ICOT Technical Report: TR-088

TR-(4E

Recursive Unsolvubility of Determinacy.
Solvable Cases of Determinacy
and their Applications to Prolog Opetimization

Hajime Sawamura and laku Takeshima
(Fujitsu Lid.)

October, 1984

Mita Rekusat Dldg 2IF L 450-2191~ 5

|GDT 1-28 Mita 1-Chome Telex 1G0T 13294

Mimato-ku Tokvo 108 Japan

Estitute for New Generétion Computer Technology



RECURSIVE UNSOLVABILITY OF DETERMINACY, SOLVABLE CASES OF

DETERMINACY AND THEIR APPLICATIONS TO PROLOG OPTIMIZATION

Hujime SAWAMURA

Taku TAKESHIMA

* Internaiicnal Institute feor Advanced Study of Soceizl Infeormaticn

Science {IIAS-8IS), Fujitsu Lid., Wumazu, Shizucka £410-03 JAPAN



Abstractl

The determinsey of a predicate call (goal)] plays very lmportant
roles in optimizing a nondeterministic logic programoing language,
Prolog. By the determinacy of a predicate call, it iz understood that
at most one clause of its defining clauses succeeds when it 1s called,
and it never succeeds again when it is backiracked.

In this paper, first, it is shown that the problem whether for
any predicate it is deterministic or not 1s recursively unsolvable.
Its implications are then examined. Second, the concepts ef a-
determinacy and r-determinaey, as solvable cases of determinacy, are
introduced. These concepts are mutually defined, and thelr properties
are examined. Third, based on these concepts, three applicatlons to
Prolog optimization are described, namely, the inline expansian, the
automatic cut insertion, and the simplification of & seguence of

conjuncts.



1. Introduction

The terms 'determinacy' and 'nondeterminacy' often appear in
diverse branches of computer science such 2s automata and formal
language theory, computation theery, programming lengusges and thelr
semantics and verification, ete., as well as other fields of science.
Although their definitions differ in the respective fields, the
problems that need to decide the determinacy itsell heve been few
except for theoretical interest. In this paper, we deal with the
optimization of programs in Prolog [1] in which the determinacy of a
predicate plays extremecly lmportant roles.

The ﬁandeterministic progreaming languages which enable us to
express the procedures with essentizlly nondeterministic naiure have
been studied by several suthors. Among others, the langusges devised
by Floyd (2], Dijkstra [3], and micro-planner, an artificial
intelligence-oriented programming language [4]) are well-known
nondeterministie ones, in additicn to contemporary Frolog and
Coneurrent Preleg [5]. The programs written in these languages are
nondeterministic in the two main senses : don't care and don't know
[6]. Frolog and micro-planner realize "don't know" characteristic of
nondeterminacy by backtracking, and Concurrent Proleg and Dijkstra's
language of gusrded commends reslize "dan't care" characteristic. The
language by Fleyd can have both characteristics eccording to
interpretations of the nondeterministic consiruct.

This paper is concerned with nondeterminacy by means of
backtracking in Prolog. By the determinacy of a predicate call (geal),
it is understcod that at most cne clause of 1lts dellning clauses
succeeds when it is ecalled, and it never succeeds again when it is

backtracked, With this definition, it is shown that the decision



oroblem for such determinacy is unsolvable. In this connection, tine
decision preblem in the "don't care" sense of nondeterminacy would be
reduced to the undecidability of the validity problem of first-order
logie.

Due to the language character of Prolog, its languapge processing
system tends to require additional time and space overhead for
backtracking, compared with conventional programmig languages. One
promising informaticn for reducing it is to determine whether each
predicate call is deterministically accomplished or not. It is ,
however, impossible in principle to determine it on the account of
the recursive unsclvability of the decision problem mentioned above.
Therefore, we have to seek the concepts of algerithmically decideble
determinacy. As solvable cases of determimacy, two closely related
concepts, a-determinacy and r-determinacy, are introduced. These are
defined without committing to the semantics of a predicate.

Various source-to-scurce optimization technigques for Prelog have
been presented by the authors for the purpose of improving Frolog
programs [7]. In our terminology, optimizing Prolog programs is meant
to improve them in the sense of partial evaluation or symbolic
execution. From the computational complexity peint of wview, this
amounts to reducing the computation steps at the source-level Lo some
extent. Those techniques are different from the unfold/fold
transformation of programs (8, 9]. Based on those techniques a
practical Prolog optimizer, which is not for pure Precleg but for full
set of Prolog, has been implemented [7]. The complicated data/control
flow of Prolog programs often force us to regulre various
preconditiens in the optimization rules of programs. Of these
preconditions, it is the determinacy of predicates, among cthers, that

has been important teo construct the Frolog optimizer. Inm fact, the

- 1 -



determinacy of a predicate allows us to formulate the most efficient
source-io-scurce oplimizetion tochnigques. In this paper, throo
applications of determinacy to Prolog optimization are described : the
inline expansian asg an j,ntl_-er'IJr'r:-t':ed'.;t‘a'! cptimization technigue, the
automatic cut insertileon as an iniraprocedural optimization techpique
and the deletion of multiple cenjuncte in & clause as a local
optimization technigue.

The remainder of the paper consists of five sections. Section £
describes the notationms. Section 3 includes the proof of the recurzive
unsolvapility of determinacy and its consequences. Section L provides
the Lwo sclvable cases of determingcy and their properties. Zection §
includes three applicetions of determinacy to the source-to-source

cptimization of Prolog. Final secticon describes concluding remarks.

2. Botational conventians

We zgyume thatl resders ars fapiliar with iLhe synlax and the
semantics of Prologl1]. Here, we present only the motatiens and
definitions needed to describe the oplimization schemc, which will be
introduced in the succeeding secticns. It should be noted that we use
the distinguished symbols as syntactical variables ranging over the

syntactic domzins of Prolog.

[Rotational conventionsa]
{1} The letters P, H (with or without subscripts) represent
goals{predicate calls) or heads of clauses, which are of the form of
predicate names followed by some arguuwentsz, and Lhe lellers p,g,r

represent predicate names or propositicns.



{2} The boldface letters 5 and T (with or without subseripts]
represent {possibly empty} sequences of goals which are delimited by
commas. If S is an empty sequence, 1t denotes "tTue' predicate. A
boldface letter A (with or without subscripls) represents a nonemply
sequance of terms in Froleg.

(3) The boldface letters P and Q represent vertical rows of
clauses,

(L) If ¢ is a term of Preoleg, then %' is a term obtained by

renaming all the variables in t.

In order to illustrate that & sequence of goals or a clause 1s
trensformed inte an optimized one by using appropriate predicate
definitions if necessary, we use a horizontal line which correspends

to derivability in logic.

[Optimization scheme]
The optimization scheme is a figure of the fora
P
Q
whers P and @ are called an upper sequence and a lower sequence of the

optimization scheme respectively.

3. Recursive unsolvability of determinacy

Undeecidable results, in general, are often derived hy some

suitable coding or ascribing to other undecidable results (1o, 111,

Gur proof, like Russell's paradox, ereates a slmple antinomy in terms



of Prolog programs.

Before going into & proof of the recursive unsolvability of the

Y
i

determinacy, it must be noted that computeble functions are computable

in Horn clause programs [12,13] and hence in Prolog.

Let us intreduce the conceptz of determinacy to be needed in our

433

optimization ftechniques. It is noft a specialized one, tut c¢sn be

generally sccepted for other purposes as well.

Definitien 1. 4 gozl {or called & prediecate call) is
deterministic if when it is called at most one clause of its defining
clauses suceceeds, and when it is bsektrecked it never succeeds again.

Note that with this definftion, & predicate call which does not
terminate at the {irst executicon is deterministic, and & pradicate
call which succeeds &t the first execution but does not terminete on
backtracking is deterministie as well,

Theorem 2. No algorithe exists for declding whether for any
pradicate eall it is deterministic or not.

Proof. Suppose there existas en glgorithm which realiges =
predicate dei: for any predicate call F

det(P) = suscess, if P is deterministie,

tailure, otherwise.

liere, consider the following program:

g - detla).

q.
Far this program,

(1) Suppoue detig) = succesz. Then on bzektracking, a ozll o

succesqas egsin, or elss i1 succeeds in 1te second ciguse, Therefores it
is not deterministic.

{11) Suppose dei{g) = Failure. Then 2 call g succeeds only in its

second ¢lause. Therefors it is deterninistis.



Both cases lead to contradictions. Conseguently such &n algorithm det
does not exist.

Tt should be remarked that:

{1} In the program of the predicate q, if the first clause is changed
inte a eclause 'q :- det{g), !.', the above case (i) does not lead to a
contradiction, however in the proof it has been shown that the
existence hypothesis allows us to make such a curiocus program q that
raises contradictions.

{2) Our argument in the procf can be also applied to the case ihat the
predicate det is written explicitly =23 a Lwo-place predicate such as
det{P, Defs), where Defs is a set of defining clauses to be needed for
deciding the determinacy of a predicate eall P. In the proof we let
the predicate det be a unary predicate, for clarity.

Corollary 3. No algorithm exiets to decide whether for any
predicate call it is nondeterministic or not.

Proof. Obvicusly, the existence of such an alporithm implies that
of an selgorithm deciding determinscy, whiech contradicts Theorem 2.

Corollary 4. Wo algorithm exists which answers the number of the
solutions of any predieste call,

Proof. Such an algorithm turns out to answer the number of the
solutions of 8 deterministic predicate csll as a special case, but it
is inmpossible by Thecrem 2.

Corollary 5. No alpgorithm exists for deciding whether for any
proposition (without any wvariable) 1t is deterministic or not.

Proof. The proof for Thecrem Z can be restated by using 'any
proposition p' instead of ‘'any predicate call F'.

This corellary says that even at the propesiticnal level,
deciding the determinacy of a predieate eall is impoasible in

principle.

-7 -



Theorem 6. Suppose that an algorithm of the following predicate
det# exists: for any terminating predicate call F,
det#(P) = success, if P is delerministic,
failure, otherwise.
Then, there exists a nonterminating predicate call r such that det#(r)
does not terminats.
Proof. Consider the following pr&gram:
r i detf(r).
Ta
4 predicate call terminates or does naet terminate. Suppose the
predicate ¢all r terminates. Then, the sawe contradictions as those in
the procf for Theorem 2 arise. Therefare the predicate ecall r does notb
terminate. This implias that detf(r] does not terminate, secording Lo

the definition of the predicate T.

¥ext, we turn to the unsclvability of the determinacy in "don't
care" sense. In this case, we can ask a guestion whelher or not Loe
selection points in the possible executlon paths of programs can be
uniguely determined. For cxample, it ls not decidable which guarde in
Dijkstra's nondeterministic langusge [3] are true. Obviously, such a
decision problem can be reduced to the undecidability of the validity

problem of first-order logic [14].
4. Solvable cases of determinacy
Due te the negative result of Theorem 2, the concepts of

effectively decidable deterministic goals must be introduced.

We distinguish the following two kinds of concepts of determinacy



which are mutually defined. In the follewing definitlion, we zssume
that the constructs dynamically modifying a program, such as 'agsert',

tretract! ete., do not appear in the program.

[a-determinacy and r—determinacy]

4 predicate call p(A) iz termed a-determinisilic or r-
deterministic if it satisfies the follewing mutually recursive
cenditions.

(i} If pl{A) is a built-in {evaluable) predicate ef Prolog and It is
deterninistic, then p{A) iz a—deterministic and r-deterministic.

{£i) Let the program P ef the predicate p be

H1 1- 51.
Hi - 511, it,] 512" where the eut symbel "!7 is
. rightmost.
H :- 5 Ll
n Tl

Then, for eseh 1 (1<i¢n}, if either {1} or (3) of the following
conditions nolds, then p(A) is a-deterministic, aund if either (2} or
alse (3) holds, then p(A) is r-delerministie:

{1} There is no cut symbol in the body of the i-th clause, it is
the last clause in the program P, and every pgeal of 8., end SiE is a-
detereministic or r-deterministic.

(2) If p(A) is unifisble with H,, then there exist no cui symbols

in the body of the i-th clause, p(A) is not unifiable with any H,
al

{1+1<j<n} and every gecal of 5:1 and Ei“ iz sg-delerministic or r=-



deterministic, otherwise vacuously true.

{3} There exist cut symbols in the bedy of the i-th clause and

every goel of SiE iz a-deterministie or r-deterministic.

The following coraollary can be easily checked.

Corollary 7. L a gozl pl(A} is a-deteministic or r-deterministic,
then it is deterministiec.

The definitions of a-determinacy and r-determinacy have been
provided besed on the three concepts: cut's behavior, deterministic
built-in predicates and unifiability statically determined. In cther
words, they never refer to what types of arguments a predicate takes
when it is called. a-detsrminacy and r-determinecy seem to be less
conplicated and better concepis than other computer-checkable
determinucy in the sense thet they can be deterpined without
committing ta the semantics of a pradicate. Here, by the semantlics of
a predicate we mean to prescribe the domain of terms in which the
predicate sueceads, Preseribing such semanilics [eor 2 predicaie
beforehand would be obviously impossible.

Note that if a goal is a-dctcrministic, it is always
deterministic without depending on its argument form. In other werds,
an a-deterministic gosl is abselutely determiniatie in the sense that
it does not depend on ils arpument form in the geal. Therefare, when a
goal pi{A) is found to be a-deterministic, we sometimes call the
predicate p a-deterspinistic or simply deterpinistic. In contrast to
the absclute determinacy of a-determinacy, an r-deterministic goal is
relatively deterministic since its predicate depends on how it 1s
called. From these observatioms, wes have,

Corollary 8. If 2 goal is a=deterministic, it is aleo r-

deterministic.

- 10 -



Furthermore, from our definition,

Corollary 9. A deterministic predicatle call except buili-in
predicates can not be determined to be a-deterministic if the number
of its defining clauses 1s more than 2 and there exist no cul symbols
in them.

Of course, as easily seen [row the following pregram, the

conditions in thisz ceorollary seem to be too slrong

where no cut occurs in S and T, and every predicete call in S and T is
a- or r-deterministic. Such & syntactical extension could be
incorperated into our definitien with no diffieulty. Rather, we have
preferred the definition of determinacy as general as possible.
Corollary 10. At the propositional level, that is, when Lae
predicate to be examined is a propesiticn, e-determinacy coincides

with r=dcterminacy.

Example 1. The predicate p is a-deterministic.
pla) := write{al), nl, !, write{a2].

p(b) :- write(b).

Example 2. The goel g{l[a,b]) is r-deterministic, but the geal qix)
is not.
gilel) 1= wreite(e), plX).
allaj¥Xl) :- write{a), plX).

where the predicate ecall p{X) calls its defining clauses above.

5. Applications to Prolog optimization



{1) Inline expansion

In genersl, the wain purpose of the inline expansicns is twofold
: to delete subroutine linkage overhead and to increase opportunitics
for local optimizations by providing more global program units for
them.

4 Prolog program has, by nature, several alternaotive clauses for
a prediecate. Due to this nondetermineecy of Prolog, the inline
expansion technigues are more complicated in Proleg than ordinary
pregramming languages. Here, we propose a naturel method for the
inline expansion of Prolog prograps. In this method, & predicate call
is replaced by a disjunction of alternative clauses of its defining
clauses, each preceded by a sequence of equationsl goals which
repregsenis the unifiability ef the ecall with a head of its defining
clauses.,

It is noted, however, that this replacement ls valld only when no
alternative clauses have cuts in their bodies, because ithe cuis
brought inte the original clause usually cause a differsnt control
flow. The next cxample exhibits such a situation.

(a) Before inline expansion:

Pi-qg, a, .

{(b] After inline expansion:



In the program (a), suppose the call ¢ fails. Then, the call a
fmile and the control backiracks %o g. On the other hand, the failure
of the call ¢ in the program (b} causes the call p to fail.

Thus, the existence of cut symbols in the defining clauses has a
serious influence upon the possibilities of the inline expansion. In
what follows, a method of the inline expansion are schematically
introduced, together with the conditions which allow tc expand a call
by its defining clauses including cuts. In this peper, a clause with
no body, say P., is identified with a clause P :- 8., where 5 is
empty, consequently P :- true.

Here, we consider such a case that the determinecy enables us to

expand programs in-line even if defining clauses contain cuts.

[Optimization scheme]

H1 e 51.

pfﬂm] := T . where cuts appear in some clause of the predicate

p-

- 13 -



H, := 8., (p(&) = p(a ), 7,0 5 ... 5 plA) = p(A )T, T '), ...

A e .
plA_) T,
where either of the following conditions is satisfied:
{1) If Lhere exists no cut symbol in SU. than the i-th clause is

iz a-

the last clausa of the program and every predicate call in 311

deterministic or r-deterministic.

(R) If there exist cut symbols in Si then every predicate ezll in

-Il

5., which appears on  the righl hund side of Lhe righlmoslh cul symbel

in 511 is a-deterministic or r-deterministic.

Note that even if cuts appear in the bodies T,'s (1<i<m), the

ad (2]

s

above expansion can hold without the expansion conditions (1)
if the unifiability of the call p(A) with any head o(A,) including
cuts is known Lo fail. However, currently we are not concernsd with

thege sfitusiions for yilmplieity.

_'.Iln""__



Example 3.
r(a,¥,Z) :- !, q(Y), append{a,Y,Z).
rib,¥,2) :- pib}, append{b,¥Y,7}.
append(11,L,L) - 1.

append({[X|L1],L2,[¥|L3]) :- append(Li,L2,L3},1.

r{a,¥,2) := 1, q{Y),append(a,¥,2}.
r{b,¥,2) := p{o), lappend{b,¥,Z) = append{[],_L,_LJ), ! ;
append(b,¥,2) = append([_X| 111, L2, [_X|_L3]},
append( L1, 12, L3),1]).
append([],L,L) :~ I.
append((X]L1],12,(X]L3]) :- append({L1,L2,L3),1!.
where Lhe predicate ecalls gf{la,bl) and pib) call the definig clauses

given in the exanples 1 and 2 respectively.

{2) Automatic insertion of cut symbols

Cuts should be inserted into the place where unnecessary redo can
aceur on backtracking, so that the optimization of nondeterministic
programs based on backtracking can be partly realized. We accemplish

this in the following case.

[Optimization scheme]

H1 HE Si.

- 15 -



Hi == 5 by, &

i i2°

H :=8.
n n
where either of the following conditions is satisfied:

{1) If there exists no cut in 3 then the i-th clause is the

117
last clause of the program and every predicate call in 511 is a=-
deterministic or r-deterministic.

{ii) If there exist cuts in Si1, then no cut opcours in 512 and
every predicate ezll in 511 which appeers on the right hand side of

the rightmost cut symbol in 511 is a=-deterministic or r-deterministic.

Example 4.
rile]l) - writele), !, p(X).
r{lalX]) :- writele), o{X).
rile]} :-= writeie}, !, p{X), !.
r{[2]%]) - writela), p{X), !.
where the predicate call p(X) calls its defining clauses given in the

examnple 1.

- 18 —



(3) 8implificatien of & seguence of goals

In [7], we have presented verious techniques for simplifying a
sequence of goals at the propositicnal level. Most of them are loeal
cimlification rules or deletion strategies, and are often applied to
the resulting clauses after the inline gxpansion as well as are used
individually within a clzuse. Here, we take Lhc optimization scheme :
ndeletion of multiple conjuncts in & clause", in whiech the delerminacy
of a predicate call matters. Any identical predicate call occurring in
= sequence of conjunctive goals is deleted except the leftmost goal,

by the repeated aprlications of the following scheme.

[Optimization scheme]

where the goal P in the lower sequence is 1ts leftmost occurrence and
the following conditions pust be sutisfied:

{11 P iz a-deterministic.

(ii) P is not a predicate call with side effect such as & built-in
input/cutput predicate or & meta predicate, and furthermore it is not
an extra contral predieate such as cut symbel, ' repeat '.

(1iii) 'not' predicate does not oceur in the upper sequence.

The following instance of the optimization scheme is not correct.
Suppose we have the assertichs;
qilal.
gib).

then,

- 17 =



repeat, g{X}, repeat, not{X = a}
repeat, q(X), not(X = a)
In the upper sequence the first success of g(X) with X = a forces to
repeat 'mnot(X = &)' indefinitely, but in the lower seguence the second
success of g{X) with X = b ccopletes the execution.
We heve discussed in [7] varicus other counterexamples of the

optimizatioen scheme, in which the sbove conditions are viclated.

6. Concluding remarks

We have given a simple preef to the recursive unsolvability of
the determinsey. This might be proved in a constructive way such as
coding, although our definition of the determinacy does not seem o be
suitable to such a proof. In fact, it may be proved from the halting
probler of the Turing machine [10] or Post's correspondence probles
[1c] , ete. and also from soms regultes of formel language theory such
gs the theorems on the deterministic language or the esmbiguity of &
language [11].

In his book [6, Chapter 5, p.174], Kowalski writes with no
justification : "™ The situation, however, in which search cen be
restricted because a procedure call computes the value of .a funciion

is undeeidable in prineciple. It is easier for the programmer %o convey

such information to the prograc executer as a comment abcut the
program, than it is for the executor to discover the fact for itself.
" Kowalski seers te found his assertion on the undecidability of the
validity problem 4in first-order logic [14]. His definition of
determinacy is concerned with the functionality of & procedure call.

For example, a relation F{x, y) is deterministic when the variable ¥

- 18 -



is a function of x in the reletion F(x, ¥} and x is given as input
[6, Chapter 5, p. 113). With this definition, the decision preblem of
determinacy can be obviously ascribed to the validity probiem of a
first-order logic formula such as

¥ x, ¥, 2 (Prog -» (Flx, y) & Flx, 2) ->y = =z}l,
where Prog is a set of Horn clauses which speecifies the predicate F.
However, neotice that we have provided a more general definition of
daterminacy for Prelog optimization than that of Kowalski, in the
sense that it is only concerned with the success or failure cof =
predicate call, and with that delinition have considered the decision
problem. Theorem 2 can be thought of as giving a formal justificalion
for his assertion in & more general setting c¢f Proleg. The cut, on the
ground of which we have put the definitions eof the decidable
detarminacy, can be viewed azs a clue of the determinacy detection
given to the program executor.

Nondeterminacy is =aid to be one of the characterizations of
nenprocedural programming [15]. Prolog, a nondeterministiec logiec
programming languapge, is deeply involved in the suppression of
unnecessury detail from the statement of an algorithm. For the purpose
aof optimizing programs, however, we have shown that the detection of
the determinacy pernmits us to improve the Prolog programs ai the
socurce-level. From the point of wview of Frolog programming
nethodolopy, it may turn out to give the programmer s beneficial clue
on the behavior of his program. On the other hand, from the point of
view af implementation issues of computer lanpguages, it would be
useful for an elfficlient compilaticn and an efficient implementation of
or-paralielism as well.

Finally, we note that the type checking in untyped langusges [16]

wey be & promising method for extending our definition of the

- 17 -



determinacy.
Acknowledgements

The authors would like to acknowliedge the continuing guidance and
encsuragement of Dr. Tosio Kitagawa, Llhe president of their instiitute.

The authers alsc would like to express their appreciation to
their collesgues of the institute, T. Yokemori, J. Tanzks, T. Minami,
4. Kato, M. Toda znd H. Kano for discussions and helpful commenis on
garlier versions of the peper.

This work is part of a major R & D prefect of the Fifth
Generation Computer, conducted under preogram seb up by the MITL.

Refercnoes

—=
—

Pereira, F. ed. : CProlog user's manual, Version 1.44, 19835,

2) Floyd, R. : Non-deterministic algorithms, JACM, Vel. 14, No. 4,
pp. 636-644, 1967.

[ 3] Dijkstra, E. W. : & discipline of pfogramming, Frentice-Hall,
1876,

[ 4] Sussman, G. J. : Micro-planner reference manual, MIT Al-Memc
2034, 1971.

[ 5] Shepire, E. ¥. : A subset of concurrent Prolog and its
interpreter, ICOT, TR-002, 1983,

[ &] Kowalski, R. : Logie for problem solving, Worth Holland, 197%.

[ 7] H. Sawamura, T. Takesnina and 4. Kato : Source-level optimization
techniques for Prolog, Research Report (in preparatian],
IIAS-STS, 1984.

[ 8} Burstall, R. M. and Darlingten, J. : & trensformation system
for developing recursive programs, JACM, Vol. 24, Ke. T,
pp- 44-67, 1977.

[ 9] Tamaki, H. and Sato, T. : Unfold/fold transformation eof logle
programs, Proc. of the 2nd Int. Logie Programming Coni., pp. 127-
138, 1984.

[10] Davis, M. ed. : The undecidsble, Raven Press, 1965.

{11]) Hopereft, J. Z. and J. D. Ullman : Formal languages and their
relation to automata, Addison-Wesley, 1969.

[12] Tarnlund, S-A. : Horn cleuse computability, EIT, Vel. 17,
pp. 215=226, 1977.

[13] Sebelik, J. and Stepansk, P. : Horn clsuse programs for
recursive functions, in Clark, K. L. end Tarnlund, S-A. eds @
Logic programming, Academic Press, 1982, pp. 325-340.

[14] Chureh, 4. : A note on the Entscheldungsproblem, The Journal
of Symbelic Logie, Vel. 1, No. 1, pp. 40-47, 1936, and
Carrectien to & note on the Entscheidungspreblem, ibld., Vol.
1, No. 3, pp. 101=102, 1936.

[15] Leavenworth, B. M. : Nonprocedural programming, LNCS, Vel. 23,
Springer, pp. 362-385, 1375,

[16] Ramsay, 4 : Type-checking in an untyped language, Int. J. Man-

Machine Studies, Vel. 20, pp. 157-167, 1924.

- 20 =



