ICOT Technical Report: TR-060

TR-Da0

A Note on the Set Absiraction

in Logic Programming Language

by
Takashi Yokomon
{ Fujitsu Ltd.)

April, 1954

1484, 1ICOT

Mita Kokusar Bidg, 2IF (031 456-4191 ~ 5

“ :D | 4-28 Mita 1-Chome Telex 1COT 132064

Minato-ky Tokyvo 108 lapan

_lnstituté_for New Génération .éomputé-r Technology

A MNote on the Set Abstraction

in Logic Programming Language

Takashi YOEOMORT

International Institute for Advanced Study of Social

Information Science{IIAS5-5I5), Fujitsu Ltd.

April 1984

ABSTEACT

The concept of set abstraction 1s introduced
as a simple analegy of that of lambda abstraction in
the theory of lambda calculus. The set abstraction
is concerned with two extensions concerning PROLOG
lanquage features:"set expression” and "predicate
variable". It has been argued that the set expression
extension to PROLOG does really contribute to the
power of the language, while the extension of predicate
variables does not add anything to PROLOG.

Combining these two concepts of extensions to
PROLOG, we define "Set abstraction" as the set expres-
sion in which predicate variables are allowed as data
objects. In other words, set abstractions get involved
in the higher-order predicate logic, It is demonstrated
that with the help of "predicate wariables" set abstrac-
tions can nicely handle the world of the second order
logic. Further, the implementation programs written

in PROLOG and Concurrent Proleog are given.

1. Introduction

Since a class of formulae in the first order
predicate logic called Horn clauses has been shown
to be guite useful by Kowalski in that it can provide
with an interesting computation model, a orogramming
language PROLOG has been receiving much attention and
has heen intensively studied. A Horn clause program
is often ecalled "pure Prolog” program in which noe il-
logical construct is allowed, while a practical PROLOG
language may contain a control primitive like the "cut”
operator and other primitives to extend its language
capability. Among those, the set expression extension

to PROLOG has been often argued and implemented in

several languages. For example, there are a predicate
"cetof" in DEC-10 Prolog([1]), "set" in PARLOG([3]}, and
"enumerata™ in KL1([4]). The introduaction of set expres-

sions enables one to describe the set of all solu ions
+o some goal in a program. As Warren discussed in [10],
the extension of set expressions to PROLOG really con-
tributes to the power of the language. In the paper
abhove, besides set expressions he also focused on two
possible "higher-order" extensions to PROLOG : "predicate
variable " and " lambda abstraction”, and stressed that
these extensions do nct add any extra power to PROLOG.
This paper is motivated by Warren's paper[10]. The
purpose of this note is to discuss a possible extension

+0 PROLOG called "set abstraction” and to demonstrate

the usefulness of the extension. Set abstractions
can be regarded as an extension of set expressicrs in
which predicate variables are allowed as data objects.
also, it may be possible to take set abstractions as
a simple znalogy of lambda abstractions. Thus, in this
paper we take the position to distinguish "set abstrac-
ticns" from "set expressions”.
The concept of set abstraction 1is introduced,
and the predicate "enumerate" is proposed in Section 2.
The predicate "enumerate” considered hers is an extans-—
sion of the one introduced in (4]. Section 3 presents
the implementation example for the predicate "enumerate”.
Discussion and concluding remarks are given in Section 4.
The reader is assumed to be familiar with the rudi-

ments of PROLOG.

2. Set Absiraction

As mentioned in the previous section, one can
introduce the concept of set abstraction in a natural
way. Set abstraction discussed in this paper is a
simple analogy of A-abstraction in the theory of A-
calculus., One may obtain a function from a term by
means of l-abstraction, while with the concept of set
ahstraction one can associate a relation implied by
the term.

ILet P be a term containing free cccurrences of a
variable x, where the prime functor of P is a predicate
symbol. Then, analogous to A-abstraction, one ecan
define the concept of set abstraction in the following
manner : Using a pair of braces {} instead of a greek
letter A and paying atktention to x free in P, an éxpress-
ion {lx.p

is called set abstraction, and its intended interpretation

is the set of all terms x satisfving the relation implied

by P. As a notation, we write
{x] » 1}
for {lx.P.
For example, suppose a term

have property(x,P)
meaning that x has a property P is given. By paying atten-
tion to %, one may have
{}x.have preperty(x,P).

Or if P is taken for the object of abstraction,

{}p.have property (X,P)
1s cbtained.
The former, (x| have property(x,P}} in the equiva-
lent form, is nothing but the set of all x's having
the property P. On the other hand, the latter has
more meaningful flavor. When dealing with predicates
as data objects like in

{P| have_property(x,P)} ,
one immediately gets involwved in the second order pred-
icate logic, and that is what we are going to put great
emphasis on through the discussion in this paper.

In the sequel we argue that set abstraction exten-
sion to PROLOG does really add something new to the lan-
guage. In [10] Warren discussed the benefits of intro-
ducing the concepts of "predicate wariables{or predicates
as data cbjects)", "set expression”, and " A -exprassion”
and concluded that predicate variables and A —expression
can be merelv regarded as "syntactic sugar” and that
they don't increase the real power of PROLOG, while set
expressions do indeed f£ill a real gap in the language.

We shall demonstrate the usefulness of set abstrac-
tion extension to PROLOG. Set abhstraction considered
here is concerned with two extensions to the language:
nredicate variables and set expressicn. As previously
defined, set ahstraction here can be taken as set expres-
sion in which the treatment of preodicate wvariables i=s

taken into consideration.

Suppose the following knowledge-base(KB) is
given :
{1) child{jim,mary).

childltom,mary} .

child(mary,nancy) .

child{barbara,john) .

child {john,nancy) .

likes(tom,barbara).

likes{mary,jim)}.

likes{(jim,nancy) .

likes (tom,mary) .

poorer (tom,mary) .

poorer (mary,nancy) .
where child(X,¥), likes(X,¥), and poorer(X,¥) mean that
X is & child of ¥, X likes ¥, and X is poorer than ¥,

respectively.

{(2) parent(X,¥}) <— childl{¥,X).
ancestor(X,¥) <— parenti(X,¥).
ancestor (X,Y]) ﬂ—-. parent (X,%), ancester(i,Y).
brother(¥X,¥) <— parent(Z,X),parent{Z,Y¥)},

not {identity{X,¥)).
cousin(¥,Y) <-— oparent(Z,X),parent({W,Y),
brother (% ,W) .
where P(X,Y) means that X is a 2 of ¥, for each F in
{ parent, ancestor, brother, cousin }, identity(X,Y)

denotes that X is identical to Y.

¥ ——— nancy

X —— mary X —I— Jjohn

jim tom barbara

Fig.1 A family tree

Fig.1 illustrates a family relation in the KB given.
We are nowin a position to introduce a predicate
for set abstraction. The predicate, we name it "enumerata”
has the faollowing syntax and semantics :
Syntax. enumerate (G, T.)
where G is a set in either extensional or
intensional expression, L is avariable. In the
intensional ewxpression, G is of the form
{ x| conditions } , conditions are given

as a seguence of goals in Pure Prolog.

Semantics. enumerale(G,L) succeads if and only if
G is nonempty. If a set G is infinite, then
L serves as a stream variable to bind elements
of G. Otherwise, L does as a list wariable

to cbtain all elements of G.

In this paper we are mainly concernad with the case

when G is finite, while the implementation for the

- 7 -

predicate enumerate(G,L) is given for both cases later.

Suppose that one wants to get all pairs (X,Y) such
that X is a parent of Y. The procedure {(goal) to be
invoked is :

?- enumerate({(X,¥) | parent(X,¥Y)}!, L).

The answer to this query is obtained as a list:

L = [(john,barbara), (mary,jim), (mary,tom), (nancy,john},
{nancy,mary) l.

In the similar way, the response to the question

?- enumerate({ X | cousin(X,barbara)l} , L}

will be

L=1[jim , tom]. That is, it is seen that "jim" and

"tem" are cousins of "barbara®.

Another type of usage of enumerate(G,L) demonstrates
the usefulness of the predicate,which distinguishs itself
from other set predicates in literature. Suppose that
one would like to know the relation between people. For
example, if one wishes to list up all relations holding
between, say "tom" and "mary", the guery will be :

?7- enumecrate({? | Pl(tem,marvy)} ,L).

One will get the response : I = [child,likes,poorer] .
Futhermnre,.far the gquery

?- enumerate({2 | P(mary,tom}} ,L)

the response L = [ancestor, parent] is obtained.

It should be remarked that there is originally no fact
of the form P(mary,tom) in KB considered. Similarly,

the guery

?- enumeratel (P | P(tom,barbaral} ,L)

deduces the response L = [cousin, likes], Note that

- 8 -

there is no fact of relation between "tom" and

"harhara" concerning cousin ¥,

Thus, the predicate " enumerate " makes it
possible to infer predicates(attributes) as data
objects,as well as the data.of first order.

Besides these higher-order functions, the
predicate "enumerate" also has a capability to handle
an infinite set. For example, if one make a query
?- enumerate({X | prime number(X}} , L},
then one can obtain an infinite stream of prime
numbers as a result:

2, 3,5, T, 11, 13, ...

This kiné of appreach to handle an infinite set has

been taken in recent papers([31,(4]).

3. Implementation Examples

Two implementation programs for the predicate
"ocnumerate" are given in this section. One is written
in DEC-10 Prolog, while the other in Ceoncurrent Proleg.
Both programs can run on DEC 2060 system.
The DEC-10 Prolog, like many other languages of
PROLOG family, has no facility to support the function
of dealing with predicate variables. BAnother difficulty
in implementing the predicate "enumerate" is that set
predicate in conventional PROLOG is only concerned with
a "finite set".
2z A conclusion, it turned out that
(i) in DEC-10 Prolog implenmentation, the predicate "setof"
is essentially required, and that the predicate "demo"
plays an important role, while
{ii) it is crucial for Concurrent Prolog implementation
of "enumerate" to realize the predicate "eager enumer-

ate" in the environment of no backtracking mechanism.

These predicates ("demo", "eager_ enumerate") have been

already discussed in literature([5],[8]) in reference

to the Fifth Generation Computer System, and the attempt

in this paper proves the usefulness of those predicates.

Hotes.

{1) The predicate "enumerate"” written in DEC-10 Prolog
can handle only the case where the target is a finite

set. The Concurrent Prolog version generates a stream

of all elements of the set involved.

(2) There are, in fact, several PROLCG languages in
which predicate wvariables are allowed provided that
they must have been instantiated at the execution
time. The DEC-10 Prolog, however, does not support
even this partial facility. In the implementation
programs presented here, an infix operator “"holds_
for" is used for the purpose of achieving the treat-
ment of predicate wvariables.

(3) The predicate "enumerate" implemented here is slight-
ly different from the one defined in the previous
section in that the specification implemented allows
only intentional expressions for sets. It is, however,
seen that one can easily modify the program so that

the full specification may be satisfied.

The top level procedure for "enumerate" is as follows:

iin DEC-10 Prolog)

enumerate{{%|P holds for ¥}, L} :-
var(P) ,!, setofiP,eval (P,X),L).
enumerate({X|P}, L) :-.
\+{P=..[hnlds_far[1yt

setof (X,dema(ax,?) L.

where =+{(P) is the negation aof P, i.e.,

not{F) in DEC-10 Prolog syntax.

{in Concurrent Prolog)

enumerate ({P|? holds for X}, L) :-
prolog(var(P}) |
eager enumerate({P|eval(P,X)},L).
enumerate {({x|pP}, L) :-
prolog(~+{(P=..{holds for|]})!

eager enumerate{{X|P}, L).

The prédicate "demo" is an extended version of the
one Driginally proposed by Bowen and Kowalski([21).
It has been intensively investigated and implemented
by Kunifudii et al.{[8]). The demol(ax,P) succesads if

& goal P succeeds in a program named "ax".

The procedure eval(P,X) defnied as follows:
eval (B, X} = ax(Y),¥=..[("=="},21,22].,
Z1=!1[PJXII d'Ell'lG{aKrZ'”'.

commits its evaluation to the "demo" predicate.

The predicate "eager_enumerate” plays a central role

in the Concurrent Prolog implementation. It has been
implemented by Hirakawa and Chikayama([3])} applying
the AND-parallel mechanism of Concurrent Proleog to

the OR-parallel execution in Pure Prolog., There is
ancther way of implementing "eager enumerate"” proposed

by ¥ahn{[6]) in which the OR-parallel mechanisim executes
Ok=clauses of Pure Prolog program in parallel.

The Kahn's implementation is presented here simply

because of its simplicitv.

DEC=10 Prolog program :

t=op(E00,xfr, "holds fortl,
r=0nl 1200, xfx, "C==").

enumerazte((PP holds_for ¥} ,L):=
var{P}, !, setel{P,eval (P, X),L).
enumerate((1P}, L)~
h+{P=. . [holds_for! 17,1,
setof (X, deno{ax,P),L).

eval{P,¥}:-
ax(¥} pE=. L=t AR
Z=..[P,4],decolax, 2},

Concurxrent Prolog program

1) "eager enumerate" based on that of [5]

:—apl{200,xfy, "holds_for').

ernumerate({P|P holds_for X},L):=
proleg(var{P))!
eager_enumerate({Fleval(P,X)},L).

enumerate{ [X|P},L):=
prolog(y+(P=..[holds_far| 1))
eager_enumerate([XIP},L).

eval{P,f):=-
ax(Y),T=..[(":="),21,22],
#1=..[F,X],demolax,21).

2) "esager_enumerate” based on that of [6]

enureratel (PP holds for X},L):-
prolog(var{P)} |
eager_ enumerate({Pleval(P,X}}).
enumerate({X|P},L) -
prolog(\+{P=..[holds_fer}])}|
eager_enumerate({XIP}).

coger_caumetratef {X|Coals)): -
prologlassert{(e{X):=Gozlz)))&
prie(X))&
prolog(retrace(ie(i):-Coal=)])).

- 13 -

prid):=-
prove{(A,k_write(A),fail)) ltrue,
pri{_):=-prolog(write(end)).

prove(true).
prove(d) :=systemp(A,A1) 1A,
prove{(true,B)}):-
prove{B).
prove{({A,B),C}):-
prove((A,B,C)).
prove((k_write{A) ,B)):=
prolog((A=..[e,X],noovar(X),write{X},nl)) |prove(B).
prove({k_write(A),B)):-
prolog({A=..[e,X],var(X),write(X),0l)} prove(B).
prove{(4,B)):-
systemp(A,A1)} |Al&prove(B).
prove((A,B}):~
epaystem(A, A1) lproleg{ 41) &prove(E)},
prove((A,B)):=
epelauses(A,Clauses) |
try_each(Clauses, i, B).

t-r‘.'f._'&ach([{ﬁ:-ﬂ-} t_] rﬂ-ﬂ:} H
prove{(B,C)) |true.

try_each({[_|Clauses],A,C):-
try_each(Clauses,i,C) |true.

g — ————
:= public systemp/2.

1=~ mode systemp(+,-}.

systemp{ (X\=Y),proleg({X\=Y))).
systemp((X is Y),proleg((X is Y})).
systemp{(X < Y),prolog((X<¥))).
systemp((X > Y),proleg((X>Y))).
systemp((X mod Y),prolog{(X mod T})).
systemp((X \==Y),prolog((X\==¥)}).
systeap((X-Y),prolog{(X-Y))).
systemp(print(X),proleg{{print(X))}).
systemp{write(X),proleog((write(X)})).
systemp(nl,prolog{(nL))).

demo (Yorld, true).

deno{World, not{P)):- metanot(demo{Vorld,F)}.
deno(Yorld, (P;) - (demo(Yorld, P} ;demo{Horld, Q)).
deno{¥orld, (P,MN):- demo(Vorld,P),demo(Worid, Q).
dase(Vorld,P):-systenp(P),!,F.

demo(YHorld,P) :- metaczll{World,{P<--Q),%),depo(liorld,qQ).

metanot{F):- P, 1,fail.
metanot(_).

metzezll(W,P,Yp):= HWp=..[V,P],"p.

systenpl((X==Y)).

;_‘,----‘_-_--__.-__,___,__,___.__-____.-..—..———.—————-————————---—-H--I‘!‘-—--—-F—

ax((ohild(({jim,mary))-truel).
axf{{child((tom,mary)) =truel).
ax({child({mary,nancy)):-true)).
ax((child({ jotn, nancy)) :=true)).
ax((child((barbara, john)):~true)).
ax{({likes{(tom,barbvara)):-truel}.
ax{({likes((mary,jim)}:-true}l.
ax{{likes{(jim,nancy)) :=truel).
ax({(likes({(tom,mary)):-true)).
ax{{poorer{{tom,mary}) :=true}).
ax({poorer((mary,nancy)):=-truell.

ax((parent((X,Y)):—child({Y,X)))}.
ax{{ancestor({X,Y)}):-parent{(X,¥}))).
ax({ancestor{(X,Y}):~parent({X,2)) ,ancestor{(Z,Y}))}).

ax({{brother{(X,Y)):=parent((Z,X}),parent((Z,Y)),not(identity{(X,Y)}))).
ax{(ecousin((¥,Y}):-parent((Z,X)),parent{{W,¥)),brother{(Z,W))])).

ax{(richer((X,Y}):=poorer{(Y,X)))}.
ax{({richer{(X,I)):-poorer({Z,X)) richer{(Z2,T)}}).

ax{(identity((X,¥)):-X==7}).

- 15 =

Prolog-20 wversion 1.0
Copyright () 1961, 1983 by D. Warren, F. Pereira and L. Byrc

| 7= [=test].

test reconsulted EE86 words 3.54 zec.

! 79— enumerate({Xipareat(X}},L).

-
i n

[{ john,barbara),(mary, jin),{mary,tem),(nancy, john),(nzncy,mary)],
1

yes
! 7= enumerate{{Xibrether{X)},L).

= [(mary, john).{ john,mary),(jm, ton) ,{tom, jim)],
X =_"

! 2= enumerate([X!cousin{(X,barbara})},L).

[jim,tom],
1

! 9= enumerate{{P| P holds_for (tom,mary)},L).

-
i

[ehild,likes, poorer],
_31
! 7= enumerzstel{{F!P heolds_for (nzney,tom)},L}.

L = [{ancestor,richer],
= 1

' 2= enumerate({P!P holds_for (mary,tom)},L).

neester,parent],

o
—
i

1 79— enumerate({?P!P holds_for (tom,barbara)},L).

L = [cousin,likes],

F=_31

yes

I 7= core 91648 (L60B0 lo-seg + 405568 hi-seg)
heap 29184 = 27221 in use + 1963 free
global 1849 = 16 in use =+ 1433 free

local 1024 = 16 in use + 1008 free

trail 511 = 0 in uze + 511 free

0.00 sec. for 6 trail shifts

. e -
5.2]1 sec. runtime

4, Discussion

We have introduced the concept of set abstraction
as an analogy of that of lambda abstraction, and
proposed a predicate "enumerate" to count all elements
of the set implied., The set abstraction comprises two
common features concerning PROLOG : "set expression"” and
"predicate variable". In the usual sense, the set expres-
sion proposed and implemented in literature so far concerns
only dealing with the first order data objects, while as
we have seen, the set abstraction discussed here extends
the set expression so that it may handle even the second
order predicates. That is why we distincuished the set
abstraction from the set expression. There are, in fact,
some languages of PROLOG family where the predicate vari-
ables are permitted at the syntax level. As far as we know,
however, nonc of them enables one to deal with predicate
variables as data objects of abstraction or to obtain the
set of attributes derived from the axioms by inference,
neither.

A natural extension to the set abstraction suggesis
the possibility of introducing the higher-order set abstrac-
tion such az the set of the set of attributes. This imme-
diately leads to the problem of self-application. That is,
in the prescnce of self-application, the well-known diagonal
argquments bring us the Russell!s paradeoxes. A trivial way
to avoid_arising the paradoxes may be to restrict object
worlds to finite sets. This will not impose so strict

restrictions on practical phase.

In this paper it has been shown that under the
current environment of PROLOG language facility, one
can easily implement the set abstraction function which
has the capability of dealing with the seccond order
oredicate logic. The preblem of efficient implementation

is left open.

Acknowledgements

The author would like to thank Dr.K.Furukawa,
the chief of Second Laboratory,ICOT, for useful
discussion and suggestion. He would also like to
express his gratitude to the members of the KL
Design Task Group at ICOT for thier valuable and
stimulative discussion.

rast but not least, the author is very grateful
to Dr.T.Kitagawa, the president of IIAS-5IS, Fujitsu

Limited, for warm encouragement as well as sharp advice.

Eeferences

(1] D.L.Bowen: DECsystem-10 Prolog User's Manual,
Department of Artificial Intelligence,
University of Edinburgh,Dec.1981.
[2] K.A.Bowen and R.A.Kowalski: Amalgamating Language
and Meta Language in Logic Programming,
Tech.Rep.of School of Computer and Inf.
Sciences,University of Syracuse(1981).
[3] K.L.Clark and S.Cragory:PARLOG:A parallel Logic
Programming Language,Research Rep.DOCB3/5
May(1583).
[4] K.Furukawa,S.Kunifuji,A.Takeuchi and K.Ueda:
The Conceptual Specification of the Kernel
Language Version 1, LCOT Research Rep.(1984).
[5] H.Hirakawa and T.Chikayama: Eager and Lazy Enumerations
in Conecurrent Proleg, ICOT TM-0036(1984).
[6] K.Kahn : Pure Prolog Interpreter in Concurrent Prolog,
Presentation at ICOT,1983.
[7] R.A.Kowalski: Predicate Logic as Programming Language,
Research Memo No.70,Imperial College(1973).
{8) S.¥unifuji,M.Asou,K.Sakai ,T.Miyachi H.Kitakami H.Yokota,
H.Yasukawa and K.Furukawa: Amalgamation of Object know-
ledge and Meta knowledge in Prolog and its
applications, Inf.Processing Society of Japan,
Research Committee Material(in Japanese)1983.
[9] E.Y.Shapiro: A Subset of Concurrent Prolog and Its
Interpreter,ICOT Tech. Rep. TR-003(1983).
[10] D.H.D.Warren: Higher-order Extensions to Prolog —
Are They Needed ?, D.A.1. Research paper No.1l54,
University of Edinburgh, also 10th International
Machine Intelligence Workshop, Case Western

Reserve University, Cleveland,Ohic,April 1981.

-.zl:-.j -

