ICOT Technical Report: TR-092

TR-092
Concurrent Prolog Compiler on Top of Prolog
Kazunori Ueda (NEC Corporation)

and
Takashi Chikavama (1COT}

December. 984

Mita Kokusai Bldg. 21F 1030 456-319] ~3

H :D | 4-28 Mita 1-Chome Telex WOOT 32664
Winato-ku Tokvo 108 Japan

Insfitdfe for New Generation Computer Technology

FACE

Kazunori Ueda
(C&C Systems Hesearch Labeoratories, NEC Corporation)
and
Takashi Chikayama

(Institute for New Generation Computer Technology)

ABSTRACT

A Concurrent Proleg compiler, whose target langpuape i= {(sequentizl)
Prolog, was implemented in Prolog. The object program obtained can
further be compiled intc machine codes by 2 Proleg compiler. Due to
the similarity among the source, target and implementation languages,
the compiler and the runtime support were small and very rapidiy
developed. Benchmark results show that 2 compiled Concurrent Prolog
program runs much faster than a comparzble Proloepg program running on
a Proleog interpreter. This compiler will serve for practice of

parallel logic programming.

PAGE 2

1. IRTRODUCTION

Since Shapire proposed Concurrent Proleog and its interpreter in
[Shapire 231, that interpreter has been used for the practice of
parallel legic programming around us. Although the interpreter,
written in Prolog, is concise and useful for experiments of small
programs, the slowdewn from the bare Prolog system on which the

interpreter runs amoonts to two orders of magnitude.

Therefore, we decided to write a Concurrent Prolog compiler. Writing

a compiler is important from the following viewpoints.

1, To pet an efficient implementation, it is necessary to examine how

much static information can be extracted from the source program.

2, To demonstrate the descriptive power of the languape, it is
necessary to provide 2 programming envirorment in which one ocan

write and test parallel logic programs of considerable size.

We chose (sequential) Prolog for the target and the description
languape for the following reasons.

1. 4 Prolcg program can be compiled into elficient machine codes
[Warren 771.

7. Similarity =mong the source, target, and description languages

enables rapid development.

3. We can get a portable implementalion.

4, Much of the laborious work to write system predicates can be
elipinated by interfacing between Concurrent Proleg and

Frolog.

We omit the description of Concurrent Prolog here, which will be found
in [Shapire B3], [Shapiro and Takeuchi 63], and [Shapiro 8u4].

2. LINGUISTIC AND HON-LINGUISTIC FEATURES
Qur implementation is basically a compiler version of the coriginal
interpreter in [Shapiro B3], Some linguistic extensions we have made

are az follows:

PAGE 3

1. Metacall facilities after [Clark and Cregory 84] have been

provided., A metacall predicate *pall' haz three arguments:

call(Coals, Result, Interrupt)

The argument " Result' gets the value ~success' upon sucecessiul
terminztion of *Goals'. When one instantiates Interrupt' to
“stop', the execution of "Gozls' is aborted and *Result' gets the
value " stopped'.

2. Seguential AND operator has been provided. flthough this can be
implemented by using metarall Facilities, it is necessary o
directly support this for the sake of efficiency.

3. Mode declaration facilities similar to those of DEC-10 Prolog

[Bowen B3] have been provided. The purpose is to gel amaller and

more efficient codes.

On the other hand, we inherit the following linguistic and non-

linguistie restrictions froz the criginzl interpreter,

1. Selection of candidate clauses are not done in & pescudo-parallel
manner. Taat is, until the head unification and the execution of
the guards of some clause has suspended or feiled, another clause
is not tried.

3. There i1s no distinction between suspension and feilure, & gozl
that has no immediately selectable clauses may De re=schedul ed,

whether the ceuse is ultimate failure or suspension.

3. Suspended poals due to read-only annotations do busy-waiting.

fMlthough these might look true restrictions at a glance, they actually
cause little inconvenience for executing useful Concurrent Prolog

programs that currently exist:

1. There have been few programs that reguires the {pseudo-)parzallel
sxepution of two or more guards. Moreover, such progracs can be
described without OR-parallelism by using metacall and other

facilities.

PAGE 4

2. By employing bounded depth-f{irst scheduling which we will describe
later, the mumber of suspensions can be made swall compared with

the nurber of reductions in most applications.

%, In typiecal Concurrent Proleg programs which perform their tasks
using strean communication, all goals succeed except for small

goals in guards.

Hon=linguistic festures include scheduling strategies and trace

facilities,

Since we have to solve conjunotive goals in (pseudo-)parallel, we have
Lo decide how to schedule the goals. We have employed one gogl queue,
and have enployed 100-bounded depth-first =cheduling as a default
strategy. P-bounded depth-first scheduling means that each newly-
scheduled goal is n-reducible. A newly-scheduled pozl is a goal which
was engueuved 2t the rear and iz now taken from the front. That a goal
G i=s p(»0)-reducible means that when G is reduced to B1, ..., Bm by

the clause

o= Gty «vo., Gk |} B1, ..., Em.

each Bi {i=1, ..., ®) is {n-1)-redvecible prior to the execution of
the other goals in the gqueue. That a gezl O is O=redugible mesns
that G must be pushed at the end cof the goal gueue and the goal at tho

front must be scheduled.

It is easy to see that T1-bounded depth-first is eguivalent to
bresdth-Firat and eo-bound depth-first is equivalent to depth-Tipst.
Tnat is, the r=bounded depth=Tirst zcheduling is generzl and it
interpolates breadth=-first and depth=-Cirst schedullng.

The bound value ean be specified 2t run time. If fipnite-bounded
depth-firat scheduling is not necessary, one can compile 2 program in
depth=Tirst mode and can gain more efficiency.

Execution trzce iz enabled by compiling & source program in “troce!

mode.

PAGE 5

3. COMPILING TECHNIQUE

& general advantage of the compiler approach is that we can statieally
determine parts of what we must determine at run time in the
interpreter approach. In the case of Concurrent Prolog, such parts
include scheduling and unification. These two aspects are discussed

in the following.

2.1, Scheduling

Each Concurrent Proleg predicate is compiled into & Prolog predicate
in a clause-by-clause manner. This clause-by=clause part is preceded
by a “prelude' part for handling trace and clause indexing, and
followed by a "postlude' part for handling trace and suspension.
Figure 1({a) and 1{b) zhow the scurce and the cbject program of
quicksort.

Fach compiled clause has five additional arguments. The first one is
a counter maintaining a current bound value necessary for bounded
depth-{irst secheduling. The second and the third cnes form a
difference list standing for a goal queue. We call this difference
lizt & continuation. The fourth one is a flag showing whether scme
fFoal has been reduced or not. The fifth one is the initial value of
the bound.

A Concurrent Prolog elause
Head := Guardé | Body.
iz transformed into & Prolog clause of the following form.
{receiving arguments) :=
(Head unification),
{bound check),
{executing Guard), 1,
(degrementing bound},
{executing Body).

The last part, "(executing Body)', does the following things,

1. When no body goals exist ([i.e., "Bedy' is "true'}, a goal at the
front of the continuation 1z called,

geort{[X{X=], Ys0, Y¥s2) :-
partition(Xs%, X, 3, L},

gsort(5%?, Ys0, [Xi¥s1]), qgsortiLl?, Ys1, YsZ).

gsort([], ¥s, ¥s).

:= mode partition(?, 7, -, -).
partition([X!¥=s3, &, 5, [XIL]) :
partition(Xs?, A, 5, L).

partition{[XiXs?, &, [XI81, L) := & >= X

partition{Xs?, 4, 5, L}.
part.itionf[], — []; [j.]l

A< X

{a) Concurrent Prolog source progran

i=fasteoode.

:=public gsort/8.

r=mode Q50rt(7, 7, Tets To=mstst)s

gsorti{A,B,C,D,E, F,G,H) :-
ulist{A,I,J), D=0, t,
K is D=1,
partition(J7?,I,L,M, K,

[z(qmort(L?,B,[T! HJ K,0,P,0,8),0,
S{gsort(M?, N, C,K, R, S,T.HJ B,E,T!

F,nd,H).
gsort{4,B,C,D,E.F,G,H) :=
unil(A}, unify(B,C), D>0, 1!,
E=[%(I,J,F,nd)|J], incore(I).
gsort{i,B,C,D,[$(E,F,G,H}|F],

F,Q],
\E],

[${gsorL({A,B,C,I,J,K,L,I),J,K,L)IG],H, I} 2=

incorel(E).

t=public partition/9.

i=pode partition(®,%,%, 7, +,7,=,4,+).

partition(4,Bd,c,[DIE],F,G,H, T,J)

ulist{A,D,K), F>0, cpwaiti{B,L),

Mmis F-1,
partition{k?, B, ¢ E M,G,H,nd,Jd).
partilion(4,B,[C|D .G, H,I,d)

1

o [
ulist{&,C, K},
N is F-1,

partition(K?,8,D0,E N, G, H,nd,J),

partitiﬂn{,AjE'r[]i[}fcl o, Elbrlu-} .
unil{A), C»0, !,
D=[&(H,I,E,nd}!I], incorelH).

partition(4,B,C,D,E, [$(F,G,H,1)

-

cpwalt(D, M), L<M,

¥ ?
F}ﬂ cpw itfﬂ,L], cpwait{C,M), L»=M,

Gl

[$#(partition{4,B,C,D,d,E L, M,J) K, L, M) 1H],

I,J) = incore(F).

(b) Object program in DEC-10 Prelog

- public TEEND'/3.
YSEND' (LD, _,) = 1.
*SEND' ({&(G,Ch,Ct,d)}Ch],

[&('$END' (ChZ,Ct2,Dnd2),Cha, Ct2,Dnc2) ICL],

nd) :- incore(d).

(o) System prediczte for the deteection
of deadliock and terminztion

Fig., 1 Compilipg Concurret Prolog into Prolog

!

'

PAGE 7

2. When just one body goal exists, that goal 1s given the
continuation that the ecurrent clause has received and is called.

1, When two or more body goals exist, the second and subseguent
gogls are put at the front of the continuation, and the first

gopel is ecalled with the new continuation.

tlpon these ecalls, the deadlock flag in the fourth additional argument

is raset.

The first caze is the only one in which indirect call to & goal is
necessary; in the other cases, at least one of the body goals is
directly called.

Avoiding indirect ealls is important from the viewpolnt of efficiency.
A major application of Coneurrent Prolog 1s to describe =2 distributed
system in which constituent processes, represented 25 goals,
communicste with one ancther using shared variables in & stream

nanner [Takeuchi and Purukawa 83]. In this case, most of the
reductions use tail-recursive clauses having just one body goal. Our
compiler translates such clauses into tail=recursive Prolog clauses,
Since advanced Prolog implementations realize tail-recursion
optimization to aveid the growth of the loeczl stack, the finsl code of
the Concurrent Prolog tail-recursive prograpm is expected to have good

properties.

The clause for nandling suspension is inecluded in the " postlude’ part
of each predicete. It engueuwes the current poal; and calls the [first

goal in the given continuation.

Neadloek and termipation ere detected by the system predicate czlled
"$ERDY (Fig. 1fe)). This predicate simply terminates if the given
continvation is empty. Otherwise, it eogueues itsell, set the
degdlock flag, and cells the first goal in the continuation as long as
the deadlock [lapg has been reset since the last e211 of "JFKET'. The
goal TSEND' is pgiven as the initial continuation of 2 goal which is

input from the terminal.

The object code of a clause having sequential AND and/or metacall
facilities has to do more complex continuwation processing, but the

FAGE 8

basic idea remains the same.

3.2, Unification

Our implementation employs a Proleg functor 7' to represent read-only
anrotations. To rezlize the suspension mechanism of Conecurrent
Prelog, the unifiecation procedure must be defined as a Prolog
predicale. Fowever, because one of the two terms te be unified is
written az a head argument, specialized unification procedures can be
used depending on the form of the argument.

The code for unification appears a2t the top of each clavse body in the
form of & sequence of goals, For example, assume that the head
argument is a list. The corresponding code {irst checks whether the
goel argument is unifiable with the form [_ | _], and if unifiable,
calls unification procedures for processing its CAR and CDR, which may
in turn be expandable. This idea is borrowed from DEC-10 Prolog
compiler [Warren 77]. The only difference is that our compiler can

expand a2 unificaticon procedure to any level.

Tne mode declaration facilities allow a user to declare one of the

following three modes for each predicate argument.

1. Index mode {"+'): allows clause indexing if the underlying Proleg
implementation allows it. The object code of & predicate having
this mode has & two-stapge structure: the first stage for processing
read-only annotations, and the second stage for clause selection.

This mode is useful when there are lots of clauses.

2. Hormal mode ("%'): specifies that the argument be processed in an

ordinary way.

3. Output mode {"-'}: declares thal the goal argument is always an
uninstantiated non-read-only variable. The explicit unification
procedure can be replaced by the implieit head unification of

Proleog.

Figure 2 shows how object codes are affected by a mode declarztion.

Specifying the index mode never changes the semantics of the original
program. Specifying the cutput mode does not change the semantics of

append(laiXx], ¥, [A}Z)) :- append(X, Y, Z).
append({], X, X).

t= mode append2(+, 7, =).
append2([AiX], ¥, [A!Z]) :- append2(X, ¥, I).
append2([], X, X).

(a) Concurrent Prolog source program

:=fast code,
:-public append/8.
:—mode append(7?,7,7,+,7,—,+,+].
append{4,B,C,D,E,F,G,H) -
vlist(4,I,Jd), wlist(C,K,L), unify(I, K}, D>D,
M is D=1,
append(J,B,L,M,E,F, nd, H) .
append(4,8,C,0,E,F,G,H) :-
unil{A}, unify(B,CQ), D0, I,
E=[%(1I,J,F,nd}i{d], inecorel(l).
append(A,B,C, D, [&(E,F,G,H)IF],
[4({append({a,B,C,T,J,E,L, I),J,E,L)IG],H,I) :-
ineore(E).

t=public append2/8.
:-mode append2(?, T 7 + s Timatat iy
append2{A,8,C,D,E,F, G, H)
apwalt{A,I), D>0,
'8append2'(1,B,C, D0, E,F,G,
append2{4,B,C, b, [$(E, F, G, H}IF
[¢(append2{p,B,C,I,J,K,L,I)
incore(E).
'#2d3append2'(fai8l),C,[AID],E,F,G,H, I} 1= 1,
J is E=1,
append2{B,C,D0,J,F, G, nd, I).
'Sifappend2'(]]),4,4,8,0,D,E,F) =1,
C=[#{C,H,D,nd) |H], incore(G).

-
H

H)
]
JLE,LIIGY,H, I) -

T r

{b) Object program in DEC-10 Frolog

Fig. ¢ The effect of mode declaration

PAGE 10

the oripginel program az long as the declared restriction is obeyed.

4, PERFORMANCE

Table 1 shows some benchmark results. As for the Concurrent Prolog
comppiler, [our timing data were obtained for each program: in bounded
depth=Tir=st and in depth=first mode with and without mode
declarztions. The programs were timed zlso on the original
interpreter in bresdth-first mode. Moreover, for each program, &
Frolog program which has the same input-ocutput relation was written

gnd was timed. The Prolog system we used is DEC-10 Prolog on DEC2060.

Table 1 =shows that our object codes ran 12 to 220 times as fast as the
original interpreter, Moreover, they ran 2.7 Lo 4.4 times as fast as
the comparable Prolog programs processed by the DEC-10 Prolog
interpreter. They were, of course, slower than the comparable Prolog
programs processed by the coempiler, but the =lowdown was 1/2.7 to
1/5.3, which we think is quite reascnable.

The "append' program ran at more than 11.5kEPS (Reductions Per Second:
equivalent to kLIPS if there are no guards), and the “naive reverse'

program in {Warren 77] (pnot in the table) ran at more than 8.0kEPS,

Tne mode declaration was effective for all the progrems. The speedup
wes 198 to B4%. As for the benchmark programs, the source of
improvement is the declarztion of “output' mode. The speedup by
changing bounded depth-Tirst strategy to depth-first stretegy was 27%
er less,

The fourth programc that performs bounded<buffer communication
[Takeuchi and Furukawa 83] is inefficient, because process switching
takes place very often. We can see frox Table 1 that we can improve
the efficiency by 2.75% times only by changing the buffer size to 10.
The column of the numbér of suspensions indicates that the bounded
depth-rirst scheduling provides fairly good behavior (except for
bounded bueffer programs}, while zllowing non=terminating programs Lo
run. The ill behavior of the one-bounded buffer program is

inevitable, beczuse that behavior has been explicitly specified in the
progras,

Table 1. Concurrent Proleog Benchmark on DEC2060

Program Proces- Reduc- Suspen- Time(®2) /RPS(#3)

sing tions =ions (compiler {compil ar {interpreter)

(#1) without mode) with mode)
Append B RO2 Q0 —— —— 2313 7 217
(50040 BIMOO 502 0 BR.7/ SE6D 54,8/ 9160 —_—
elements) D 502 Y 79.0/ 6350 43.0/11700 ———

F 15.8/ 31800 11.9/482200 188 4 2670
Merpe B 202] - -— woeos S 20
(100+100 BD1OGQ 202 O Bz .9/ 4710 28,7/ TO4D B
glements) I 202 0 38,47 5260 23.6/ BRAD —_—

P B.3/24300 B.0/25300 T2.7/0 2TU0
Dounded buffer B 204 0 o —_— 1473 4 138
(gize=1) (%L} ED100Q 204 200 147/ 1390 127/ 1690 —_—

¥ 204 200 143/ 1430 119/ 1710 _—
Bounded buffer B 204 a — ——- 1470 /4 139
(size=10)(®Y) BD10D 200k 20 60.2/ 3390 hT.6/4 B290 ——

D 204 20 E6.3/ 3620 43.3/ 4710 ——
Primes B 2778 Bhus -— — gosz1 4 35
(2 to 300) BDIOO 2778 T3 956 / 2880 TE9 / 3510 -—
(without output) D 2778 o g8e / 3140 689 / kO30 —

F 216 /S12900 188 /14Boo 2969 /4 936
Quickasort B 378 2235 —— ——— 20233 / 19
(50 elemerts) BIMOO 378 0 125 / 3020 06 .5/ 3920 ===

8] 3Té 0 119 /7 3180 §1.3/ 4140 ———

F 21.3/17700 iT.3/21800 245 1540
® E Coneurrent Prolop breadth-Tirst mode;

BD100 = Concurretn Proleog bounded depth-Tirst mode (bound=100);

= Conecurrent Prolog depth-firzt mode;

Prolog-10 compiler {('fastecde' mode) and interpreter.

¥2 In milliseconds. (werkhead for timing has been excluded.

*3 RPFS = number of reductions per second. An KPS value does not count
reductions in puards. FPS values of Prolog programs were caloulated
using the number of reductions of Concurret Prolog programs.

*y A Proleg counterpart does not exist.

o
]

i

PAGE 12

5. BRIEF HISTORY

The version we have explained above is the second version. The first
version concentrazted mainly on optimizing head vnification, and all
scheduling tasks were done hy a scheduler predicate which manages the
gozl gueue. Therefore, the first version can be considered &s & step
frem the original interpreter towards the current version. Although
less efficient, the first version had an advantage that more detailed
trace information can be easily obtained. This reflects the lzet that
the degree of compilation was smaller compared with the current

version.

Before writing the second versien, we made several mock-ups of object
codes for simple programs and tested them., After determining the
object code format, it did not take much effort to complete the

compiler.

In retrospect, our compiler development process seems closely related
to partisl eveluation. We must have had a partial evaluator of Prolog
programs 1n mind. We must have zppiied it to the Shapiro's original
interpreter with respect to some example programs, from which we
lezrned how to complile & Concurrent Prolog program into 2 Froleg
profram and Wwrote & compiler. A little bit slower version of the
conpiler could have been pede from the criginal interpreter

mechanically by partizl evaluation and program transfornation.

& . CONCLUDING REMARKS
We have implemented a fest, portable Concurrent Prolog compiler on top
of Proleg, I & Proleg system is available, one can immediately get
started with parallel logic programming. Parallel prograoming
requires puch trazining and experience, and our syster would help a

lot,

e size of the compiler is less than 200 lines, and the size of the
runtime support is alse less than 300 lines. It took only 2 Few days
to have the first working version, In other methods, it would take
mnuch more offorts to make a system with the same effieiency. Tt is
well known thzt Prolog is a good teol for rapid prototyping of another
logie programming language, but all these facts show that zpn efficient
Prolog implementation is a good tool also for getting an efficient

implementation of another logic progrzmming language repidly.

PAGE 13

REFERENCES
[Bowen 83] Bowen D.L. (ed.), DECsystem-10 PROLOG User's Manual, Dept.
of Artifieial Intellipence, Univ. of Edinburgh, 1983.

[clark and Gregory 84)] Clark, E.L., Gregery, 5., PARLOG: Parallel
Programming in Logic, Research Report DOC BH/4, Dept. of Computing,
Imperial College, Leondon, 1984.

{Shapiro B3] Shapire, E. Y., A& Subset of Concurrent Prolog and Its
Interpreter, ICOT Technical Repocrt TR-003, Institute for New
Generation Computer Technology, 1983.

[Shapire and Takeuchi B3] Shapire, E. and Takeuchi, A., Object
Oriented Programming in Concurrent Frolog, New Generation Computing,
Vol.1, No.1, pp.25=45, 198%,.

[Shapire 84] Shapire E., Systems Programming in Concurrent Proicg,
Conl. Fepord of the 17tk Annual ACM Symp. on Principles of Programming
Lenpuspes, pp.93-10%, 1984,

[Takeuchi and Furukswa 831 Takeuchi, #., Furuokawa K., Interprocess
Communication in Conecurrent Prolog, Proc. Logic Programming Workshop
"8%3, Universidade mova de Lisbez, 1823.

[Warren TT7)] Warren, D.H., Implementing FROLOG--Compiling Predicate
Logie Programs, Vol.i1=2, D.A.I. Resesrch feport Ne.39, Dept. of
Artiriecial Intellipence, Urniversity of Edinburgh, 1977.

