=) and A; = g5}, 55, ..., &), we distinguish their
predicate symbols by g; aod gg. But if g(s,,22,. ., #.) = qls}, 55, . .., £}, ) moduio repaming,

it turos oul to compute the same result twice and the distinction 15 useless. In order to avoid

9



the defficiency and acceralate the convergence of the approximation, we store the results
computed before for each closed atom, or more precisely for each inctanciated program, and
utilize them immediately if possible.

4. Applications of Type Inference
4.1. Debupging of Prolog Programs by Type luference

We can utilize type inference for debugging by detecting difference between the model
intended in programmer's mind and the types infered. Type inference informs us of condi-
tions for variables in a query in terms of data types when the execution of the query succeeds.
Suppose we have an interactive sysiem pretending the execulion as follows.

The system accepts a query like 3.4 where each A is an atom and “77-7 is used to
distinguish it from the ususal execution mode *I-" in DEC-10 Prolog. Then the system
computes the type inference [ == T(A) and returns the answer i1

The system sometimes informs us of existence of a miscoding.

Example 4.1.1: Suppose we have defined revkad by

revbad(] |,[ ).

revbad(|[X|L],M} - revbad(L,N),append(N,X,M).
intending the usual reverse relation [12] and give & query

trevbad(L M).
Then the systm reply

L=list,

M=gany.
which is different from the model we have in our mind fer the correct reverse relation. It
also informs us of another kind of miscoding when 1ype inference I consists of a part of the
form < X;&0, Xae=0, .. L Xa=0 > (Bg), because it iz likely erroneous that some definite
clause never succeeds.

It gives some accuracy to the Lypes infered to describe a superset of the success set by
associating type substitutions with each head of definite clause.

Example 4.1.2 : Let <> and empty be predicates defined by
0<s(Y).
(X s(Y) - NI
X)) >0
S(X)1>s(Y) - X>Y.
empty(X,Y) - X< Y XY,
Then a guery
Moempty(X,Y).
returns ab answer
X=0,
Y =0
because the computation of [ proceeds as follows.
lo=< Ye=any > (0 < (YN < Xe=0,Ye=0 > (s(X) < s(YNU
< Xc—"@r S (EX) 0] < Xe0, V=l = (e X) = =(¥YNU
< Xe=0, Y &0 > (emptyi X, Y))
and 1y =1J, This example was given Lo illustrate the 1mprecision inherent to hMashra's Lype

10



inference system [12] by himezelf, though his system does not need cxplicit type declarations.
The conventional type inference algorithm cannot detect the falsity of empty(X,Y) and
usually returns X = numbser and ¥ = number,

It is usefull that the query can be atoms of various forms.

Example 4.1.3: Suppoze we have a program

divide(X,D,0X) - X <D

divide(X,D,s(Q},R) - X =D subtract(X, DY) divide(Y,D,Q R).

o<sY).

s(X)<s(Y) - X<

x>0

s(X)1=s{Y) - XY

subtract{X,0,X).

subtract{s{X),s(Y),2) :- subtract(X,Y,Z).
Then the query of the geperal form 1-divide(X,D,Q R). only receives X=number, D=any,
Q=number, R—=number and [’ is nol pecessarily number. But more specific inspection is
possible by

M-divide(X,D,5(Q) R).
and we know that when the quotient is non-zero,

X=number,

D=number,

Q=number,

R=numpber.
This is not so trivial! to see and it takes a time for pregrammers to confirm it

4.2, Yeriflcation of Prolog Programs Using Type Information

Trpe inference is used eflectively in our verification system under development [B],]9].
In verification we sometimes simplifies the theorem to be proved by assuming that some
atom is true. In such a casezome information about variables left in the simplified thecrem
may be lost and we need to retain it to prove the right theorem. This problem was first
noticed by Boyer and Moore [2] in their thecrem prover(EMTP) for pure LISP. The same
problem arises in verification of Prolog programs.

Example 4.2: Suppose we prove a theorem ¥ UV, C (3B reverze{C,[V|B]) 2 2B reverze([U|C],IVIE"]))
The goal is trapsformed as follows,
¥ U V,C (3B reverse(C,[V|B]) = 3B' reverse([U|C],[VIB']))
I because of the definition of reverse
¥ UAV,C (3B reverse(C,[V|B]) 3B"D (reverse(C,D) Aappend(D,|U}[V|B'])))
Mow let us decide [J to be [V|B]. This decision is sound and we have a new subgoal
7 UV,C,B (reverse(C,[VIB]) 238 (reverse(C,[V[B]) Aappend{[V]B] [U],[VIB']})).
Here we can utilize the aptecedant, If reverse(C, [V]B]) is falsethe theorem is trivially
true. Hence we can only need to consider the case reverse(C, [ViB]) 1= true. Dy replacing
reverse[C, [V'|B]) with true,we bave a pew subgoal which is transformed as follows.
¥ U,V,B 3B append(|V|B],/ULIV|B'])
I because append([V|B],[Ui],]VIB']) iff append(B,|U},B")
¥ U,B 3B' append(B,|U.,B")
Dut this transformation has generated a too strong theorem and it is in fact not true. (For
example, an instance YU 3B append{l, [I7], B') is wrong.) In order Lo keep the theorem right,
we need to add i{ype icformation as aptecedants,i.e. when we derive a subgoal assuming

11



reverse(C,[VIB]) true, we have infermation l15t 3] and W¥0e information aboul variables
retained in the new subgoal should be kept Our pew subgoal should be

v UV, B (lisB) i) append;;‘fﬂ‘,,‘ﬂ;}.ﬁl‘k’kﬁ";‘l_‘:
This is provable by induction and we complete the proef.

5. Discussions

Most of the investigations of 1ype inference have been for functional programs [2],111,1 3,161,118l

Biut a few works are done for Prolog 13],16],11 2411 4| from different point of views. Introduction
of two dimensions makes easy Lo classify them, | n._s'_r;mar:,ical—s-crnantscaﬁ and monomorphic-

polymorphic.

Bruynooghe 3] proposed 1o introduce types to Prolog im arder to enhance reliability and
readability and Mycroft and O'Keefe [14] extended the Miloer's type polymerhism to Prolog.
Though they are mainly concerned with the consistency of type assiguments [weﬂ-t}'pedness],
type inference problem 15 Lo decide consistent Lype assiznments for pew procedure definitions
assuming type assignments of composing predicates and funciion symbols, if we dare Lo sa¥.
Both of the approaches are polymorphic and svntactical, ie.it has no relation to whether
\be execution of atom with the predicate symbol succeeds of pat. The syntactical approach
is characterized by its slogan “Well-typed programs do not go Wrong' .

Mishra [12] takes apother approach recent!y, where the iype ipference problem 15 to
describe a superset of the arguments of cuccerding goals by some expressions from Lew
procedure definitions assuming uo explicit definition of data types or Lype declaration of
procedures (Mishra used somae regular expressions.)  His approach 1s monomorhic and
semantical. The semantical approach is characterized by its siogai s[jl-typed Program
cannot succeed”.

lp our approach, both syntactical and semantical concepts appear It is semantical
whether a type inference [ covers & success €L, while 1t is syntactical and closely related o
the well-typedness in |31,{14] whether 2 restriction J s clused. Moreaver Lthey are related
strongly through the crucial copdition that a rostriction J must be closed Tor a type inierence
| to be computed. Though our approach is still momomorhie, it is new in ihe following
respecis.

(a) Our type inference deseribes a superset of the guccess tel by associating a Lype substitu-

tions with each definite ¢lapse, which provides some accuracy to the 1ypes infered.

(b} Our approach solves the probiem under a syntactical restriction, which s utilized to
infer types mors pinutely.

{e] Our iype inference is not restricted to that fof arguments. Type inference can be
done for any vanables in 2Ly procedure call which is not neeessarily 1o general form
p{xt,xg,_..,x,,]_

6. Conclusions
We have shown o 1Fpe inference method for Prelog programs and its jpleresting ap-

plications Lo debuggiog and verification. This type inference methad is an element of our
verilication sysiem for Prolog programs under development.

12



Acknowledgements

Our verification system is & subproject of Filth Generation Cemputer System{FCCSE)
“Intelligent Programming System”™. The authors would like Lo thank Dr K.Fuchi {Director
of ICOT) for the chance of this research and Dr K Furukawa(Chief of ICOT 2nd Laboratory)
and Dr.T Yokoi{Chief of ICOT 3rd Laboratory) for their advices and encouragements,

References

[1]Apt, K. R and M. H.van Emden,*Contribution to the Theory of Logie Propramming” ,J.ACM,
Vol.29 Ne.3,pp B41-BBZ,19R2.

12] Boyer,R.S. and J.5 Moore,“A Computational Logic” Chap.6.,Academic Press,1979.

|3 Bruynooghe M., “Adding Redundancy to Obtain More Heliable 2nd More Readable Prolog
Programs”, Proc.lst Interpational Logic Programming Conference,pp.129-133,19582.

j4! Clark K L., "Negation as Fallure” in Logic and Database (H Gallaire and J.Minker Eds),pp
293-302, 1978,

5] van Emden, M H. and R.A Kowalski,"The Semantics of Predicate Logic as Programing
Language” JLACM Vol.22 No 4,pp 733-742,1976.

[6] Furukawa, K. A Takeuchi 5 Takagi and T.Chikayama, “Type Infercnce in Logic Programming
Language and Itz Application to Type Checking”,(in Japan ese) Proc. of National Conference
of Japan Information Processing Society 'B2,Spring, pp.35-36,1983.

7] Jaffar,]. J-L.Lassez and J Lloyd,“Completeness of tke Nagation as Failure Rule”, Proc.
1JCAIE3, Vol 1, pp.500-508, 1983,

i8] Kanameri, T.and H.Seki,“Verification of Prolog Programs Using An Extension of Execution”,1COT
Technical Report, TR-0G3,1984.

(9] Kanamori,T.and H Fujita,“Formulation of Induction Formulas in Verification of Frelog
Programs” ICOT Technical Repert, TH-094,1984

110} Kewalski,R.A_, “Logic for Problem Solving” ,North Holland, 1980.

[11] Milner, R.“A Theory of Type Polymorphism in Programming”®, J. of Computer and
Systems Science 17,pp 345-375,1978.

[12] Mishra P, “Towards a Theory of Types io Prolog™ Proc. 1954 Internatiopal Sympesium
on Logic Programming,pp.285-20E, 15984,

113] Merris, J H.  *Lambda-Caleulus Models of Programming Langruage”™ Ph.D. Thesis MAC-
TR-57 MIT, 1868,

{14] Mycrofi, R.and R.A.O'Keefe,“A Polymorphic Type System for Prolog™, Artificial Intelligence
23,pp.295-307,1954.

|15; Pereira,L. M. F.C.N Pereirs and [} H.D Warren,“User’s Guide to DECsystem-10 Prelag™,
Occational Paper 15, Dept.of Artificial Intelligence, Edinburgh 1973,

[16] Reynolds,J C.,“Automatic Computation of Data Set Definitions”, Information Frocessing
68,pp.456-461,North-Holland, Amsterdam, 1969

117] Sato,T.and H.Tamaki,“Enumeration cf Success Patterns in Logic Programs”, in ICALF
83 {J.Diaz Fd) Lecture Notes in Computer Science 154,pp.640-652, Springer,1983.

|18] Suzuki,N., “Iofering Types in Smalltalk™, Conl Rec.of Tth ACM Symposium on Prineiples
of Programming Languages,pp. 187-192 1980,

13



Appendix. Closure of Atom
Theorem Closure is unigue up io renaming.

Proof: Suppose A has two closures 4 and A'. Then from the cendition (b), they are
unifiable. Let its most general instance be A= p*[f] = p"{x’]. Suppose a head of a
recursive definite clause Hp is unifiable with A by an m.gu Ttooo. Hence (e p'jeois
a upifier of A and By and ([rep")ooisa unifier of A" and Hp. Because A and A are
closures of A, By is unifiable with A byanmgu rpeo and upifiable with A by an m.g.u.
il e ¢". This means that for some ot and 1M, 0 = 1/ o’ = ¢ 00" For all 1 such that B;is
a recursive call, o(B;) = ' &) =0 AA) = "o A = 1" or! (A"). Hence o(B;)
is a common instance of 2 and A". Because y' oy isan mgun. of A and A, there exists a
substitution 7, such that o(B,) = 7 o W'(A) = riop" (A"). Then 7, satisfies the condition of
the closedness and A is a closure of A. Because of the condition (¢}, A apd A are variants.
Henece the closure is unigue up to Tenaming.

A R X A K p— &
o fo s 7 i !

- T » L +
g'(Bo) — 1= o(Ba) = v"- ¢!'(Bo) & (B)— v'—=o(B)<— v'— (B}
""‘-H * ..--"'J T * .-"'"'-
¢_7 oo o
Bu-"' "n-.BI..-

Computstion of plti iz, - tn

i:=—1: Ag = plty,tz,.. . tn)i Fo'= the set of recursive definite clauses defining p;
repest
§ =i 1; sclect a recursive definite clausze C in F; fairly;
if the head of C is unifiable with A;
then Ay = closurel{4,, C); Pisyr = F—A{CkH
else Aipy = A Pigr =Py
antil all heads of definite clavzes in P, are not unifiable with A,
return A

closurel{A, “Bo - By, B, .., .

io= —1; Ag = A,
repeat forever
i =1+1;

let 1p o o be an m.g.u. of A; and By

where 7g and @ are the restrictions to A; and By;

let BY, B, BY, .., B} be variants of atowmws with p in 0{Bg : —B1, By, - .-, Bm)
without shared variable by ao appropriate renaming,

B := most specific common generahzation of BL By B, ... By

it B i: an instance of A; then return Ay elie Ay = 8,

where mast specific common generalization i the dual of most general commeon instanciation,
i.e., Eis a most specific commmen generalizatien of Fy, M, .. ., E; when

(a) Ey, Fa, ..., E; are instances of E,

(b) E is an instance of an¥ F' satusfying (3}

It is easily obtained by comparing the correspopding suboxpressions.

14



