ICOT Technical Report: TR-068

TH-D&EH

FORMAL SPECIFICATION AND VERIFICATION
FOR CONCURRENT SYSTEMS BY TELL
by
Hajime Enomoto, Naoki Yenezaki.
Motoshi Saeki. and Hiroshi Aramata
(Tokyo Institute of Technology)

June, 1984

TNICOT. 1984

Mita Kokusai Bldg 21F {N3) 456-2101 -5

|GOT 4-78 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

FORMAL SPECIFICATION AND VERIFICATION FOR CONCURRENT SYSTEMS BY TELL

Hajime Enomoto, Kaoki Yonezaki, Motoshi Saeki, and Hirushi Aramstas

Department of Computer Scicnce, Tokyo Institute of Technology,
2-12-1 Ookayama, Megurc-ku, Tokye 152, Japan

Formal epecification and verification of comcurrent systems
with leyered architecture by software development system "LELL'
is presented. Tell/NSL is a specification langvage which is a
fragment of English. Using Tell/NSL, we specify the firstc
laver communication protocol, which tranceives bit sequence
synchronized with a clock. This protocel is considered as an
implementation of zervice, whiech iz uszed by the next upper
layer protoecel {(in our case, alternatimg bit protecel).
interface specificztion between them is also described in
Tell/HSE. Specifications are translated inte temporal logical
formulas using semantic rules associated with syntax rules of
Tell/WSL., Furthermore, we show the example of verification
showing that alternating bit protocel Ls implemented by our
first laver protocal.

INTRODUCTION

To wverify various preperties of concurrent systems, which are executed in
parallel, e.g. partial correctness, dead lock freedom, reachability, comsistency,
etc., we must specify not only their input-output relstions but also their
execution sequence formally., 1t is also required that specifications of their
execution sequence are comprehensive for efficient proofs of their properties,

Many researchers have studied specification and verification technique for
concurrent svstems (5)~(10). Finite state machines such a5 state transition
diagram are generally used to specify concurrent systews, but has a several
shortcomings such as state explosion which makes the analvsis of the system
behavior somewhat difficult. or net supperting sufficient techoigues for
hierarchical decomposition of the systems based on abstract level which playes an
importsnt rele on the construction of comprehensive specifications and
verifications of huge svstems (1)~(3).

Usually software systems are designed as series of lavers in the form of
hierarchical support for the resson of facilitv Lo change them and to uvse them for
general purpose. Lavered architecture systems need interface zpecifications
between adjacent lavers, but no specification languages ever developed has abilicy
to support it.

Tell/HEL is a specification language whose semanticsl basis is temporal logie.
Temporal legiec is suitable for formal specification and reasvoing about the
execution sequence of a system {5)~{9), but temperal logic formulas themselves as
specification lsnguage have no hierarchical decompesition nor abstractien
mechanism. Furthermore, temporal legie is not comprehensive except for trained
PECSOnS. In Tell/NSL, hierarchical decomposition ie gupported based on
abstraction by lexicsl decomposition method. In this paper, we focus on the

specification snd verification method of concurrent systems with layered
architecture using Tell/NSL. First, we discuss the specification method of
layered architecture system by Tell/NSL using the exanple of simple communication
protocols. Next section presets formal semantics of Tell/NSL, i.e. temporal
logie. Finally, we show the exasmple of a verification of the system specified by
Tell/NSL. .

SPECIFICATION OF CONCURRENT SYSTEMS WITH LAYERED ARCHITECTURE BY TELL/NSL

Tell/NSL is a specification language based on unambiguous natural language (2
fragment of English). The specification technique based on Tell/NSL is described
in detail im (12),{13). 1In Tell/NSL, specifications are written hierarchically in
the form of defining the meanings of words used in specification sentences. They
are translated into logical formulas by the method based on Montague's (8).
English sentences in specifications are simple declararive sentences, in which
relative pronoun clsuse and negative are also available.

To implement concurrent systems from their specifications, we usually set up
several intermediste layers between abstract specificatioms and concrete
implementations, and then gradually refine the specifications to the
implementations according to discipline of each layer. A system in each layer
provides services to the next upper layer and is supperted by the next lower
layer., 1Im this sense, layered structure is a hiersrchical structure about
implementations of the system, On account of independency among layers, layered
erchitecture prevents propagation of changes when the change is made in specific

part. This is one of reasons why many software systems are designed as a series
of layers.

Communication protocols have layered architecture and their hierarchical
structures have been standardized such as 081 Reference Medel of IS0 (11). AB-
protecol in (10),(13) belongs to the second layer - data link layer in 051 model.
To clarify the concept of layered architecture and its specification technique
veing protecol examples, we will introduce & conceptusl model of communication
systems shown in Fig.l. A protocol machine consists of two virtual terminals
which are communication entities, and a virtual transmissiom line with which the
terminals are connected. On the model, protocel specifications describe
interactions between terminals through the transmission line by specifying
interaction sequences comsisting of r]s &1 Tps 52- Service specifications
specify interactions between users and the protceol machine, S1, Rps 52+ R2s i.e.
input-output actions of the machine (10).

uger User
S1 J{T Ry $2 l Ry
51 i
terminnl HB{ transmission line) - terminal
(transmitter)| r; 89 (receiver)

Fig.l Conceptual model of compunication systems

Thus we coneider such interactions as processes which communicates conmcurrently
with esch other and a transmission line as shared resources used by the
¢onmunication processes.

We show an example of simple protecol, which corresponds to the first layer
protocol, i.e. the next lower layer to AB protocol., and specify it by Tell/HWSL
based on the model in Fig.l. We call it hardware level protocol. Hardware level

protocol and AR protocol is useful to clarify the concept of layered architecture,
The specifications of AR proteocol used in this paper is described in (13).

Hardware level protocel tranceives a bit sequence synchronized with a clock.
Fig.? ghows the block diagram of it., The scenario of transmitting a bit sequence
is as follows. When the line is empty, it is forced to high level 1. Whenever
transmitter transmits a bit seguence, it adds & start bit 0 followed by user's
data bits (rightmost bit first), and stop bit sequence {01111) to the data. This
bit sequence is successively shifted to right and transmitted one by one bit
synchronized with & transmitter clock {Scleock). HReceiver can detect a start bit
by observing whether the line changes high to low. For the purpose of preventing
four consecutive 1's in user data from interfering with receiver's detecting the
stop bit segquence, transmitter stuifs a 0 into it whenever it has continuously
transmitted 1's for three times. When receiver detects a start bit, it start a
receiver clock {Rclock) whose cycle is the same as Sclock’™s. Then it receives one
by ome bit from the line synchronized with Rclock until it detects stop bits. It
ignores stuffed 0's during receiving.

!
|
|
i
1

begin finish begin Einish
transmit Sclock i REclock receive
Send-register Receive-register
Fend stop bits detect stop bitﬂ
terminal terminzl -
put get

(: line L (bit} :)

Fig.2 Bloek diagram of hardware level protocol

Fig.] showe the specification of hardware level protocol using Tell/NSL. 'Send-

register' and "Receive-register' are shift registers of parallel-in-out/serisl-im-
oul ,

The conceptual model shown in Fig.l is a mudel schema im each layer. In the
figure, virtual users in a layer correspond to the terminals in the next upper
layer. 1In the case of protocol, Fig.h shows the relationship between adjacent
layers, N=1th layer and Nth layer. TIn the figure, Nth lime in Nth protocel
machine is implemented by N-1th protoeel machine which belonges to the next lower
layer. 1In the layer model of communication protecols, the operations of a virtusl
transmiseion line are supported by the services of the next lower laver.

When we desigr layered architecture systems, we must specify not only
specifications such as Fig.3 but also interfsces between adjacent layers.
Interface specifieation describes how and which parts of the laver are fupported
by the next lower layer. In Tell/NSL, it is specified by letting sentences in the

upper layer correspond to those in the lower layer which are semantically
equivalent to it,

Fig.5 shows the interface specification between AB protocol as the second laver
and hardware level protocol as the first laver. The first sesntence in the figure
describec that werds associated with "line' in AR protocnl machine are decomposed
into words in hardware level protocel machine, i.e. 'line'! is implemented by

Hardware level prutocel machine

Sl o b=

J
It

15 the system such that

1) There is line L, X
2) There is repister Send-register.
3

There is register Receive-register.

Imitially L is 1. .
Il]itlﬁ%}r it to remeng
Inditi it begins to Cransmit.
In:'u:iall}}: Send ister is cleared.

Imitially Receive-Tegister is cleared
it sequence of bit t means that
L}_mclnck of baud-rate cycles Sclock.

1) Imtiallsy it waits to transmit
until

end-register is not emply.
2) If it waits to transmit
and Send-Tegister is not ampty.
then it generate Sclock.
3) If it finishes generating Sclock,
then it is ready to transmit
until Sclock is send-timing,
4) 1f it is ready to tranomit
and Sclock is send-tiznng .
then it begins to put a starf bit o L
5) If it finishes putting to T and
it is pot continuously transmitting 1
. at_three times and
5-1) Send-register is not enpLy,
then 1t : to serial-output
from =T LELED,
5-2) Send-register is empty, .
then it begins to send stop bits.
6) If it finishes serial-outputting bit b
from Send- stery) .
then it finishes serial-ourpatting bit b
from Send-register
until Sclock 1s send-timing.
7) If it finishes serizl outputting bit b
from Send-regrster o
it i= not contimously transmitting 1
at three times and
Sclock 1s gend-u.mngﬁl
then it begins to put bit b to L.
8) If it finishes putting to L and
it is contipously transmitting 1
at three times, i
then it is resdy to insert bit U
wmtil Seiock ie semd-ciming.
9) If it is ready to insert bit 0
and Seloek is.s&d-tmﬁﬁ.
then it begins to put 0 to L.
10} If it :‘m.ggs_sl sending stop bits,
then it finishes transnltiing.
11) If it F;.m.shgs transmtiing,
then (1t waits to transmit
until Send

in the pext time.

ister is not empty)

It ﬂ!;f birs means that
1) Tnitially 1t is ready te send stop bits
. until Sclock is send-timing.
2) If it is ready to send stop bits and
Selock 1g semd=-timang.
then it begins to put 0 to L.
3) If it is not continuously transmitting 1
at four times and Sclock iz send-Liming,
then it begins to put bit I to L.
4) If it is comtinuously trensmitting 1
at fow times and Sc{oc‘{: 15 send-timing,
then it finishes sending stop bits.
end send stop bits;

Fip.3

It is in iftine L

4L 1 Limes .
1) Tt fimeches putting 1 to L at 1 times
sinee it finizhes putting 0 to L.
end contimously transmtting;

Clock e is sond-timing memns that
1} cis 1.,
end send-timing;
eod Cramamit;

It E?E{xﬁ_squmce of bit t means that
1) There is

clock of haud-rate eycles Relock.
state plomase ;
1) ready te finish [adj].

1) Initially it waits to receive wuntil
a start bit iz got fram L.
2) If it waits to receive
a start bit i= got from L.
then it begins to generate Relock.
3) If it finishes gemerating Rclock,
then it is ready Lo receive
_until Relock 1s receive-Liming.
4) If it is r to receive and
bit b is synchronizingly got from L and
it is mot detecting stop bits
4-1) it is continuously receiving 1
at three times,)
then it stops receiving until '
. Rclock is receive-timing a
4-2) it iz not contimwously receiving
at three times, | |
then it begins to serial-input b
L te Receive-rtegister.
%) If it finishes serial-inputting
to Receive-reglster)
and it is not detecting stop bits,
then it is ready o receive |
~until Relock is recelve-timng.
6) If it stope receiving
and Relock is recerve-fiming. |
then it is ready to recelve wntil
Relock is receive-Llming agaim.
7) If it is detecting stop bits,
then it ie ready to finish wmtil
it is eontlmwously Teceiving 1
at fowr times.
8) If it is ready to fimish and
it is eomtinuewsly receiving 1
at fouwr times. |
then it fimishes recelving.
9) If it finiches recelving,
then (it waits to recelve
until a start bit is got frow L)
in the next time.

It is deteecing stop bits meams that
1) 0 15 synchromzingly got frm L.
{(Rclock is receive-timing
then 1 is got frem LI |
witil Releck is recelve-timing
. at four times)
0 the next Cime.
emd detecting;

Clock ¢ is receive-timing mesas that
1} ede 1o
end rTeceive-timing;

Tt ie conpaguously receiving L at i Limes
mesns that .
1) 1 1s synchronizingly got frvm L
at i times since
.0 is_synchromizingly got from L.
end contimously recelving,

Specification of hardware lewvel protocel

lexicom
1) Bt bis
izinzly pot from line L
= Relock 15 recelve-timing
and b iz pot from L.
end receive;

Line associated with put and got
15 implemented by bit.
construction

1) It pu;ﬁ bit b to line L
= the result of putting b to L
1= a line.

A put b3 /.

1) it begine to put bit b,
then it finjishes putting Wit b
in the next time.

Bit b is gg_;f:;:’_n line I, mesns that

1) b is L.
end pot}

end lins;

Bit 'b ':-:-E a grart bir mevmes that
18 {,
mi start bit;

Clpck of i associated with generate
18 mlmartai by ioteger.

L1t zﬁ.e.,.._l:iz lock
S CloC
e result of geserating

is a clogk
2)1t advances clock

=
1 eneratel1=0 /.,
2% ! gmnngel,xmﬂ[x*ld] /s

5
1) If it begins to gercrate clock,

then |:1t finmishes genezating clock and

it begins to advance clock)
in the nexr time,
2) If it begi.ns to advance clock,
then it finishes advancing clock

:= Lhe result of advancing 15 a clock.

Regigter
aspociated with clear, preset,

parallel-lcad, serial-input,
) and serial-output)
is implevented by sequence of bit

o ractlon
1) It clears register R
= the result of clesring
iz a register.
2) It presets sequence of bit x
Lo Tt‘Etht_‘r B
= the result of presetting x to R
is a register. .
3) It parallel-lpeds sequence of bit x
LI register R

:= the result of parallel-loading from R
is a sequence of bit and a Tegister.

&) It serdal-imuts bit b to ister K
= the res:E‘.-_l of s:—:ra_nl-uﬁttmg b
to B is a rE‘EJ.,StEE.,
5) It seplal-outputs bit b frap register R
1= Lhe result of -‘:E:L‘.LH].’L-“UJ:PJLL:I.HE
from B 15 a bit and a register.

1) 'lie Tesult of clearing
Ls empty s uence.

2% The result of presettmf x to R is n

3) The result of perallel-lcading from R
is B and empty sequence.

&) The result of SE.':.ai-u'plIttJ.ng b to R
1z the mncatenat}un cof b and R,

5) The result of serial-out Eut from B
is the head of R and of R.

1) Ef it begins to clear,

then it fimishes clearing
in the next tipe,
2) If it begins to preset,
then it finishas presetting
in the next time.
3) If it bemins to parallel-lcad.
them it fimishes parallel-loading
in the next time.
4) If it begine to serial-imput,
then 16 finishes serial-inputting
in the next time.

in the next time. 5 I :Lt to serial-output,
1) If it Fm: shes ad\rancmn clock en if fimisnes serigl-outputting
and it doesn't bepin to gererare cloclk, m the next time.
then E:.t bagins to advance clock) umtil end register
it begins to gensrate clock lexicom

in the pext timel. 1) Register r is ty := r iz cleared.

end clock; end hardware level protoco machine
Fig. 3 G&Specification of hardware level protocol (continued)
T] [i 1 ,
N termipal| | N line i N terminal

-1 terminalle— (B+1 user)

| !
(R+1 wser) f¢

Fig.d Belationship between layers

hardware level protocel machinme. The next ltemized scotences express the
semantically equivalent relationship between words in AR pretocol and these in
hardware level protocel. For example, sentence 'l is empty' is semantically
equivalent to "register 1 is cleared', in which words only in the lower layer are
used. Furthermore action definitien 'pass down', which correspends to 'send' in
AB=protocol machine, 1s lexicslly decomposed into "preset' and "transwmit' in
hardware level protocol machine. We consider that the definiticn of "pass down'
corresponds to the implementation of the operation which is represented by 'zend'.
Thisz implementation 1s composed of several modules in the lower layer.

Line in AB-protocol machine is implemented 3} If it | ind ging dovm
by Hardware level protocol machine ' a:'_-d ﬁ Ems esmtﬁi:nénibtgqﬂ .
-eim:n: that then it fimiches passing

) l'J‘LErmPt%re: 1 is cleared, end d 37 e next time.
= ss dowm;
2) It sends message m = "
= it paszes mEesEage M. Ic ;i
3 1t reads message m mﬁﬁi&ﬁ%ﬂ sequence of bit m
;= it passes UD messape o. 1) Initially it waits to pass
4) L is the result of s message m to 12 uncil EEC&ive—rcgistﬂ'p?.s ot empty.
= regmfmgﬁtﬂgu tttée z'eE_ru].t::e:r::rf_12 2) If it waits to pass
5 m to register 12, Recelve-tegister 1s not empty
5) m and 11 is the result of reading frem 12] i)
I remeee ing then it executes passing

g i up
)) meil it waits to Teceive.
is the result of parallel-loodin 3 i 1 i
from emister If g)} If it executes passing up and

i it walts t
6) line := Receiveregister, mmﬁ s ;a:emvu.eq: .

. 4) If it is pase N
It passec down sequence of bit m then itm ;;:gparalltl-lmd
means that . L Recelve-repister,
1) Initially it besins to preset m 5) If it finishes parsllel-loading m
to Send—resister and it is passing down. from Heceive-resister,
2) If it fimishes . then it finishes passing up m.
rresetting to Send-resister, end pass up;
then it ig ready to finish passing down
witil it finishes transmitting. lericm

1) Register r is empty = r is cleared.

Fig.5 Interface specification

TRANSLATION INTC TEMPORAL LOGIC

In this section we explain the mechaniem translating specification sentences into
formulas of modal logic. Translaticn rules are automatically generzted from
definitivns of words used in the specification or associgted with syntax rules of
English, This tranelation method ie based on that of Montague grammar(4).
However, our method has some differences from Montague's as follows.

1} Types of leogical expressiops into which words are translated zre nol uniguely
determind by svotactic categories of the words. Gemerzlly, a type of a legical
expression is decided by a class definition or functicmality of operations
asfociated with & word., Although., svotactic categories of words representing
classes are fixed into one, the logical types of the translated legical terms
varies and the types are specified as type schematas using generic type @ in
the semantic rules,

2) Prepoeitions are introduced cynecategerematically, isn brief they have no
translaticon, but contreol of matching with formal parameters and actual
paromelers.

3) Every sentence in natural language is always trznslated into only ome logical
formula i.e. there is no ambiguity.

operators O, © and pntii. To cur medel of the temporal logic, we use 2 linearly
ordered set of time. Totuitively speaking., O is true, if there ig a time when A
igs true in the furure. ©f ir trve, if A i5 true in the noxt time. A ypbil B is
true, if A is Bruc until B hecowes true. These operslers are translatioens of

The logic we use i= & first order wany sorted tewmporzl leogic with temporal
L

auxiliary verb "will', adverb phrase "in the next time', and connective Tuntilf
respectively, We will use symbol "[I' az an abbreviation for 'O,

4 set of English sentences available in our specifications is very restricted. A
part of their syntactic rules and semantic rules (translation rules into logical
expressions) zre shown in Appendix. If there are more than twe associated
classes, they are bracketted with '[' and '1°, For instance,
<adjective>[y,,,..,a,] Tepresents that the number of the arguments of the defined
word is n and that a class of each argument corresponds to a type aj (1£isn) in
this logic., Fig.6 shows the example tramslation of the third sentence inm the
specification of 'receive' shown inm Fig.? inte a logical formula. It should be
noted that conjugations ip the sentene in Fig.6 have been restored to original
forms. The numbers sesociated with nodes of the tree are rule oumbers - listed
in the appendix.

If it finish generating Sclock, then it be ready to transmit until Sclock be send-timing
finish{;generate-Sclock) + ready(; transmit) wntil send-riming[Selock]

10

If it finish generating Scleck ,then it be ready to transmit mtil Sclock be send-timing

findshi;generate-Selock) ready(;transnit) until send-timing{Sclock]
i / ‘-.,,_‘\
it be ready to tranomit il Sclock be send-timine
A~ _ready(; transmit) | umtil send-timing[Sclock]

/ | T

mtil
meil
I3 “““‘“ a
it be ready to tranamt
hplpli)] hedslp ULy 1)) % ready(; transmit)
15 4 *
it e 4 ¢ to transmat
delpli)] doklpOwlaey)] _ hilready(; transait)]
Es - — 52
it rm’::t{l to transrit
w[x=il | Ak[ready(1)(k)] MMCE(;transpit)]
o0 48 | 124
i
it ready transmit
!i S Melready(i) (k)] | MMLE(jtransmic)]
= E 116 %
it bransuit
i transmit

Fig.b Derivation tree

As to dynamic class definition "register' of hardware level protocol in Fig.3, we
have the following set of translatiems. In Fig.7, it should be noted that index i
iz omitted. State predicates, whiech are the tramslation of state phrases, 'begin'
gnd "finish' represent the execution states of the operations whose name are their
arguments. The 6)}~10) sentences are generated autemsticzlly from & construction
declaration, in such & way that a copstructor name, its argoment list, and dynamie
class name are substituted in & schema of temporal logie. For instance, if a
constructor's functionality is Dynamic class * In-type; = ... % In-typey *
Dynamic class = Qut-type] * .. * Qut-typep, then the schema is of the form ;

jbegin{pp-) A De = xg A jop=-argl = x1 A ... A jop-argn = xg
+00(finish{;gp) A Dc = argl{jop(®gsenaxy))
Ajpp-argn+l = arg2{;op(xgee.sxg))
Avohjop-argn+m = argmljop(xgs.-..xp))]

An instance of the schema for a constructor is generated by replacing underlined
parts of the schema, that is pp is replaced by a constructer name and Do 1s
replaced by & instance name. State predicate 'finish' represents the termination
state of the action and "begin' stands for the state just before the termination.
They are translationsz of verbs "finish! and "begin® respectivelv. If a sentence
in present progressive form appears in the specification. 'begin' does not
correspond to the state just before termination but the present participle of the
verb does. It should be noted that the method tranelating 2 static imput-ocutput
property description inte formulas which express dynamic properties of the
operator 1s properly new ideo and it provides minimality of epecification.

Tegister) 9) begin(serial-input }Aserial-input=arg=b
1) empty-sequencelclear[R]] Aregistersr
2} preset[x,R]=x -+ o finieh{serial-input)
3) parallel-loed[R}=<R,empty-sequence> rrepister=serial-inpux[b,r])
&) serial-input[b,8J=comcat[b,R 10) begin{serial-output)JAregister=r
5) serial-output[R]=<ead{R].taillR]> = O fimdishiserial-ourput)
6) begin(clear)srepister=r Agerizl-output-arg=argl{serizl-outwue[r]]
-+ Cfinish{clear) Aregister=clear[r]) trep st er=arg?[seri al=oucput [r])
7) begin(preset}Apreset-arp=xrregister=r timing
+ O(([inish{presat) Aregisterspreset{x,r]) 1) bazin{clear) -+ Ofinish{clear)
&) begin{parallel-load)iregister=r 2) begin{preset) + Cfimish(presst)
<+ C{ finish{parallel-load) 3} bepin{paralliel-load) + Ofinish{parallel-load)
#parallel-load-org=arg L[parallel-losd{r]] 4) begin(serizl-irput) -+ Ofinish(serial-input)
Aregister=arg?| parallel-load[r]]} 5} begin{serial-output)} + Cfinish(serial-output)

Fig.7 Translation of register in hardware level protocol

We will introduce additional temporal advebs and conjumctives. They are very
useful to write complex specifications in simple and comprehensive matural
language sentences, Their meanings are provided by macre temporsl operators or
functions, which are defiped in the recursive form as follows.

[until-i3

A until-; B = A until B

A& until=j5q B = 4 until ((BA~CEIAC(A until=; 3)) where izl
[times]

{(~aropaa0R) + Oftimes[A.B]=10

(~AraA~0B) » O{Limes[&,3]=0)

{~BACB) + (times{A,B)l=x+—C{rimes[a,B)=x+1)

~08 - (timeslA,B]=x—0{cimesid.Bl=x)}

(BaoE) + (times[&,Bl=a+0(tines[A,B]=x))

Temporal operzters "until-i' and function 'times" provide formal semantics for
phraze 'uptil.,,at i times! and =t i times cince' vsed in Fig.3 respectively.
Intuitively speaking, A until-; B is true if A holds true until B becomes at i
times, ano times 4,B7 examines how many times B becomes true from & time when A

became true most recently.

Fig.B, Fig.9 and Fig.l0 shows the translations of "line’ in AB protocol, of
'receive' in hardware level protocol, and of interface specification respectively.
The translations of dynamic class definitioms, e.p. "line', 'clock' and 'regiscer'
in Fig.? and Fig.B are described as schemas and their actual translations are
generated from the schemas for each instance of the classes, e.g. for line RSL,
formula "sending-R5LAsend-RSL-arg=asRSL=q + O{finish{send-RSL)ARSL=send[a,q])!
are generated from schema 2) in Fig.s.

(1) read[send(m,1]] = <m,empty-line> ¥ Etai] begpflfftraﬂ.d}

(2} zmderﬂ:gmgrﬁrlm A linesq (s) + Wﬂ-i{til%‘grﬁad} wuntil lineFempty-line
send-arp=a - waitine{road) A line™an Line < T,
+ o{finish{send) 4 line=send[a.ql) e ineFampty-line -+ receiving

(3} ing AL E?}J begin{send) —&s i

T]n&-q' Ekk : - P A - i

WEmisMrmdj A linesarg2[readq]] ending finizhisend) A linedempty-line)
A read-argearglireadlq]l)

Fig.®8 Translation of line in AR protocol

Teceive
1} begin{receive) 8) reacy-finish(receive)
+ wait(receive) A contimuous ly-receivelit/h]

uwntil Jxefeot[Lx] A startbic[x]]

2} wait(receive) A goclL.bl A scart=bit{b]

-+ begin(generate-Rclock)
3) finish{generate=Relock))

- £inish{receive)}
9} f:i.nish'[:e::eivegl
+ O{wait{receive)

wneil 3xleotlL.x] Astartbit{x]])

-+ ready({receive) umntil m:eive-tim_ﬁEgclock]
4) ready{receive) A synchronmizingly-got{l.bl detecting-stop-bits

A ~detecting-stop-bits + 1) synchrenizingly-got[L,0]
4-1) contimouslyreceive[it.3] 2) o receive-timing[rclockgot[Ls11)

-+ stnp{reoer.re]l wiril s receive-timing Eﬂclndd
umtil 4 receive-timing[Relock]
4=2) ~ontinuouslyreceivelit,3] receive-timingle]
-+ besin{serial-input-Receive-register) 1) =1

A serial-input-Receive args
5) fimish{serisl-input-Receive-register)
A ~detecting-stop-bits
+ ready{receive) until receive-timing[Relock]
6) stop{receive) A recelve-timirg[Relock]
= regdy(receive) lescieon
wtil 5 receive-timing(Relock] 1) synchrinizingly-got(L.b] .
7) detecting-stop=bits <« receive-timing[Relock] A got[L,b]
= ready={ind shi receive)
wntil eontimeonssly-receive[it o]

continuously-receivelit i)

1) times{synchronizirgly—got[L.1],
synehronizingly—got [L,0]]=1

Fig.9 Tranelation of receive in hardware level protocol

VERIFICATIOR --- PROTOCOL EXAMPLE

As specificstions written in Tell/NSL are translated intc temporal legical
formulas called axioms of specifications, we can reason gboul dynamic properties
of system and verify the leogical correctness on the basis of axiomatic system. A4s
mentioned in (1G), dynamic properties of interest can be classified inrto
invariance (safety), eventualitry (liveness), and precedence properties (until) and
systematic proving methode 2re established (%) We can describe such propertiec
using Tell/NSL in the sacze wanrner as the system specifications. As a result,
comprehensive descriptions ace provided., For example,
1) If transmitter begins to Lransmit message m,
ther transmitter is not sending the message different from m

until receiver [inishes receiving m.

is one of AR protoeel's precedence properties written in Tell/NSL, and save that

Interface Qass

_ up
transformation schema 1} begin{pase=-up)
1} (l=apty-line) := (l=clear[]) + wait(pass—up)
2-1) p(send) := 9(p&ss-dmrn} until ~empty[Receive-register]
2-2} (send-arg=m} = (pass—dowmarg=m)) wait(pass—up; A ~empty[Receive-regicter]
3=1) plread) := g[pasa-up] -+ execute(pass—up) witil wait(receive)
3-2) read-ar%;m = (pass—up-arg=m) 3) execute{pass—up) A wait{receive)
4) (N=sendlm,12]) := + passing—up
{11=preset[m,12]} 4} passing-up
50 («am,ll>=read[17]) := -+ begin(parallel-load-Receive-register)
. {an, 113eparallel-1ozd[12]) 5) finish(parallel-load-Receive-register)
£) line := Receive-register 4 parallel-load-Receive-register—arg=n
= finish({pase-up) A pass—up-argem
pass dowm lexdeon
1) begin(pass—down) Apase-dovm-arz=m 1) empty[r] =+ clear[J=r
=+ begin(preser-Send-rerister)
& preset-Send-register-arp=m
A passing-dowvm

2) finish(preset-Send-register)
-+ ready-finish{pass—down)
witil finishitransmit)
3} resdy—finish({pass~down) 4 finish(rranswit)
+ ofinish{pass-down)

Fig.10 Translation of interface specification

the protocol does not change order of transmission data. We can verify them
directly using the proving method, but in this paper we do not touch vpon the
proof of these kinds of the properties on account of limited space.

In the ease of layered system, we need verify not ooly dynawmie properties of a
svetem in a layer but also properties between adjacent layers. The verification
of properties between layers is a kind of implementation verification, i.e. to
verify whether operations in the layer are completely supported by the next lower
layer. The step of implementation verification for layered system using Tell/NSL
iz as follows.
1) Translate a target specification sentence of the supported layer imto s logical
formula. Let the logical formula be A.
2) Transforwm fermwuls A to formuls A' which is a description of the next lower
laver using the interface specifieation, Tranformation operator ' are defined by
i) e'= A where ¢ is 8 ceonstant and c:®A appears im a2 set of tranmslations of the
interface specification.
ii) x'= x where % is a variable. The type of left-hand side x may be differemnt
from that of right-hand side,
i1d) (f{tysenertg))® = FlL]"sesertpy') where f and F are functiom symbols or
predicate ones and f{xl,...,xn}:ﬂ-‘(xl.....x“} eppears in a set of transla:im?s
of the interface specification. We think that predicate symbols containm
equality symbol =.
iv) (AVB)}' = A' v B' , (~A)" =~ A" . (vzA)' = wx'A!
v) (Qa)' = QoaA', (oa)' =90 A', (4 until B}' = A" until B!
1) $how that formula Init + A' is derivable frem the next lower layer
epecification, where Init is 2 initial condition in the lower layer.

We prove thet a few formulas in the 'line’ specification in AB protocol in Fig.8
ie derived from the specifi:atiqn of hardware level 1_.‘JI-Dl‘.I:IC¢1 machine.
lexemple 17 : formula 3}

readinghiline=q =+ o3{finish(read)aline=arg?readlgqllrread-arg=argllreadql]

Lea(1)

it savs the correctness of receive operations. Interface section in Fig.lO0
describes that formulas 'reading', '"finish{receive)', and 'line' in AB protocol
correspond te formula 'passing-up's to 'finish(passing-up)' snd to Receive-
register in hsrdware level protocol respectively, Thus formula (1) is transformed
Ed

pessing-upAReceive-registersq + OQ{{inish{pass-up)a
Receive-registersarg2[parallel-loadlqls
pass-up-arg=argliparallel-loadlql]) eea(2)
We show formela Init =+ 0(2) iz derivable from the specification of hardware
protocol in Fig.7 and %, and of the interface specification in Fig.l0. 5Steps of
procf are as follows.
rbegin{parallel-load-Receive-register JAReceive-register=r
+ o0{finish{parallel-load-Receive-register A
parallel-load-Receive-register—arg=argl{parallel-load[r]]s
Receive-register=arg2[parallel-loadlc]]) eeal(3)
t from the instatntiation of register 8) in Fig.7 by Receive-register
rpaseing~uprfeceive-registersr + O{{finishi{parzllel-lpad-Receive-register)a
perallel-load-Receive-tegister-argrargllparallel=load[r]]a
Receive-register=argilparallel-load[rl]) eeald)
from 3], pass-up &) in Fig.l0, and FAAB=C and +D=+A implies FDAB=C
(2] t from (4), pass-up 3}, and ¥A~+B and FC=O0A implies HC+OOB ...(5)
FInit » 0(2) : from (5}, +A implies (A, and ~B implies +C-=F
[example 21 : formula 1)
receivelsend[m,1]]=<m,empty-line>*vsend[m,1]=empty-line .l (1)
Formula (1)} iz equivalent to
(x=gzend[m,1]ay=empty-line + receivelxi=«m,y>) v
w=send{m, 1 JAvsempty=1line =+ w=u) eeal2)
(2} is transformed inte
(x=preset[m,1]lav=clear[] + parallel-lcad[x]=<m,y>) v
w=preset{m,1]ru=clear[] + w=u)
and then simplified to

(parallei-load[presetlm,1]1=<m,clear[I>vpresetm,ll=clear[] eeal 3}
=parallel-lead[preset[m,1]]=<presec[m,1], clear[]> eealde)
from register 1}, 3), and =A(x) implies HA(t) for any term t
rperallel-lead[preset(m,1]]l=<m, clear(]> eaal5)
from register 2) and (5)
2]
= Init = (2}
Lexample 3] : formula 3) wait{read)}slinefempty-line + {reading waslll
Formula (1) is transformed into
wait({pass-up)AReceive-registerfclear[] » {passing-up ess(2)
Fwait{pass-up)AReceive-registerfelear[] + execute{pass-uvpliwait(receive))
from pass=up 3) and =4 until B -+ O{AAR) aeal2)
=(2) : from pass=up 4), and =A=CE and ~BOC implies HACC wealdt)

= Init -+ [J(2)

CONCLITSTON

We have intreoduced specification technique for comcurrent systems having layered
architecture by Tell/NSL and verified that AB protocol ig supported by hardware
level protoeccl., Tell/NSL provides a naturzl way of module design, readability and
capability of sementie2]l processing by machine. Our examples of verifications are
b¥ manual. We are developing @ semi-mechanical, il.e. interactive verifier.

In Tell/NSL, specifications which describes detail actions in the system, e.g.
protocel specification, leoks like procedural programs. We ate studving about
synthesis of progrems from the specifications of comcurrent system described in
Tell/NSL. This is also one major directiom of future research.

[Acknowledgement]

We would like to thank Dr, A, FEurematsv, Dr. Y. Urano, Mr. E. Chiba, Mr. T.
Takizuka of KDD Reasearch and Development Laborateries amd Dr. T. Yekei of
Iopstitute for New Generaticon Computer Technology for insightful comments and
nuserous discussions. Many colleagues at TELL project provided helpful comments
on various versions of this paper, including Y. Shinoda.

[References]

(1) Parnas,D.L. : On the Criteria to Be Used in Decomposing Systems into Modules,
Compmun., ACM, 15, 12 (Dec.l972) pp.l053-10358,

(2) Liskov,B.H. and Zilles,S.N, : Specification Techeniques for Data Abstractions,
TEEE S5E-1, 1, (Mar. 1973) pp.7-185.

{3) Guttag,J.V., Horowitz,E., and Musser,D.R. : Abstract Data Types and Software
Validation, Commun.ACM, Vol.21, Wo.l2 (1%78) pp.l0&48-1064,

{4) Montague,R. : The Proper Treatment of Qualification in Ordinary English,
Approaches to Ratural Language, Reidel Dordrecht (1973).

{5) Hailperu,B. : Verifving Concurrent Processes Using Temporal Logic. Technical
Report 195. Computer Systems Laberatory, Stanford University. (Aug. 1980).

{#) Schwartz,RL. and Melliar-Smith,P.M. : From State Machines to Temporal Logic !
Epecification Methods for Protocol Standards, IEEE Transaction on Communications,
30, 12 (1982} pp.24BA~24496

{7) Lamport,.L : Proving the Correctness of Multiprocess Programs, IEEE
Transaction on Scftware Engineerinmg 3, 2 (1977) pp.l25~143.

(8) Marna,Z. and Pnueli,f. i Verifications of concurrent programs : The Temporal
framework, Correctness Problem in Computer Science, Academic Press (1981),
pp.215-273

(%) Yonezaki,¥, and Katayama,T. ! Functional Specification of Synchronized
Processas Based on Modal Logic, Proec. of 6th ICSE (Sept. 1982) pp.208-217.

{10) Sunshine,C.A. et al. : Specification and Verification of Communication
Protocels in AFFIRM Using State Trensition Models, IEEE Transaction on Software
Engineering 8, 5 (1982) ppA6h0~4B9

(11} Zipmermano,H. : 051 Reference Model = The IS0 Model of Architecture for Open
Systems Interconnection, 1EEE Transaction on Communication 28 (1980) pp.425~432
(12) Enomoto,B. et al, : Paradigms of Knowledge Dased Software System and Its
Service Image, Economics and Technology of Softwere Engineering - 3rd Seminar for
Technology of Software, 1983

{13) Enomoto,B. et al. : Natural Language Based Scoftware Development System TELL,
ECAI-B&, 19B4

APPENDIR : a part of syotax rules and semantic rules of sentences in Tell/WSL

Fach rule is described in the following form,
arr= Br(Ey) BalEp) ... By(Eg) ~--- syntax rile
E ---- semantic rule
A is 2 won-terminal symbol and Bj iz a non-terminal symbol or a terminal symbol.
Fi is a trewslation of Bj. E, which is a translation , is 2 meaningful expression
in which Bj's appear. {B] represents that B is ommissible.

<centemee>::={<for head>o(2)} {<reserved adverb> (Y)} <temn>y(P) be—verbz,(W) { mot (=)}
<camplement >,(Q) { in the next time (©}} :1
{Z} YR et~} p(w(Q))))
{<for head>(2)} {<reserved adverb> (Y)} there %e verb,(W) { mot (~}}
<temm>,(P) { in the next time (©)} | 22
{2l {eli~} &WPX=x)IN
{<fur headsy(2)} {<cesexved adverb> (Y)} <temm>y(P) will { mot (~)]
“be—verbs, (W) <camplement>,{() {in the nesxt time (0)} | 4
{ZH YK e~} r(wq))))
{<for hend>,(2)} {<reserved adverhb> (Y)} <term>.(F) {do mot {~)}
<general verb phrase>,(F) {in the next time (0} | t5
{Z}(ei({e? {~p(F)))
{<for headzo{Z)} {<reserved adverb> (Y)} <term>y (P} will { oot ()]

<general verb phrases (F) {in the rext time (0)} | h
fZH T o H~Kp(F)))
<sentence (M) @omectiver{0) <centecnes(L) 19
MCL

if <cemrencax(M) , then <spnrence>(L) 110

«for head>::= for every <proper noun pl-:rase"l?ﬂ('ﬂlh----ﬁprﬂpef Ao PMH:'E{GH}'
{<relative mowm clausey(Ge1il |

112

};nﬁme"l.....wme'n[Gifme'1)!\...!Guime'n}{ﬂmlirme‘llh...rﬁn.}];[me'nll} +m]

far same <Troper rown phrese=125(G))a....Proper noun phrase-nZy(Gyls
{erelative noun claused(Grep)!

}m-'_:lmue*l.....hwe*u[ﬁl(nme‘l}h...d‘ml:name'n}{ffsmlime‘1}A-..ﬂ61,...1{nme'n}¥ A m]

where name; is in <proper noun phrase=iz. See rule B4 and 50.
<CeTm>, : Sroper clausery(F) |
e [F(x)m(x)]
<detemminars, ([) <common moun clauses,(FJ|
D(F)
<cormon novn clauses,(F) ~plural |
WFIsvxlelament (x, SH=F(x)Af(x)]
enliral determinar>,(D) <comon nown clauses,(F) —plural |
D{F)
<term>,(P) <coordinate comnective>(C) <tem>(P')
WFOFCEY © PPOEN]
<eTmiig s i=<interminar?>y (D) <common nown clause,(F)
DF)
<e verboyii=be |
rehelpOuleyll]
<cemplement 3, : 1=<ad jective phrase>y(F]|
heiE(x)ng(x)]
ey (P)
E
<adjective PRrase™[a,,. . a:_1 it ee.sl, i -301ECEIVE iy, 05 1,834 pess |
1..ﬁiéfﬁiil..maadjective'(x;]l..ﬂxi_i:l%xi.il .-[Ht;ﬂ
<adiective phrase(y,,,.., E{IJ'} <preposition;.;> <tem>y. (P;l
Bt w e hiio it e i g L0y D e (g) o o O 3P Oy Ly 30
<adjective phrased(q, , ., 3(UJ spreposition;-1> el (Pl
MY+ hE =] 1 hh%ufﬂ x1) e (x50 oL 28 Oy [y vy 301
<zdjective plu-useb-[m‘_"u_l_hmﬂ____an]{ﬂi} <coordinpte commective®(C)
<adjective phraser[y

PR 3]{qjl
WL« W - W 4] --}-)tnl:ui{xl}..(lxi-ﬁﬁxéﬁf.]f:h} GRTLIFTD NN eI B ESFED PN EAN

<sdicctive phrase>fy, .. .o J(U) reposition;)> «verbal phrases, (P{)
st

WL =] W Vgl JaP Oy [y=%; 1) where 122, o721
eperbal phraserg(F) - ing
F
<comon Toun PhTESeqy, . .05 1 s0i+]seerly]t T TENdRd COTOR DU, RETEREC TR g Ol

Ui

cadjoctive phrasax, (F)) <common noun PATESe e, , 00 {:@i1]sees]{EIH

:\Ij.--#i—l}kxi-i-';-:EkanUi['&l}-J:Ki__]_:'(xi-l-l:'--{%‘ﬂ}ﬂrltxiiﬁl‘r] o
<coomon tow Praselay ., .0, 100} <preposition;.)> <tem? ;)

Ik?il..}ﬁi-lbtiq-l:gx“;‘xq_fﬂiklg.S(xi}..txnlwi{h'i&iﬁ?ﬁ o1
camon roun phrases(y. .o W) Gpreposition;-)> <Termlzy (F])

pETR T) S .&:ﬁ%jﬂi{l]%gi) oolxy o (o JAPL (hlhit?lﬂ?ﬂli:xi])]

<comun pown clasedy) o]¢ = <00 OW pl":ase:-hl__"_un]['ll}l
u

<comen nown phrasedy, o Y(U) <relative provown clausese;(F;)
}pﬁl.._h?nEU(xlg...fxl:‘?ﬂFi{xi]:l where i=1, ool
crelative pronoun clause®y is ommifted. Subjective case and objective case
ere mvailable, but modified words are restricted to the words which ocour
just on the left of relative prooowns.
<PTORED DO ;! i ndbey
temie "y
“proper mowm clauser,i=<proper nouwn phrasesy(F) |
F

<praper nown phirasex,(F) <relative pronown clausey(G)
Waelpix) A olx)]
roper TOun phrasedy:i=droper nouniy(X) |
\x{x=R]

13

:15
116
7
:18
119
12
224

1%

4%

He 1

1

152
3
1%
HT
e

60

Ho%

186
187

He

<roper noun®y(X) <adjecive phrase>[y)(F) |
bee=X A Flx)]

<common powun phrase®, (F) <proper mowm>,(X)
el A Flx)]

“eterminar>;::= a (the) |
Mgl flxlng(x)]
every |
el F i) (x)]

o
WSl r{x)re(x)]

<determinarl>;:i= any other
M Ab Ty gvnd (vib{x}(y)] (positive)
MW TsFy ey AL ()b (x)y} (negative)

<pliral determinar>;::= aumber>; ;oo (H) |

Mg delwelelanent (x, S+ (%) Ag(x) JAumber (=4]

ammber>; 1 oo or(N) of

Mg 3503T] vxlelement (x, TH+£(x) JAsubset (S, T) 1A
wxlelement (%,8) <= g{x)] A mmber(S)=y]

sone of

Mg ds[3T0 vkl elarent (x, T £ (x) Jsubsec(5,T) A

wr[elamert (x,8) ++ g{x)] A mumber{5}=0]

<general verb phrase’yi:=verdb <verbal phrase>, (A)
Sae[a{a d(verht)]

<vexb phrasev,:i=vert |
WAELECverb)]
verb <tem>, (Py) |
}\x‘;.prl:xvef% }Wlihlfxve:b' agl=x)]}]
<verb phrase,(4) Trepnﬂur:m -1> <Tem>,, (Py)
prasarigalenlhh },xuverb'-argl—x,_]}:r

wverbel phrasesg::=<verb phrase>, (A)-infimitive |
A
<yerb phrase», (A)-ing
A

<comective>::= <coordinate cormective> (C) |
C
wntil |
untll

<oordinate commective>::= mawd |

I
ar
k)
“reserved sdverbrii= imtially |
Yol Init'-+ m]

Tvpes of the variables and meta—variables in the above rules are as follows.

Ka¥2 @ 4 Z5 Q) » Xia¥i5 @5 » FafyGuGiaft @ t> 4 PP P08 <1 > t>

91

(110

s114

(116
117

1119

A

125

o Mym,lal: £, N: integer ,
Teli <L L> 4 Wi <<aix £ £ < 3% Ui,U;_: S R L S R S e L - TR R S

AL <o o< £33, Pyl oDy tP oL, Ul o BaHD o tP . LEWRTD <o o bR o bR, KGED w b,

0,0%: <@y < £> La>» , Vi «agy <q £> t> qu <@y £23> , 51 @ <@ t> £>> , 5,T: eer of a ,
C:o < g™, Por 4wt t>, Br <oy t>>, B <% <@ €3 -y tRe, D <t <y > 13,

Fivosmg t>, br <o <z o2, I <4 £> <40 B> £33

