|(COT Technical Report: TR-061

TRAO61

Coordinator — the Kernel of the Programming System

for the Personal Sequential Inference Machine (PSI)

by
Toshiaki Kurokaws and Satoshi Tojo
i Mitsubishi Research Institute)

April, 1984

€1984, 1COT

Mita Kokusar Bldg. 2LF (03] 456-3191 ~ 5

|| :O | 1-28 Mita 1-Chome Toles ICOT J37964
Minato-ku Tokvo 108 Japan

Institute for New Generation Con;puter Technology

Fage 1

Coordinator - the kernel of the programming system for
the Personal Sequential Inference Machine (PSI)

Toshiaki Kurokawa and Satoshi Tojo*

Institute for New Generation Computer Technology (ICOT)
*Mitsubishi Research Institute

Abstract

In this paper, the programming system of the personal sequential inference Machine (PSI) is
described. The kernel of the programmung system s called the Coordinator, and its main features
include: communication interface, command sending, management of programming system elements,
Help facility, and miscellaneous facilities, such as that for logging on.

The design objectives are simplicity, efficiency, and expandability. These are achieved through our
design and implementation, uwsing the powerful support of our language, ESP, which has an
object-oriented class inheritance mechanism similar to those of Smalltalk-80 and Flavors,

1. Introduction

To achieve a highly interactive personal computer environment, which is one gozl of our Personal
Sequential Inference Machine (PSI) [Uchida 837, a support system is required. One of the primary
aims of the Japanese Fifth Generation Computer Systems Project is to implement more intelligent,
user-friendly computer systems. PSI is designed to achieve this objective throughout the use of a
powerful logic programming language,

However, the language alane is not enough. An operating system is necessary to support the user
in basic resource and process management. Again, however, additional supports are needed for
sophisticated communication with the system. We call the collection of such facilities the PSI
Programming System.

Research and development on programming systems in general has a rather lonp tradition in the
young field of computer science, but programming systems suited to highly interactive personal
computers have not been studied s0 intensively.

In this paper, we report on our attempt to construct such a sophisticated programming system.
We have concentrated on the Coordinator, the kernel of the propramming system. We describe our
goals and our implementations, and include a summary of our work.

The Coordinator, like other SIMPOS (Sequential Inference Machine Programming and Operating
Systems) modules [Hattori 83], is written entirely in ESP, (Extended Self-vontained Prolog)
[Chikayama 847, a dialect of Prelog incorporating an ohject/class methodalogy similar to that of
Smalltalk-80 [Goldberg 83].

Fage 2

2. Programming System Kernel

Nowadays, the need for a programming system is generally accepted, but the precise meaning of
the term has not been well defined. There are various definitions and each has its own rationale.
Here, we consider the programuming system of SIMPOS to be 2 collection of expert processes.

Later, we will formally and syntactically define "expert process”. Informally, an expert is @ process
with which the user performs a job, for example, an interpreter, a text editor, or a compiler. These
are examples of programming tools. There may be other programs, such as 2 computer game program,
which can be seen as an expert. A databace management program can also be an expert. In general,
the expert is an independent process that communicates mainly with the user.

This view differs from that of the programming system as a collection of dumb software tools, or
of that in which the programming system is seen as a collection of progrums to suppert software
production. For example, in Unix*, the software tools are tend to be small. They are combined by
the Shell command language, and used many places as only a part of the program.

Our view frees us from the overhead of managing available utilities or the little-understood process
of program production.

We admit that this view is not sufficiently developed zs to constitute a sophisticated programming
system. However, our intention here is to first establish the kernel of the programming system, then
to proceed gradually towards a more sophisticated system. (More research is necessary on the
mechanics of programming and man-machine communication, which are intrinsically related 1o the
Fifth Generation Computer Systems Project.)

From the wuser’s viewpoint, an expert ¢an be invoked, controlled, and terminated through the
expert’s window. In our system, there is no explicit supervisory process (such as the Shell in Unix).
However, there is a background process which is called the Coordinator. A user need not be
concerned with the complex history of invoked processes to accomplish a task and need not fear

unexpected destruction of work through errors in tracing such histories.

Aspects of the man-machine interface are discussed in detail in 2 separate paper [Tsuji 84]
along with the design and implementation of the window f{unction.

3. Coordinator : Design and Implementation
3.1 Deslgn goals for the Coordinator

The design goals are simplicity, efficiency, and expandability. Simplicity and effictcncy means that
the user need not be concerned with the operation of the Coordinator.

It appears to the user that he/she controls the expert directly through the window, (In fact, the

=) Unixn @ @ ragemark of Bl Laboratorea

FPage 3

Coordinator assists the user’s control via the window interface.)

In this sense, the Coordinator is entirely different from a command processor, such as the Shell in
Unix. The Shell is a command processor with a command language in which the user can program his
INEtructions.

Actually, the command language is an extension of the existing Job Control Language, which
originaliy was the Operating System language. As Ingalls argues [Ingalls 82, the command
language can be replaced by the lanpuage interpreter itself if the whole system is constructed around a
powerful programming language. The examples he mentions are Lisp and Smalltalk,

MNow we can add our language, FSP, and our system, SIMPOS, as further examples. We can use
ESP as a command language, und our interpreter as a command interpreter. In fact, at an early stage
of development, all resource and process management functions were coded in ESP.

Thus the Coordinator is mostly concerned with the basic mznagement of expert processes by the
user through the experts’ windows. An expert process is an any process the user wishes to use. It
must belong to a special class, an ‘e_process’, which has a :pecial mechanism for communication
between the user and the Coordinator.

Expandability is achieved partly through the registration of expert processes and partly through
command set definitions for expert processes. It is also planned that the Coordinator will become a
part of a more sophisticated interface system the user and the SIMPOS.

The principal functions of the Coordinater are as follow:

o sending the user commands to experts through the window;

= creating, activating, suspending, resuming, and deleting experts;

o executing special commands for experts;

e acting as a communications interface between experts via the "whiteboard,

e providing Help functions to users;

= providing miscellaneous facilities such as logging on, interfacing with resource managers, etc.

3.2 Implementation of the Coordinator

To implement the Coordinator, the representation of experts, the set of experts to be used, and the
expert’s window are the main problems. In addition, the methods of communication between users
and experts and between experts themselves are important points.

1) The represenration of experis

An expert is represented as a special class of the 'e_process’. An instance of the e_process has the
fallowing attributes:

Page 4

o a special class of the "program’, called 'e_program’.
(Note that the "pregram’ is a name of a class of objects in SIMP OS. A program in the usual
sense is the method defined around the object in ESP. The *program’ is not a method but a
cluss of ohject. The instance of the "program’ has a special method 'geal' to execute the main
function. The instance can also be "fnvoked” in the process environment.)

o a special class of the "window', called "e_window',
{The window contains a mechanism for man-machine communication.)

o a special class of the "port’, called "e_porr'.
{(*Pori" is the name of the class of objects that enzble communication hotween
processes. In fact, this port is used for communication with the Coordinator.)

o the name of the expert
(Actually, the name of the object stored in the e_process_pool explained bellow, paired with
the expert. The name is derived from the e_program name, which the user defined in the
e_program_direcrory'.)

Thus, the expert has a window to communicate with the user and a port to communicate
with the Coordinator. Moreover, the window has a table for translating user commands into a
form that can be used by the Coardinator to help control the expert.

2) The represeniation of the tet of experis

In a sense, the set of experts is itself the Programming System of PSI itself. If we
had 2 mechanism for defining any set to be an object, we could define the set of experts to
be the Programming System.

However, we do not have such a mechanism and it is more realistic, in terms of efficiency
of both memory and speed, to have a special process, that is, the Coordinator, and a special
object for representing the set of experts.

We represent this set as a special instance of the class, ‘e_process_pool’. "Pool' is u term used in
SIMPOS that means a collection of ohjects. The & process_pool is derived from the class, ist_index’,
which can store any number of objects and retrieve any object using an index. Experts are indexed
by names assigned to their e_program by the user. Later, the index object will be replaced by
‘cascade_index’, which is more efficient. This replacement will be very easy, thanks to the class
mechanism,

I fact, the e process_pool is implemented to be an active object for processing special commands,
such as ‘broadcast’ or ‘remtemiber, because these commands can not be sent to a special expert.

1) The representation of the expert’s window

Page &

The expert's window is an ohject of the class, 'e_window’. It is a special window in the sense that
it has a frandation_table and an e_process, that is, the expert itself.

The transdation_rable of the e_window contains keystroke communds and the mouse-button-click
commands along with the correspending SIMPOS code or commands that are sent to the expert.
SIMPOS uses a 16-hit code based on JIS kanji-code. A command is provided to define the keystroke
command for the expert process.

This transtation iz performed in the window process with wvery little overhead. Thus, we
have introduced a simple and efficient mechanism for handling keystrokes and mouse

commands for experts.

Some commands are sent to the Coordinator, which then handles the expert itself,. These
commands are called "mefa-commands. Examples include kill, lull, status, visit, memorize, broadcast,
remember, read from_whiteboard, write_to_whiteboard, and system_menu_invoke.

The expert object (actually, a pointer to the object) is stored in the e window to tell the
Coordinator which expert is linked to this window, When a code or command is to be sent to an
expert, the expert is identified through a special port maintained by the window manager.

4) Communication berween the user and the expert

Communication is performed through the e windew. There are two kinds of inputs: those
processed in the expert and those sent to the Coordinator to manage the expert.

The latter is called “meta-command’. For example, "kill" is a metacommand because system
intervention is necessary to kill an expert. "Create" is another example in which some additional
process is required to create an expert. "Visit" indicates that the communication between the user and
the current expert is interrupted and another expert is selected for the pext communication.

J) Communication between experis

There are two types of communication berween the user and the expert. One is the
communication embedded in the experts’ program. The other is the communication specified at

the user’s discretion.

The former is performed through the experts” ports. The problem of synchronization is
effectively managed by porf objects.

The latter type of communication is much more difficult. It cannot be determined
beforchand to whom the communication should be made. It is possible to establish
communication paths between the all experts, but it is highly impractical because of the
requirements of memory and contral.

Another approach is to set up a virtual communication network connecting all the experts.

Page 6

However, this mechanism is complicated and overhead is significant.

Owr solution to this mechanism is to provide a special object, 'whiteboard’, to assist in
communrications among experts. The Coordinator's whiteboard i just like a blackboard in which an
expert places a messape in order to communicate with another expert. The term "blackboard® is
deliberately avoided, because it hos a special meaning that the blackboard not only contains the
message but also controls the process invocation [Erman B0] [Mii 79]. The whireboard has, on
the other hand, no control over the process nctivation/termination. Only the user has the control over

the processes.

The *whiteboard is a buffer in which an ohject is stored by the expert as directed by the user.
The user can also order the expert to pick an object from the whiteboard. For example, it is possible
to route an object from the interpreter 1o the whireboard, the user then visits the editor expert 1o edit
the abject, then, re-visits the interpreter to execute the edited program.

The inheritance relation of the herein mentioned classes are summarized in the Figure 1.

AARARERI R ARAEAREANEFRANFRRAREREEEERRR AR RRRREERRRARRRERERAR

Figure 1, should be inserted here.

LEEEER RS A AR R AR E R R L R R R LAl

3.3 Meta-commands for expert management

There are two sets of commands as mentioned in section 32, The following

meta-commands are provided to control experts:

1} visit
Starts {or re-sturts) communication with an expert. The intended expert is pointed out
by the mouse cursor. Usually, visiting an expert involves terminating the current communication
with the current eapert,

2) ereate (using the &_program)
Create an cxpert using the e program. The e window and the e pors are also created
automarically.

F) kill
Dieleies an expert, ie. releases all the resources including its process, {even the physical process in
the sense of hardware resources) and its execution is aborted.

) Ll
Suspends execution. When visiting another expert, the current expert's execution iz not always
suspended. [t may comiinue execution, but it will not communicate with the user until it is visited,
That ig, the expert will be in a state of [/0 suspension. However, the "lull’ command suspends

execution.

Page 7

3) arouse
Wakes the lulled expert. Before visiting the lulled expert, the user must send this command.

&) memorize
Stores the identity of the expert that the user is now visiing in the history table. The wser cun
visit the old expert by invoking ‘remember’ command.

) remember
Visits an old expert memorized in expert history.

&) broadcast
Sends a message to all experts that execute a class of the e program. For example, using this
command, the user can send a message to all the text-editors in the system to find a particular
passage.

0 write
Causes the expert to write an object to the wiiteboard This command is mediated by the
Coordinater,

10} read
Reads the object from the whiteboard. The processing of the object is up to the user.

11} tmeoke the spstem mem
The system menu is a special menu of various jobs. A typical job is the creation of expert
processes. There are other johs, such as logging onato the system, assisting the user with Help
information, and managing the file system.

This list does not claim to be complete. Our intention is to show that it is possible to do the
above in the current implementation of the Coordinator. It is easy to extend the list, thanks to the
class mechanism provided by the ESP language.

4. Customization and Extendability

We think customization and extendability are important considerations for a constantly expanding
system such as owrs. In this section, we want to explain how these goals are achisved by our

implementation.
4.1 The set of avallable experts
There is a cluss of chjects, 'wger’, for each SIMPOS user. Each user has a direciory for his/her

own set of experts. [t contains the experts’ names and the corresponding e_program to be executed
by each.

When a user logs onto SIMPOS, his/her expert directory is searched and the system_menu displays
that wser's list of experts.

Page 8

The Coordinator does not prevent users from defining their own set of experts, that s, their own
programming systems. It should be noted that users need not make their directories from scratch.
They can modify the system’s standard directory. They can also add experts originally developed by
others,

Even during SIMPOS execution, users can change their expert directories, and, in so doing, can
update their own programming systeins.

4.2 The command set for the expert

The command set {including single-keystroke commands, and mouse button clicks), forms the basis
of the communication language between the user and SIMPOS.

The expert has its own command table associated with its e window. The table tells how each
keystroke should be interpreted, as a commaund or as an internal code, and also where the contents
should be sent. (Mouse button clicks are also encoded and are included as special keystrokes.)

The Coordinator provides a method whereby the user can change the window key-command table.
E_windows accept the "key-command_table-change’ command, but other classes of windows may not
accept the commend.

It is possible to modify the table during execution, so the user can use a limited number of
keystrokes to indicate virtually infinite number of commands.

A Help function is included so that even if a user forgets the meaning of a keystroke, the system
will supply the meaning [Tsuji 84]. Thus, users can construct the most convenient set of
commands for their applications.

4.3 General mechanism -- ¢lass and inheritance

Cusiomization and extendability are also possible throughout SIMPOS due to the class and
inheritance mechanism which is supported by the system programming language, ESF.

The class and inheritance mechanism of FSP is more powerful than that of Flavors on the Lisp
Machine [Cannon B2 |

ESP has a multiple-inheritance mechanism 2nd a before-demon and the after-demon. Moreaver, it
hus the following capabilities:

1) The "har-& relation (part-of inheritance) is supported.
2} The language is based on logic programming.

Throughout this mechanism, users can extend any existing function (even those supplied with the
system) for their own use, and can exchange functions with others.

Page 8

For example, it is easy to create new experts by modifying existing ones. Moreover, the user can

modify the e_windew so that the output is more informative for the user's work.

This freedom is achieved at the least possible cost in program overhead. This is true, in part,
because the instance of the class is a kind of active object. For example, the command interpretation
table for the e_window is constructed as a set of programs. It is not a dumb table handied only by

other active process.

The next figure shows the ESP program for the system standard table, the
default trandation_table. Users can modify the table to produce their own tables by using the

inheritance mechanism.

.'.--r.----gii|qq|...t‘i't.‘.t-l|---g--l-l.-l--iiiililiiiitiil

Figure 2. should be inserted hara.
T3t s s e NN R RSN PR R R RR RN RN R RN RN R R RNy}

Low overhead and the provision of user contral are the main themes of the Coordinator,

5. Summary

Ta this paper, we described the kernel of our programming system, the Coordinator, and discussed
its design and the implementation. We defined the programming system as a set of expert processes
which can be defined by each user.

The Coordinator manages the set of the experts and helps the user to communicate with, query,
and send commands to the expert. Our design goals are simplicity, efficiency, and extendability.
These goals are achieved through our implementation together with the general facilities of our

language, ESP.

The next targeted objective of our work is to develop 2 more sophisticated programming
envirgnment for advanced applications, using the Coordinator as a component of a larger system.,
REFERENCES
[Chikayama &4] Chikayama, T. "ESP Reference Manual®, ICOT TR-044, (Feb. 1984)

[Cannon 82] Cannon, H.1. "Flavors - A non-hierarchical approach to object-oriented programming”,
MIT Memo, (1982)

[Erman 80] Erman, L.D. and Lesser, V.E. “The HEARSAY-II speech understanding system: A
tutorial”, in Lea, W, (ed.) Trends in speech recognition, Prentice-Hall, (1980)

Page 10

[Goldberg 83] Goldberg, A. and Robson, . "Smalltalk-80, The Language and its Implementation”,
Addison-Wesley, (1983)

[Hattori 83] Hattori, T, Yokoi, T.,"Basic Constructs of the S5IM Operating System, New Generation
Computing,vol.] no.l pp.81-85 {1583).

[Ingalls 82] Ingalls, D.H. "Why Operating Systems May Disappear”, memo {rom Xerox PARC (Dec.
1982)

[N 79] Nii, HP. and Aiello, N. "AGE(Attempt to Generalire): A knowledge-based program for
building knowledge-based programs®, IJCAL-6, pp.645-655, (197%)

[Tsuji,J §84] Tsujit., Kurokawa T, TojoS, lmaY., Nakarawa, (3, and Enomotol. “DIALOGUE
MANAGEMENT IN THE PERSONAL SEQUENTIAL INFERENCE MACHINE(PSI)" ICOT
TR-46 (Feb. 1984}

[Uchida B3] UchidaS, Yokota M, Yamamoto A, Taki K Nishikawa . "Outline of tl- Personal
Sequential Inference Machine: PSI" MNew Generation Computing, no.l pp.75-79 (1983).

program

[:with_gual_dzmnn:]

[: E_pPIOETAM_COTE :I

-

.Y
Chnlp nfo_dictionary
process \/
program I

:?J ﬂ‘-pl’ﬂ;’l’lm :I

port

f E_prOCESS h;

o
'
:

\
1

L
B
i

(intar:pirll.:.l_:!u_pnrt‘)

.-'-"''-FF.-

o

coordinator
B———

LY
\ window
1

I

h A
T "_

\ '~t whitehoard)

Ll o N

1

eomindow .

C_I'll:'. fauli_translation_tahl l)

£y
[
T
'

e_porl

ﬂ'{tramlatiun_ulﬂt)

Those classes defined in the Coordinator are encircled
The tolid line indicates 'is—«' inheritance.

The dashed line indicates "de2—a' jnheritance.

Figure 1. Relation of the classes in the Coordinator

class default_translation_table
has
instance
:look_up(Table, Window, control#"k", #coordinator,
{kill, E_process, _. _}. "kil1") - 1,
:get_e process(Window, E_process)
:Took_up(Table, Window, control#”1",. #coordinator,
{1u11, E_process, _, _}. "lull™) := 1,
cget_e_process(Window, E_process)
:lock_up(Table, Window, control#"e”, #coordinator,
{arouse, F_process, _, _}. "arouse") :- I,
rget_e_process{Window, E_prococss)
slock_up(Table, Window, control#"s", #coordinator,
{status, E_process, _, _}. "status™) :- I,
tget_e_process(Window, E_process)
tTook_up{Table, Window, mouse#l, #coordinater,
{visit, E_process, _, _}, "wisit") := I,
iget_e_process(Window, E_process)
:look_up(Table, Wirndow, control#*m", #coordinator,
{memorire, E_process, _, _}, "memorize™} :- I,
igei_e_process(Window, E_process)
:look_up(Tabie, Window, control#"h", #coordinater,
{broadcast, _, Program_name, Command}, “broadcast™) := I;
:look_up(Table, Window, control#"v", #coordinator,
{remember, _. _. _}. "remember™) :- !:
:look_up(Table, Window, control#”s", #coordinator,

{invoke_system_menu, . _, _}. "invoke system menu") :- I;
sVook _up(Table, Window, mouse#rr, #coordinater.,

{invoke_system_menu, _, _, _}. "invoke system menu"} :- I;
:look_up{Table, Window, control#"r", #loordinator,

{read, _, Object. _}. "read whiteboard”) :- 1;
:look_up(Table, Window, control#"w", #coordinator,

{write, _, Object, _}. "write whiteboard™) :- I;
stook _up({Table, Window, X, Port, X, "send character as it is") :- 1;

end.

Figure 2. A Translation Table Program in ESP

