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Efficient Stream/Array Processing
in Logie Programming Language

by
Kazunori Ueda
{C&C Bystems Research Laborateries, NEC Corporation)
and
Takashi Chikayama
{Institute for New Generation Computer Techneclogy)

ARSTRACT
The Concurrent Prolog predicate for merging n input streams is
investigated, and a compilation technique for getting its efficient
oode is presented. Using the technique, messages are transferred
with the delay independent of n. Furthermere, it is shown that the
addition and the removal of an input stream can be done in an average
time of 0{1). The predicate for distributing messages on an input
stream to n output streams can alsoc be realized as efficiently as
n-ary merge. Mutable arrays that allow constant=-time aceessing and
updating are realizable by the =ame implementation technique zs that
for distribute processes, Although the efficiency stated above could
be achieved by a sophisticated compiler, the codes should be provided
directly by the system to get rid of the bulk of source programs and
the time required to compile them.

1. INTRODUCTION

In attempting to describe a large-scale distributed system in a parallel
logie programming language such as Concurrent Proleg [Shapire 83-1], the
performance of the system will be influenced significantly by whether or not
streams as interprocess communication channels can be merged and distributed
efficiently. This paper deals with techniques for efficiently implementing
predicates which merge many input streams and those which distribute data
on a single input stream into multiple output streams.

This paper focuses on implementation techniques on conventional seguential
computers. Of course, in order te demonstrate the practicality and viability
of Concurrent Prolog on parallel computers, it is inadeguate to limit the
diseussion to sequential computers. However, even after parallelism is
implemented, it would be very likely for each processcr tc deal with multiple
processes, In that event, the technigues presented here would be directly

applicable to communication within one processcr.
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1.1, The Importance of Streams in Concurrent Prolog

Parallelism or corcutining in Concurrent Prolog can be realized by
expressing individual processes via predicates which are executed in
AND-parallel, and by enabling interprocess communication through shared
variables, In the casze, the shared variables express sequences of data or
messages flowing among (usually two) predicates, and are normally represented
a3 lists., As program execution proceeds, the values of the lists are gradually
instantiated to the end. On the other hand, & predicete is the speecifiecation
of {the relationship between) values that the shared variable as its arguments
can take; procedurally, it can be regarded as a process which processes the
sequences of data represented by shared variables from the top down (often
through tail recursion). We use the term "stream™ te refer to shared variables
which are utilized in this manner.

Noete that "process" and "stream™ are pragmatice concepts of Concurrent
Prolog, and are not grammatical concepts,

As is olear from the above explanation, communication with other processes
is accomplished not by specifying the names of the processes, but by
instantiating (in the ca=ze of sending) or by checking (in the case of
receiving) the streams which have already been laid beiween processes.
Therefore, the efficiency of stream operations--sending, receiving, merging,

and distributing--are of cruecizl importance.

1.2, The N F 1 Multi - “ . i Di . .
The merging and distribution of streams is unnecessary when several
processes are linearly connected by shared variables to perform pipeline
processing,  However, if there is a process that needs to receive data or
messepes [rom many other processes--=e.pg, & process that manage shared

resources--it is necessary to put the merging process at the front-end:

i pl(chl UE{CE]| LI | P."}{Cﬂ}.
merge(C, C1, €2, ..., Cn}, shared resource(C).

In order to accept messages from an indefinite number of processes, it
must also be possible to dynamically vary the number of input streams to be
merged. In other words, if a process needs to communicate with shared
processes, it iz necessary to issue a request to the front-end merging process
(by using other input streams or a 'request' stream}, and to set up a new input
stream, &n alternative method teo lay a new stream would be to attach a2 binary

merge to ope of the current input streams, but a delay proportional to the
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number of communicating processes will arise if this method iz repeatedly used.

As for message distribution, if it is done as "broadcasting®, then each
process need only share the broadeast stream. However, if it is necessary to
communicate with a particular process but no stream exists leading directly teo
the proceszs, communication must be enabled via the manager process of the
destination process. The manager process must appropriately distribute
messages according to the destinations attached to the messages.

Again, it is necessary toc consider methods for dynamiezlly varying the

number of processes to be managed.

evig esearch
Shapiro et al. in [Shapiro 84] deals with the problem of merging
indefinite multiple streams (henceforth the mumber of input streams will be

dencoted by n). They demonstrated

(1) A Method to ensure n-bounded waiting and a maximum delay of O(n) using an
unbalanced tree consisting of binary mergers.
(2) A method to ensure n-bounded waiting and a maximum delay of 0{log n) using

a #=3 tree [Aho TU] consisting of binary and ternary mergers,

The term "n-hounded waiting™ was defined by them to mean that any message
arriving at the merging process will be overtaken by no more than n input
messages from otheér streams.

The delay of O(n) in Methed (1) ahove is probably unaoeceptable when n is
large encugh and the traffic is heavy. This method may be practical, however,
in the case of essentially costly communication such &3 interprocess
copEunication in multi-processor environments.

Method (2) is a major improvement over (1) in terms of delay. In
procedural languages, however, the delay of interprocess communication does not
depend on the number of =senders as leng as 1t is simulated on a sequential
computer. Therefore, alsc in logie programming languages, it is desirable to
achieve a delay of the same order.

Gelernter in [CGelernter BY4) discusses the suitability of Concurrent Prolog
for describing multi-process systems. In his paper, he concludes that
interprocess communication using merge networks are "not only bulky but unduly
constricting®™. It should be neted, however, that this eriticism is not from

the viewpeint of deseriptive power or efficiency.

. OBJECTIVES
We heve the following two cbjectives,
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{1) Wnen the number of input streams n is fixed, Lo realize on a sequential
computer an n-ary merge with a maximum delay of 0(1), and to realize an
n-ary distributor with a maximum delay of 0(1}.

(2) To extend the solution to (1) to the case n varies dynamically.

In order to accomplish (1), it is clear that a successful result will not
be obtained through the combination of binmary and/er ternary merges. In other

words, we must base the solution on n-ary merge as follows:

merge([Xi¥s], X1, ..., Xj=1, [X1X3), Xj+1, --uy ¥n)
= IZIEFEE{YS, x1-|. - E o § x,j-'l, }:j?y xj+1| LI | xl‘l-]'-

If this predicate 1s executed by an interpreter, the time required to
process one message is proportionzl to the size of each clause {=0(n)}, and is
even less efficient than the balanced-tree method. This predicate, however,
promises te yield higher efficiency if it is compiled, as will be discussed in
3.1. Thus, compiling technigques will be the main topie in this paper.

When utilizing n-ary merges, we cannot define "delay" as the depth of a
merge tree. We will define the word "delay" as follows:

¢ The time passed from the arrival of a message at the merging process in an
input-wait state until the original wait-state is restored by tail-
recursion, during which an appropriate clause for processing the message is
selected and the message is transferred to output streams, The delay i=
calculated by the number of primitive operations which can be accomplished

in & unit time en 2 sequential computer.
stpream distribution will be dealt with in & manner similar 1o merge.

2,1, Outlige of Seguential Implementation of Concurrent Frolog

Examples of Concurrent Prolog implementation on a sequential computer
inelude [Shapirc B83-1] and [Nitta 841, but both are interpreters. Here, we
assume the implementation of & compiler which follows the guidelines stated in
[Shapiro 83-2]. What follows is a brief explanatiocn of the procecsz management
technigue,

The desaoriptors of processes in an AND=relation {corresponding to a
sequence of predicate calls) make up a cirecular list called an AND-loop, and
the descripters of processes in an OR-relation {corresponding to easch clause

composing a predicate) make up a circular list called an OR-leoop {(Figure 1-=1,
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1=2).

An element of an AND-loop is, until it is "committed™, the parent of an
(R~loop comprising candidate eclauses; after being committed, it is replaced by
a doubly-linked list corresponding to predicate calls of the body. II the body
is empty, then the element of the original AND-loop disappears. The parent of
an AND-loop, having lost all elements, is considered & success. On the
contrary, failure of any AND=loop element 13 regarded as a fajlure of the
parent (Figure 1-3),

An element of an OR-loop represents a candidate clause which has not been
"eommitted®, and is the parent of the AND-loop whose elements represent
predicate calls of Lhe guard. The success of an OR=loop element implies the
commitment of the corresponding clause. On the contrary, when an element of
the OR-loop fail, that element simply disappears, If an OR-loop has lest all
its elements, it is regarded as a failure of the parent (Figure 1-3).

There is & process queue in a system, and the leaf elements of a tree
composed of AND/OR-loops (i.e. the elements which are not parents of other
loops) are lined up and await scheduling, In unifieation, suspended clauses
due to read-only variables are added onto the waiting lists attached te the
read-only variables, instead of waiting in the process queue. These clauses
will be rescheduled when the read-eonly variables are instantiated.

One possible optimization of the above methed is to try to aveid creating
OF=loops. This involves performing the unification of the clause head and the
check of the =imple guard as an indivisible operation (without making copies of
writable variables). We call this "immediate check™, If it is possible to
conmit with just an immediate check, we can aveid creating an OB-loop. In
other cases, an OR-loop is ereated for those clauses which suspended during
immediate check and those which have succeeded in the immediate echeck but which

have complex guards, and they go into a walt state.

3. IMPLEMENTATION OF MERGE-PROCESSES
3.1, Examination of ap n-ary Merge Fredicate

N-ary merge can be expressed by n clauses of the following form, if one
ignores the "base cases" which will be dealt with in 3ection 3.4,

merge({X!¥s], X1, ..., [XiXk], ..., Xn)
= I}J'EPEE{YS, ]”,. LRI xk?. LR | xn}-

This predicate has the following characteristies.

1. To =ee if the o-th clause is selectable, one need only test the unilfication
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of the Oth and the c-th arguments (henceforth we number the arguments
starting with 0}.

2., Tn the case of tail recursion employing the e-th clause, only the Oth and
the c-th arguments change compared with the original call. Therefore, if
there is an argument list of the original czll, it can be utilized to make
a new argument list.

3, When 211 clauses are in a wait state, there is only cne clause {two, even
including the base case) which needs to be reexamined when one of tne read=

only variables as arguments is instantiated.

Now we will consider tail recursion., The arguments which do not change by
tail recursion have the property that they do not alter the wait condition of
each of the eclauses, Suppose that a predicate is called, that the c-th clause
is not selected due to the suspension {or failure) of the unification of the
k=th argument, and that the d-th clause is selected instead. In this case,
even after the tail recursion, the unification of the k-th argument of the o-th
glause will be suspended (or will fail) if:

{1) the k-th argument of the c-th clause does not change by tail recursion, and
{2) the read-only wariable that caused the suspension of the unification of
the k=th argument of the c-th clause does not become instantiated by the

unification of other arguments in the d-th clause,

Tf we =tate this in terms of the p=ary merge, we get the following.

4, In case of tail=recursion employing the e=th clause; the candidates are as
follows:
{a) the c=-th clause itselfl
(b} clauses which were candidates in a previous call but have not been
examined.
{e) clauses whose suspension have been terminated as the result of the

instantiation of read-only variables.

Possibility {e) does not exist under normal eircumstances, S0 we can ignore
it. Pozsibility (b) refers te the clauses that have been "carried over®™, s=o
that once they are examined, they will either no longer be candidates (i.e.
they will suspend or fail) or they will be selected and zgain become
candidates after tail recursion. Therefore, the average number of clauses
to be checked for each taill recursion dees neot depend on the pumber of

candidates.
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From the above considerations, we can conclude that the following
pperations which an p-ary merge undertakes Tor the processing of each message
can be performed within a constant time.

{a) checking (= unification of the heads) of the candidate clauses.
{b) renewal of the argument list and suspension information accompanying tail

recurs=ion.

t r [}]

To efficiently implement n-ary merge, the following are necessary.

(1) Even if all elauses suspend, an OF-leop (having O{n) elements) is not
created, and they are made to wait at the predicate level.

{2) The argument list is re-utilized.

{3) In order to prevent the examination of clauses not worth examining,

candidate clauses are managed within the process deseriptor.

The configuration of the process deseriptors and the implementation
techniques of predicates following these guidelines are shown below. The
methods shown below are applicable to predicates other than "perge™, as long as
they have no guards., In the following, the number of clauses composing the
predicate will be denoted by M, and the number of arguments by H.

of (21 or

& process descriptor has the fellowing items.

K, Ky Ky
i _
G4 = k1 *E———-——-——ebtl<;_1
C, =—- “-r1< 5
2 T2

Fig. 2 Example of the Data Structure of
Suspend/Fail Talile

(1) AND Brothers: Two pointers for constructing the AND-loop.
(2) Baskward Pointers: An array of pointers designating an enlry on Frocess
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Queue as well as entries on the waiting lists of read-only variables. The
former is reguired one for each predicate, the latter one for each clause,
=0 the total number of elements iz H+1.

Candidate Queue: The gueue of ecandidate elauses of the call managed by the
current process descriptor. M elements.

Clause States: An arrzy indicating whether each eclause is in the
"candidate®, "suspend®, or "fail®™ state. M elements.

Suspend/Fail Table: The reasons why a particular clause was not selected
czn be attributed to some of the arguments of the ecaller. Thus, if these
arguments change upon tail recursion, the clause may become selectable,
Therefore, a table of pairs (o, k), where ¢ is the number of the suspended
or failing eclause and k is the number of the argument that may be the
cause, is maintained. This table must enable sequential retrieval with ¢
as the index, as well as deletion of elements containing k, in the time
proportional only to the number of elements to be retrieved or deleted.
For example, the structure shown in Figure 2 fulfills this condition. The
maximum number of elements depends on the program; in the case of merge, it
iz O(N+M)=0(n}.

Fail Count: The total number of clauses that cannol be selected lor the
current call. If this becomes M, the call fails.

A pointer to the predicate's program code.

Argument List: N elements.

erations

A. Creation of a Frocess Desgriptor

When a predicate is newly called (that is, not as a tail recursion), the

area for the process desceriptor is alloeated and each entry iz set up. Here

Backward Pointer (2?) fer proces=s iz made to point toe the entry in Process

Queue, and all Backward Pointers for clauses are set to "NIL™. Furthermore,

# 211 eclauses are entered in Candidate Queue (3,

*# 51l Clauses States (4) are set to "candidate®,
* Suspend/Fail Table (5) iz cleared, and
¥ Fail Count (6) is szet to O.

B, Selegtion of 2 Clause

B=1.
the

If Candidate Queue is not empty, instructicons for unifying the head of
first candidate (say the c-th clause) and the arguments of the caller

{ Argument List of the process descriptor) are executed. For erxample, in the

case of "merge™, only the instructiens feor unifying the Cth and the k-th

argument=s are executad.
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o If this succeeds, the body is executed (see D).
o If this rails,

(1) the binding generated is undone,

{2) Pail Count is ineremented by 1,

(3} Clause State of the clause is set to "failnm,

{4) Suspend/Fail Table is updated (ef. (III)), and

{5) other candidate clauses are tested.

o If this is suspended,

{1) the binding generated is undone,

{2) Clause State of the clause is set to "suspend",

{3) Suspend/Fail Table is updated,

{4) the pair (p, c¢), where p is the pointer to the process descriptor and c
is the number of the clause, iz entered in the waiting list of the read-
only variable that cauvsed the suspension,

(5) Backward Pointer for the eclause is made to point to the pair entered in
(4), and

{6) other candidate clauses are tested.

B-2. If Candidate Queue is empty and Fail Count iz M (= the number of
clauses), failure processing of the process takes place. Otherwise,

execution of the current process 1s suspended.

C. Instantiation of Read-0Oplv Variables
When a read-only variable is instantiated, the following is done for each

entry (p, ¢) in its waiting list,

(1) The following is done for the process deseriptor designated by p.
o Clause State of ¢ is set to "eandidate"™, and ¢ is entered in Candidate
Queue,
o All elements of the form (o, =) ("=" means "don't care") are deleted
from Suspend/Fail Table.
{2) p is entered in Process Queue, and Backward Pointer for process is made to

point te that entry.

D. Execution of the Body
Il g recursive call is contzined in the body of the committed clause (=ay
the c-th clause), the following tasks are done.

(1)} Assume that the arguments of the head and the arguments of the recursive
call differ in the k1, k2, ..., kKl-th arguments. For each ki (i=1, ...,
1}, the following are done.
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o Flements of the form (¢, ki) are searched from Suspend/Fail Table, and
for each ¢, the following are done.
o If Clause State of ¢ is "fail"™, Fail Count is decremented by 1. If
it is "suszpendm", the entry of the waiting list pointed to by Backward
Pointer is eliminated.
o Clause State of ¢ is set to "eandidate", and ¢ is entered in
Candidate Queue,
o Flements of the form (o, =) are deleted from Suspend/Fail Table.
o The ki-th element of Argument List is rewritten.
{2) The c=th clause is entered in Candidate Queue,

{3) Clause selection (ef. D) takes place.

If ealls other than 2 recursive cegll are contained, new process
descriptors are generated for them.

If there is no recursive call, the original process descriptor beccmes
unnecessary. Thus, the area is released after the pointers frem the waiting
lists of read-only variables are eliminated. However, there are caszesz in which

this area can be used for optimization (ef. 3.4).

[III) Mepagement of Suspend/Fajil Table
If the c=th clause of n—ary merge is called as follows,

tth e-th

- merge(¥s, ..., X597, ...).

unification of the c-th argument iz suspended. In this case, the cause of
suspension lies only in the c-th argument of the caller; even il apother clause
were selected and tail recursion took place, this would not remove the cause.
However, wWe cannot zlways attribute the suspension/failure of the unification
of the e-the argument only te that argument. For exapple, suppose the
following example.

Oth 15t g=th
= merge([31¥s], [3]2s], ..., [2iXs], ...).

If unification is done from the left, unification of the e-th argument fails,
but we should attribute the ecause also to the Oth argument, Actually, i the
first elause is selected and tail recursion takes place, the c-th clauae
immediately becomes selectable,

To generalize, in case the unification of the k-th argument of the c-th
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clause is suspended or fails, all arguments (numbered ki1, ..., ki, ..., kl}
npelated tof the k-th argument in the c-th clause should be entered in Suspend/
Fail Table in the form (o, ki).

Here, the term A is "related to" (henceferth dencted by R) the term B
meanz that there are variables within A which are "related to" variables within
B; and the variable V1 is related to V2 means that V1 and V2 are related by the

peflexitive transitive elosure of the following relation 3.

Felation S: both variables appear together in a predicate ecall of the

guard {if the guard is empty, S is the sameness of the variables).

Example: For the c-th elause of n-ary merge, the guetient sat L/R of
the set of arpuments A by R is
({0, e}, {1}, ..., {e=1}, {e+1}, ..., {n}}.
For the clause
p{I,J,K,L,M} == alI,Jd), b(J,K), e(L,M) | true,
we get
{fo,1,2}, {3,81}.

Fowever, it is necessary to make exceptions for the rules for updating
Suspend/Fail Table, This is because if (0, e} i= entered in Suspend/Fzil Table
when the c-th clause is suspended in a normal usage, this clause will be
peturned to Cendidate Queus even by the tail recursion of another clause, and
we scamnot achieve the efficiency we desire., Therefore, in cases of suspension
where
(1) the k-th argument of the caller iz a read-only variable (viewed at

execetion time) and
{2) the k-th argument of the head is a nen-variable term (viewed at compile
timel,
only (¢, k) should be entered in Suspend/Fail Table. This is because it 1is
clesr that the cause of suspension is net in the other arguments related to the
k=th argument.
The number of elements that are simultaneously entered in Suspend/Fail

Table does nobt axoead

:E: {the paximum size of the elements of "(sct of arguments)/R")

(the sum is taken with respect te clauses).

In the cese of n—ary merge, this value is O(n}.
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The operties o
We will now examine the properties of n-ary merge when the compiling
technigue presented in 3.2 is employed. The existence of "base case"™ clauses
will not be considered here. It will be discusszed later in 3.4.

(1) 8 Effici
The size of each process descriptor is O(n). The size of each item other
than Suspend/Fail Table i= slearly no greater than 0(n), and the size of
Suspend/Fail Table, as indicated in 3.2(III), is O(n).
The aize of the program code will be discussed in (IV).

{II) Time Efficlency

fi. The generation of process deseripters: O{n), but this need only be done onee
at the beginning.

B. Unification: The time required for the unification of the head of each
clause is 0(1), because there are two arguments on which unification should
be attempted and the time for each cdoes not depend on n. If a data
structure such as the one shown in Figure 2 is assumed, the time reguired
for the tasks accompanying suspended/failed unification (updating Suspend/
Fail Table and the waiting listz for resd-only variables) is alsoc O(1).

C. The time for the instantiation of a2 read-only variable: O(1) for each task.

D. Tail recursion: The arguments that change when the c-th clause is selected
is the 0th and the o-th arguments. However, as long as "merge® is used in
the uwzual manner, the Oth argument will not be the causze of waits or
failures, and the only clause waiting at the o=th argument is the e~th
clause itselfl. Consequently, the only new candidate is the o=th clause.
Furthermore, only twoe entries of Argument List need be rewritten.

Therefore, the overall time reguired is O(1).

The above shows that the time required for processing a message reaching
the n=ary merge in input-wait statec does not depend on mn.

{111} Order of Clause Checking

Individual eclauses of n-ary merge are checked in the order they are
entered in Candidate Queuve. Since clauses which have becn selected once are
reentered at the tail of the list, p-bounded waiting is schieved., Moreover, as
already stated in 3.1, suspended or failing clsuses are removed from the list
until the causes disappear; thus they do not influence the efficiency of the

Frocess.
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{IV) Size of Frograp

The code for each clause deseribes operations B and D indicated in
3,2(II), so its size is 0(1}. Moreover, for operation A, only one piece of
code is pecessary per predicate, and fts size is 0{1). Conseguently, the size
of the code for p—ary merge is O(n).

However, it is possible to drastiecally reduce the code size, The codes
for individual clauses are almost the same, so they can be parameterized with
respect to the clause number ¢, If this is done, the code size for Lhe whole
predicate is reduced to 0(1).

This parameterization could be accomplished by a scphisticated compiler
capable of detecting similarities among the clauses. However, even il such a
compiler were employed, it would net reduce the size of the source program
(O(n®*2}) and the time required for compilation. Furthermore, there may be
only a few programs which can benefit from this optimization. Considering all
these things, the most realistie approach is to let the system provide the code
for n-ary merge.

Now we have n-ary marge at a code size of 0{1). This, however, is still
unsatisfactory. The system should provide "merge™ for every n. I these were
to be provided individually, the amount of code would be O{nmax}, nmax being
the maximupm value of n.

However, here again, drastic optimization is possible. Because the codes
for n-ary merges are almost the same regardless of the value of n, they can be
parameterized with rezpect to n. This being done, the amount of code for
merging any number of inputs becomes 0(1).

Note that if the function of these codes were expressed in the form of
source programs, the size would be O{nmax*##3). Therefore, it is mandatory that

these codes be provided by the system.

.t i e of th tre

& merge predicate for a fixed number of input streams is useful only when
the number of inputs is statically known, We will now expand this to allow the
addition of new streams and the removal of terminated streams. The program is
shown below, This program have an additional (the (-1)th) argument for
zoccepting requests of new input streams, What this argument represents is the

stream of new streams.

a The k=th clause (transfer)
mergel{sS, [XiYs], X1, «ee, [XI1ZK], ..., Xn)
i- merge( S, ¥s, X1, ..., ¥Xk?, ..., Xn).

o The Oth elause (addition)
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merge([Xnplust|s], Y=, X1, ..., Xn)
1= merge(S57?, Ys, X1, ..., ¥Xn, Xnplusi).
o The {-k}th clause (removal)
mwerge(S, Ys, X1, ..., {1, ..., Xnmwinus1, Xn)
;- merge(s, ¥s, X1, ...y X0, ..., Xnminus1),
o EBaze Case

merge([1, [1).

These clauses are not tail recursive, since what the the bodies call are
{n+1)ary and {n-1)ary merges. However, if process descriptors for these merges
can be successfully constructed by modifying the original one for neary merge,
it will be much more efficient than to create ones from scrateh.

In Concurrent Prolog, process deseriptors cannot be manaped by simple
stack scheme; a general memory management technique such as the Buddy system
[Knuth 68] must be employed.

Here we will assume the use of the Buddy system. Then the size of ezch
partitioned areas will be 2 power of two. Each process descripter is creazted in
one of these areas. When it is creeted, its fields must be placed so that the
cost of reloecation with the addition or removal of streams is minimal, That
is, the arrangement must be determined according to the size of the area
allocated, Then, even if' the number of inputs increases or decreases, omost of
the existing information need not be moved as long as the same zrea can
accommodate all the inforpation for the new descriptor.

Here we will show the operztions te be perforped when the {(=njth toc QOth
clauses are selected and the process descriptor can be reused. VWhen
considering the reuse of process descriptors, "unused® must be added 25 one of
the possible states that Clause State can take, and when the ares for Clause
State is allocated, the unutilized portion should be set to "unused®,

4, When the Oth Clause is Selected and ap New Stream is Added

(1) (Cperations accompanying the addition of the +=(n+1)th clause) If Clauue
States of the {p+1)th and the -{n+1)th clauses are not "candidate", they
are set Lo "gandidate", and those clauses are entered in Candidate Queue,

(2} The Oth elause is entered in the Candidate Queue.

[3} The (=1)th argument of Argument List is updated.

(4} The program cede is replaced (If the program is parameterized with respect

to n, only the parameter value is replaced).

{1) (Operations accompanying the change of the o-th argument) Elements of the
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form (¢, ¢} are retrieved from Suspend/Fail Table {even if such an element

were to exiat, (e, e) would be the only one}. For each ¢, the [ollowing

is done,

o If Clause State of e' is "fail"®, Fail Count is decremented by 1; if it is
"suspend™, the entry in the waiting list pointed te by Backward Peinter
far the o'-th eclause is deleted, and then thisz Backward Pointer itszelf
is deleted.

o Clause State of ¢' is set to "eandidate™, and e' is entered in Candidate
Queue,

o Flements of the form {e', -} (only (e, e¢) can exist) are deleted from
Suspend/Fail Table,

{2} {Cperations accompanying disappearance of the +=n=-th clause)

o If Clause State of the n=th clause is "fail®, Fail Ceount is decremented
by 1. The same is done for the (-n)th clause.

o Elements of the form (+—n, =) are deleted from Suspend/Fail Table.

o (Mothing is done with the +-n-th clauvse in Candidate Queue. When they
are degqueued and checked, nothing i= due octher than to change their
Clause States to "undefined".)

{3) The (-c)th clause is entered in Candidate Queue.
(4) The e=th argument of Argument List is updated.
({5) The program code is replaced.

It i= elear that both &4 and E can be accomplished in a conztant time.

In case where a new stream must be added but the area for the current
process descripter cannot accommodate the new one, it is necessary to allocate
a new area of twice the size and te move to that area, On the contrary, if it
becomes possible to express the process descriptor with half the size of the
current ares (by the repeated removal of =treams), the space between each item
zhould be packed and the unused area collected should be freed. These
operations are indicated below.

' ovi Lo
{1) An area twice the size of the current process descriptor area is alloecated,
{2) 411 items of the original proececss descriptor are copied.
{3) The entries desipnated by all Backward Fointers are made to point to the
new area.

(43 The operations described above in & are done.

B! &

{1} The operationz described above in B iz done.
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(2) Candidate Queue is examined and the +-n-th clauses are deleted, if any.
{3) The original process descriptor are packed in the top half of the current
area.

{4) The bottom half of the area is released,

We will now consider the time complexity of A' and B'. If the time neecded
for allocating and releasing areas is ignored, both A' and B' can be done in
a time proportional to n. The time complexity of the allocation and release of

an area using the Buddy system i=
0{log{size of the whole area managed by the Buddy system)).

This value, however, is determined only by the execution environment of the
program, and is independent of n. Therefore, if the execution environment is
fixed, the time needed for A' and B' is O(n).

In order to add and remove streams in an average time of 001), it is
necessary to guwarantee that the frequency of doing A' or B' is at most once
every 0(n) times. However, this is easily achieved by doing B' only when it
becomes possible to represent the process desecriptor with (for example)

one=fourth of the current area,

4, GUIDELINES FOR THE IMPLEMENTATION OF DISTRIBUTION PROCESSES
For the implementation technique of a distribution process, only outlines
will be presented here,

4,1, Distribution to a Fixed Wumber of Output Strcams

The predicate "distribute® with n cutput streans is expressed by nsi

clauses of the fellowing form:

o The k=th clause
distribute{[{k,¥) %=1, ¥1, ..., [Xi¥k], ..., Yol
i= distribute(¥s?, Y1, ..., Yk, ..., ¥Ynl).

o The Oth elause
distribute([]), []1, ..., []).

First, we will consider the situation where there is no wait. It is
necesszary to implement random accessing of clauses because, if the 13t to k=th
olauses Were individually checked, the time reguired would be O{n)., The Dec-10
Prolog compiler [Warren T77] generates & code that selects clauses using the

hash value of the principal functer of the first argument, However, this is
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inadequate for stream-oriented prograomming. In the case of "distribute",
hashing by the tertiary functor (a functor of the third level) of the first
argument is necessary to select 2 clause in constant time.

Next, as we did with "merge®, we will consider how to achieve the code
size of 0O(1). It is of course necessary Lo parameterize the codes of each
clavse. In the case of "distribute”, we should furlher make use of the lact
that clauses can be selected by simple indexing which does nol invelve hashing:
a hash table reguires an area of 0{n).

What if there iz 3 wait? When this predicate is used in a usual manner,
the Oth argument becomes the czuse of the wait. However, if the 1st tc k-th
clauses all individually go into wait, the goal of efficiency cannot be
achieved, The 1st to k-th clauses should always be managed together: not only
when indexing, but alsc while "waiting". In other words, they should be
entered in the waiting lists of read-only variables as s cluster of clauses.
When their suspension are released, the appropriate clause should be selected
by indexing.

£.2, Dynamic Change of the Nupber of Cutput Streams

A= in the pase of merge, a capability for dynamieally changing the
number of output streams is important. This can be implemented by adding the
following clauses:

¢ Addition
distribute{[grow(¥nplus1)ixXs], ¥1, ..., ¥Yn)
i- distribute(Xs?, ¥1, ..., ¥n, ¥Yaplusi),.
o Deletion
distribute([shrink/Xs], Y1y ..., ¥nminusi, ¥Yn)

;= distribute(¥s?, ¥1, ..., ¥Ynminus1).

In order to efficiently chanpge the number of output streams, a method similar

to the one described for "merpge™ in 3.4 should be applied.

5, APPLYING IMPLEMERTATION TECHNMIQUE OF DISTRIBUTION PROCESSES TO MUTAGLE
AHRAYS

The lack of mutabkle arrays (arrays of rewritable elempents) iz often
mentioned as one of the problems of Proleog. Of course, arrays can be simulated
by using "assert® and "retract®, but these are not "logicsl®™ arrays. One

direction to realize logical arrays is to make a correspondence
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arrays: data of the array type

operations on arrays: predicates having array arguments

and to gain efficiency by dedicated datz strueture. However, it is also

pessible to make the fellowing correspondence

arrays: predicate calls (processes)

operations on arrays: messages in streams,

and to realize constant-time accessing and updating by using the same
implementation technique as that of the distribution process. This is a rather
natural solutien if we regard arrays as mutable "objects". The program would

be as follows:

array(n, 8) := array(5, X1, ..., Xn).

array([read(k,Xk} !5}, X1, ..., Xk, ..., Xn)
i= array(s87?, X1, ..., Xk, ..., ¥In). (for k=1, ..., n0)
array([write(k,Yk) 18], %1, ..., %k, ..., Xn)

i~ arrayl2?, X1, ..y Yk, vo.y ¥n). (for k=1, ..., B}

It is also possible to add elauses for inquiring and/er changing the

number of elements.

€. SIONS AND FUTURE WORES

The properties of n-ary merge written in Coneurrent Prolop were
investigated and an implementation which transfers each message with the delay
independent of n was shown., Furthermore, it was shown that an input stream can
be added and removed in an average time of 0{1). With respect to m-ary
cdistribution also, outlines for an implementation as efficient &5 "merge™ were
presented, Mulable arrays that allow constant-time accessing and updating are
shown to be realizable by Lhe same implementaticn technigque as that for
distribution processzes,

However, it was conecluded that these proedicates should be supplled by the
system. If the system provides them, 1t is possible to reelize merge and
distribution for 21l n with the code whose size does not depend on the maxioum
number of n,

On the other hand, to obtain the code by compiling & souros programn
provided by the user iz unrealistic, nobt from the viewpolnt of the efficiency
of the code obtained, but from the viewpeint of the bullk of the source program

and the time needed for compilation. However, it is favorable in many raspects
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{e,z, for the construction of programming systems) that the semanties of the
system-supplied code is expressible as & Concurrent Prolog program.

The =zuggested technigue for the inplementation of np-ary merpge has a
probler that it does not work efficiently when a bounded buffer [Takeuchi 83]
iz connected to the output stream. Bowever, it is expected that this problem
can be solved by improving the method of clouse wait and scheduling.

The most important future tasks are to describe larpge-scale systems in
Concurrent Prolog, to estimate the cost of interprocess communiecatien, and to
canfirm the usefulness of the suggested capabilities. It is alsc important to
consider an efficient implementation of interprocess communication in parallel

envircnments.
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